
Comment.Math.Univ.Carolin. 47,1 (2006)113–126 113

Topological structure of the space

of lower semi-continuous functions

Katsuro Sakai, Shigenori Uehara

Abstract. Let L(X) be the space of all lower semi-continuous extended real-valued func-
tions on a Hausdorff space X, where, by identifying each f with the epi-graph epi(f),
L(X) is regarded the subspace of the space Cld∗

F
(X ×R) of all closed sets in X ×R with

the Fell topology. Let

LSC(X) = {f ∈ L(X) | f(X) ∩ R 6= ∅, f(X) ⊂ (−∞,∞]} and

LSCB(X) = {f ∈ L(X) | f(X) is a bounded subset of R}.

We show that L(X) is homeomorphic to the Hilbert cube Q = [−1, 1]N if and only
if X is second countable, locally compact and infinite. In this case, it is proved that
(L(X),LSC(X),LSCB(X)) is homeomorphic to (ConeQ, Q × (0, 1),Σ × (0, 1)) (resp.
(Q, s,Σ)) if X is compact (resp. X is non-compact), where ConeQ = (Q×I)/(Q×{1}) is
the cone over Q, s = (−1, 1)N is the pseudo-interior, Σ = {(xi)i∈N ∈ Q | supi∈N |xi| < 1}
is the radial-interior.

Keywords: space of lower semi-continuous functions, epi-graph, Fell topology, Hilbert
cube, pseudo-interior, radial-interior

Classification: 57N20, 54C35

1. Introduction

The set of all closed sets in a (topological) space X is denoted by Cld∗(X) and
let Cld(X) = Cld∗(X) \ {∅}. For each U ⊂ X , we denote

U− = {A ∈ Cld∗(X) | A ∩ U 6= ∅} and

U+ = {A ∈ Cld∗(X) | A ⊂ U}.

The Fell topology on Cld∗(X) is the topology generated by

{U− | U ⊂ X is open} ∪ {(X \ K)+ | K ⊂ X is compact}.

By Cld∗F (X) (or CldF (X)), we denote the space Cld
∗(X) (or Cld(X)) with the

Fell topology.1 In the paper [9], it is proved that Cld∗F (X) (resp. CldF (X)) is

1Note that the hyperspace CldV (X) with the Vietoris topology is metrizable if and only if
X is compact metrizable. On the other hand, Cld∗

F
(X) (or CldF (X)) is metrizable if and only

if X is locally compact and separable metrizable [2, Theorem 5.1.5].
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homeomorphic to (≈) the Hilbert cube Q = [−1, 1]N (resp. Q \ {0}) if and only if
X is a locally compact, locally connected, separable metrizable space which has
no compact components.
By [−∞,∞], we denote the extended real line. For an extended real-valued

function f : X → [−∞,∞], let

epi(f) = {(x, t) ∈ X × R | t ≥ f(x)},

which is called the epi-graph of f . Note that

• f is lower semi-continuous if and only if epi(f) is closed in X × R,

whence f can be regarded as a lower semi-continuous real-valued function defined
on the set f−1(R) ⊂ X .
Let L(X) be the space of all lower semi-continuous extended real-valued func-

tions on X , where, by identifying each f with epi(f), L(X) is considered the
subspace of the space Cld∗F (X × R). In this paper, we show the following:

Theorem 1.1. For a Hausdorff space X , L(X) ≈ Q if and only if X is locally
compact, second countable and infinite.

In this paper, we also study the following subspaces:

LSC(X) = {f ∈ L(X) | f(X) ∩ R 6= ∅, f(X) ⊂ (−∞,∞]};

LSCB(X) = {f ∈ L(X) | f(X) is a bounded subset of R}.

Observe that L(X) ⊃ LSC(X) ⊃ LSCB(X). Each f ∈ LSC(X) is called a proper
lower semi-continuous extended real-valued function. Each f ∈ LSCB(X) is a
bounded lower semi-continuous real-valued function defined on the whole spaceX .
Let I = [0, 1] be the closed unit interval. By ConeX , we denote the cone over

X which is the quotient space obtained from X × I by shrinking X × {1} to a
point ∗ (called the vertex ), that is,

ConeX = (X × I)/(X × {1}).

Throughout this paper, we use the homeomorphism θ : [−∞,∞] → I defined as
follows:

θ(−∞) = 0, θ(∞) = 1 and θ(t) =
1

2

(

t

1 + |t|
+ 1

)

.

Let ∆n be the standard n-simplex and rint∆n the radial interior of ∆n, i.e.,

∆n =
{

(t1, . . . , tn+1) ∈ I
n+1 |

∑n+1
i=1 ti = 1

}

;

rint∆n =
{

(t1, . . . , tn+1) ∈ ∆
n | ti > 0 for i = 1, . . . , n+ 1

}

.
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In case X is finite, we can easily see that L(X) ≈ ∆n ≈ Cone∆n−1, where
n = cardX . Indeed, write X = {x1, . . . , xn} and define p : L(X) → Cone∆n−1

as follows:

p(f) =











∗ (the vertex of Cone∆n−1) if f = ∅, 2

(

1− θ(f(x1))

σ(f)
, . . . ,

1− θ(f(xn))

σ(f)
, θ(min f(X))

)

otherwise,

where σ(f) =
∑n

i=1(1− θ(f(xi))). Then, p is a homeomorphism such that

p(LSC(X)) = ∆n−1 × (0, 1) and p(LSCB(X)) = rint∆
n−1 × (0, 1).

Thus, we have the following:

Fact. For a finite T1-space X with cardX = n,

(L(X), LSC(X), LSCB(X))

≈ (Cone∆n−1, ∆n−1 × (0, 1), rint∆n−1 × (0, 1)).

In this paper, we generalize this fact into the case X is infinite. Let

s = (−1, 1)N and Σ =
{

(xi)i∈N ∈ Q | supi∈N |xi| < 1
}

,

which are called the pseudo-interior and the radial interior of Q, respectively.
We prove the following two generalizations:

Theorem 1.2. For a Hausdorff space X , the following are equivalent:

(a) X is second countable, compact and infinite;
(b) (L(X), LSC(X)) ≈ (ConeQ, Q × (0, 1));
(c) (L(X), LSC(X), LSCB(X)) ≈ (ConeQ, Q × (0, 1), Σ× (0, 1)).

In the above, the vertex ∗ ∈ ConeQ corresponds to the function ∅ ∈ L(X).

Theorem 1.3. For a Hausdorff space X , the following are equivalent:

(a) X is second countable, locally compact and non-compact;
(b) (L(X), LSC(X)) ≈ (Q, s);
(c) (L(X), LSC(X), LSCB(X)) ≈ (Q, s,Σ).

Remark. It should be remarked that

(Q, s,Σ) ≈ (ConeQ, s × (0, 1), Σ× (0, 1)).

One should also keep in mind that the complement L(X)\LSC(X) in Theorem 1.3
is connected, but the one in Theorem 1.2 has two components {∅} and {f ∈ L(X) |
−∞ ∈ f(X)}.

2Here, f = ∅ means that f is the constant function x 7→ ∞.
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2. Metrizability and closedness

The following follows from the result of Fell [5] (cf. [2, Theorem 5.1.3]):

Proposition 2.1. For every Hausdorff space X , Cld∗F (X ×R) is compact. If X
is locally compact then Cld∗F (X × R) is a compact Hausdorff space. �

Let CldF (X) = Cld
∗
F (X)\{∅}. Then, the hyperspace CldF (X) can be regarded

as a subspace of LSCB(X) by the embedding i : CldF (X) → LSCB(X) defined
by

i(A)(x) =

{

0 if x ∈ A,

1 if x /∈ A.

Moreover, by identifying x ∈ X with {x} ∈ CldF (X), we can also regard X
as a subspace of CldF (X). Since Cld

∗
F (X × R) (resp. CldF (X)) is metrizable

if and only if X × R (resp. X) is locally compact and second countable by [2,
Theorem 5.1.5], we have the following:

Proposition 2.2. For a Hausdorff space X , the following are equivalent:

(a) X is locally compact and second countable;
(b) Cld∗F (X × R) is metrizable;
(c) L(X) is metrizable;
(d) LSC(X) is metrizable;
(e) LSCB(X) is metrizable;
(f) CldF (X) is metrizable. �

Proposition 2.3. A Hausdorff spaceX is locally compact if and only if the space
L(X) is closed in Cld∗F (X × R).

Proof: To see the “only if” part, assume that X is locally compact. For each
A ∈ Cld∗F (X × R) \ L(X), we have x ∈ X and r1 < r2 ∈ R such that (x, r1) ∈ A
and (x, r2) /∈ A. Choose an open neighborhood V of x in X and δ > 0 so that
clV is compact and

clV × (r2 − δ1, r2 + δ) ⊂ (X × R) \ A.

Let K = clV × [r2 − δ, r2 + δ] and U = V × (−∞, r2 − δ). Then,

A ∈ U− ∩ ((X × R) \ K)+ ⊂ Cld∗F (X × R) \ L(X).

Hence, Cld∗F (X × R) \ L(X) is open in Cld∗F (X × R), that is, L(X) is closed.
Now, to see the “if” part, assume that X is not locally compact, whence we

have x0 ∈ X which has no compact neighborhoods in X . Let

A = (X × [1,∞)) ∪ {(x0, 0)} ∈ Cld∗F (X × R) \ L(X).



Topological structure of the space of l.s.c. functions 117

For each neighborhoodW ofA in Cld∗F (X×R), we can choose open sets U1, . . . , Un

⊂ X × R and a compact set K ⊂ X × R so that (x0, 0) ∈ U1 and

A ∈ U−
1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ⊂ W.

Since prX(K) is compact, prX(K) is not a neighborhood of x0 in X , hence
prX(U1) 6⊂ prX (K). Thus, we have x1 ∈ prX(U1) \prX(K). We define g ∈ L(X)
by

g(x) =

{

0 if x = x1,

1 if x 6= x1.

By identifying g with the epi-graph, we can write as follows:

g = (X × [1,∞)) ∪ ({x1} × [0,∞)).

Then, it is easy to see that

g ∈ U−
1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ⊂ W.

Hence, W ∩ L(X) 6= ∅. This means that A ∈ cl L(X), that is, L(X) is not closed
in Cld∗F (X × R). �

As corollaries of propositions above, we have the following:

Corollary 2.4. A Hausdorff space X is locally compact if and only if the space
L(X) is a compact Hausdorff space. �

Corollary 2.5. A Hausdorff space X is locally compact and second countable if
and only if the space L(X) is a compact metrizable space. �

We now consider the subspace:

L−∞(X) = {f ∈ L(X) | −∞ ∈ f(X)}

= L(X) \ (LSC(X) ∪ {∅}) ⊂ L(X).

Lemma 2.6. For a locally compact Hausdorff space X , L−∞(X) is compact if
and only if X is compact.

Proof: Assume that X is compact. For each f ∈ L(X)\L−∞(X), we have b ∈ R
such that f(X) ⊂ (b,∞]. Then, f has the following open neighborhood in L(X):

((X × R) \ (X × {b}))+ ∩ L(X) ⊂ L(X) \ L−∞(X).

Thus, L−∞(X) is closed in L(X), hence it is compact by Corollary 2.4.
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On the other hand, if X is not compact then it contains an infinite and discrete
set {xi | i ∈ N}, where xi 6= xj if i 6= j. For each i ∈ N, we define fi ∈ L−∞(X)
by

fi(x) =

{

−∞ if x = xi,

∞ if x 6= xi,

that is, fi = epi(fi) = {xi} × R. For each neighborhood W of ∅ in L(X), we
have a compact set K ⊂ X such that ((X × R) \ K)+ ⊂ W . Since {xi | i ∈ N}
is discrete in X and prX(K) is compact, we have n ∈ N such that if i ≥ n then
xi /∈ prX(K), hence fi ∈ ((X × R) \ K)+ ⊂ W . Thus, the sequence (fi)i∈N

converges to the function ∅. Therefore, L−∞(X) is not compact. �

Proposition 2.7. Let X be a locally compact Hausdorff space.

(1) If X is σ-compact then LSC(X) is absolutely Gδ.

(2) If X is compact then LSC(X) is open in L(X), hence it is locally compact.
(3) If X is non-compact then LSC(X) is nowhere locally compact.

Proof: (1) Since L(X) is a compact Hausdorff space, it suffices to see that
LSC(X) is Gδ in L(X). Let X =

⋃

n∈N
Xn, where each Xn is compact. For each

n ∈ N, let
Wn = {f ∈ L(X) | −∞ /∈ f(Xn)}.

Then, LSC(X) =
⋂

n∈N
Wn \ {∅}. For each f ∈ Wn, since Xn is compact, we

have r ∈ R such that f(Xn) ⊂ (r,∞], which implies

f ∈ ((X × R) \ (Xn × {r}))+ ∩ L(X) ⊂ Wn.

This means that Wn is open in L(X).

(2) For each f ∈ LSC(X), since X is compact, we have r ∈ R such that
f(X) ⊂ (r,∞]. Then,

f ∈ ((X × R) \ (X × {r}))+ ∩ L(X) \ {∅} ⊂ LSC(X).

Hence, LSC(X) is open in L(X).

(3) For each f ∈ LSC(X) and each neighborhood of W in LSC(X), we have
open sets U1, . . . , Un ⊂ X × R and a compact set K ⊂ X × R such that

f ∈ U−
1 ∩ · · · ∩ U−

n ∩ ((X × R) \ K)+ ∩ LSC(X) ⊂ W.

Since X is non-compact, we have x0 ∈ X \ prX(K). For each i ∈ N, we define
fi ∈ W as follows:

fi(x) =

{

f(x0)− i if x = x0,

f(x) if x 6= x0.
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Then, (fi)i∈N converges to f∞ ∈ L−∞(X) defined as follows:

f∞(x) =

{

−∞ if x = x0,

f(x) if x 6= x0.

Since L(X) is Hausdorff, {fi | i ∈ N} is discrete in LSC(X) ∩ clW . Therefore,
LSC(X) ∩ clW is not compact. �

3. Homotopy dense subsets and AR property

A subset Y of a space X is said to be homotopy dense in X if there exists a
homotopy h : X × I → X such that h0 = idX and ht(X) ⊂ Y for every t > 0,
where ht : X → X is defined by ht(x) = h(x, t). Let η, ζ : L(X) × I → L(X) be
the homotopies defined as follows:

ηt(f)(x) =

{

f(x) if t = 0,

min{f(x), 1/t} if t > 0;

ζt(f)(x) =

{

f(x) if t = 0,

max{f(x),−1/t} if t > 0.

By identifying ηt(f) and ζt(f) with the epi-graphs, we can write

ηt(f) = f ∪ X × [1/t,∞) and ζt(f) = f ∩ X × [−1/t,∞).

We shall verify the continuity of η and ζ.

Continuity of η : Let V ⊂ X × R be open. For each (f, t) ∈ η−1(V −),
f ∩ V 6= ∅ or X × [1/t,∞) ∩ V 6= ∅ (the latter does not occur if t = 0). When
f ∩ V 6= ∅, V − ∩ L(X) is a neighborhood of f in L(X) and ηs(g) ∈ V − for every
g ∈ V − ∩ L(X) and s ∈ I. When X × [1/t,∞) ∩ V 6= ∅ (t > 0), it follows that
X × [a,∞)∩V 6= ∅ for some a > 1/t. Then, t ∈ (1/a, 1] and X × [1/s,∞)∩V 6= ∅
for every s ∈ (1/a, 1], which implies that ηs(g) ∈ V − for every g ∈ L(X) and
s ∈ (1/a, 1]. Hence, η−1(V −) is open in L(X)× I.
Now, let K ⊂ X × R be compact. For each (f, t) ∈ η−1(((X × R) \ K)+),

f ∩ K = ∅ and X × [1/t,∞) ∩ K = ∅, whence ((X × R) \ K)+ ∩ L(X) is a
neighborhood of f in L(X) and X × [a,∞) ∩ K = ∅ for some 0 < a < 1/t.
Then, t ∈ [0, 1/a) and X × [1/s,∞) ∩ K = ∅ if 0 < s < 1/a. It follows that
ηs(g) ∈ ((X × R) \ K)+ for every g ∈ ((X × R) \ K)+ ∩ L(X) and s ∈ [0, 1/a).
Thus, η−1(((X × R) \ K)+) is open in L(X)× I. �

Continuity of ζ : Let V ⊂ X ×R be open. For each (f, t) ∈ ζ−1(V −), we have
(x, r) ∈ V such that r ≥ max{f(x),−1/t} (r ≥ f(x) if t = 0). Since V is open in
X × R, (x, r0) ∈ V for some r0 > r. Let r < r1 < r0 and W = V ∩ X × (r1,∞).
Then, W− ∩ L(X) is a neighborhood of f in L(X). Since −1/t < r1, we have



120 K.Sakai, S.Uehara

a > t so that −1/s < r1 if 0 < s < a. Then, t ∈ [0, a). Let g ∈ W− and s ∈ [0, a).
Then, we have (x′, r′) ∈ W with r′ ≥ g(x′). Since r′ > r1 > −1/s, it follows that
r′ ≥ max{g(x′),−1/s}, which means ζs(g) ∈ W− ⊂ V −. Therefore, ζ−1(V −) is
open in L(X)× I.
Let K ⊂ X ×R be compact and (f, t) ∈ ζ−1(((X ×R) \K)+), that is, f ∩X ×

[−1/t,∞) ∩ K = ∅. Observe that

f ∩ X × {c} = f−1((−∞, c])× {c} for each c ∈ R.

By this fact, it is easy to see that

c < d ⇒ f ∩ X × [c,∞) ⊂ f−1((−∞, d])× [c, d] ∪ (f ∩ X × [d,∞)).

Then, it follows that f ∩ X × [a,∞) ∩ K = ∅ for some a < −1/t because K is
compact. Let

W = ((X × R) \ (X × [a,∞) ∩ K))+ ∩ L(X).

Then, W is a neighborhood of f in L(X) and t ∈ (1/|a|, 1]. For each g ∈ W and
s ∈ (1/|a|, 1], g∩X×[−1/s,∞)∩K = ∅, which means that ζ(g, s) ∈ ((X×R)\K)+.
Hence, ζ−1(((X × R) \ K)+) is open in X × R. �

We define the homotopy ξ : L(X) × I → L(X) by ξt = ηtζt = ζtηt for every
t ∈ I, that is,

ξt(f) = (f ∩ X × [−1/t,∞)) ∪ X × [1/t,∞) ⊂ X × R.

Since ξt(L(X)) ⊂ LSCB(X) for t > 0, we have the following:

Proposition 3.1. The subspace LSCB(X) is homotopy dense in L(X). �

It can be shown that the complement LSC(X) \ LSCB(X) is homotopy dense
in LSC(X). At the same time, we shall prove that some other subspaces of L(X)
are homotopy dense in L(X) and they are AR’s.3 To this end, we use the result
on Lawson semilattices.
A topological semilattice is a topological space S equipped with a continuous

operator ∨ : S × S → S which is idempotent, commutative and associative (i.e.,
x∨ x = x, x∨ y = y ∨ x, (x∨ y) ∨ z = x∨ (y ∨ z)). A topological semilattice S is
called a Lawson semilattice if S admits an open basis consisting of subsemilattices
([7]). A subspace Y of X is called relatively LC0 in X if every neighborhood U
of each x ∈ X contains a neighborhood V of x in X such that any two points
y, z ∈ V ∩ Y can be connected by a path in V ∩ Y . The following is proved in [6,
Theorem 5.1].

3AR = absolute retract; ANR = absolute neighborhood retract.
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Proposition 3.2. Let X be a metrizable Lawson semilattice and Y ⊂ X a

subsemilattice. If Y is relatively LC0 in X (and Y is connected), then X is an
ANR (an AR) and Y is homotopy dense in X , hence Y is also an ANR (an AR).

�

To apply Proposition 3.2 above, we show the following:

Proposition 3.3. For a Hausdorff space X , the space Cld∗F (X) is a Lawson
semilattice with the union operator ∪. The spaces L(X), LSC(X), LSCB(X) and
L−∞(X) are subsemilattices of Cld

∗
F (X).

Proof: For each open set U ⊂ X and each compact setK ⊂ X , U− and (X\K)+

are subsemilattices of Cld∗F (X). Hence, Cld
∗
F (X) has an open basis consisting of

subsemilattices. The continuity of ∪ is easily observed. The second statement is
evident. �

We consider the following subspace:

F (X) = {f ∈ LSC(X) | f(x) =∞ except for finitely many x ∈ X}

= {f ∈ LSC(X) | f−1(R) is finite}.

As is easily observed, F (X) is a dense subsemilattice of LSC(X). Moreover, it
should be noted that F (X) ∩ LSCB(X) = ∅ if X is infinite.

Lemma 3.4. For every second countable locally compact Hausdorff space X ,
F (X) is homotopy dense in LSC(X).

Proof: By Proposition 3.2, it suffices to show that F (X) is relatively LC0 in
LSC(X). To this end, let f ∈ LSC(X) and W an open neighborhood of f in
LSC(X). Since LSC(X) is a Lawson semilattice, we may assume that W is a
subsemilattice of LSC(X). For each f1, f2 ∈ W ∩ F (X), we can define a path
h : I→ F (X) as follows:

h(t)(x) =

{

f1(x) if f1(x) ≤ f2(x),

θ−1((1 − t)θ(f1(x)) + tθ(f2(x))) if f2(x) < f1(x),

where θ : [−∞,∞]→ I is the homeomorphism defined in §1. It is easy to see that
h is a path in W ∩ F (X) connecting h(0) = f1 and h(1) = f1 ∪ f2. Similarly,
f2 can be connected to f1 ∪ f2 by a path in W ∩ F (X). Then, f1 and f2 are
connected by a path inW ∩F (X). Therefore, F (X) is relatively LC0 in LSC(X).

�

Since F (X) ⊂ LSC(X) \ LSCB(X), the following follows from Lemma 3.4:
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Proposition 3.5. For every infinite second countable locally compact Hausdorff

space X , LSC(X) \ LSCB(X) is homotopy dense in LSC(X). �

A closed subset A ⊂ Y is called a Z-set in Y if for each open cover U , there
exists a map4 f : Y → Y \A which is U-close to the identity.5 A countable union
of Z-sets is called a Zσ-set . One should note that a closed set (resp. an Fσ-set)
A ⊂ Y is a Z-set (resp. a Zσ-set) if the complement Y \ A is homotopy dense
in Y .

Lemma 3.6. Let X be a second countable locally compact Hausdorff space.

(1) The space L−∞(X) is an AR.
(2) If X is compact then L−∞(X) is a compact Z-set in L(X).
(3) If X is non-compact then L−∞(X) is homotopy dense in L(X).

Proof: (1) Take f1, f2 ∈ L−∞(X). All the same as in the proof of Lemma 3.4,
we can obtain a path h : I → L−∞(X) from f1 to f2, hence L−∞(X) is path-
connected. Recall that L−∞(X) is a Lawson semilattice. If both f1 and f2 are in
some open subsemilatticeW of L−∞(X), then h is a path in W . Hence, L−∞(X)
is LC0. Thus, L−∞(X) is an AR by Proposition 3.2.

(2) By Lemma 2.6, L−∞(X) is compact. Since L−∞(X) ∩ LSCB(X) = ∅ and
LSCB(X) is homotopy dense in L(X) by Proposition 3.1, it follows that L−∞(X)
is a Z-set in L(X).

(3) When X is non-compact, it is easy to see that L−∞(X) is dense in L(X).
Similarly to Lemma 3.4, we can prove that L−∞(X) is homotopy dense in L(X).

�

Proposition 3.7. Let X be a second countable locally compact Hausdorff space.
Then, L(X), LSC(X), LSCB(X) and LSC(X) \ LSCB(X) are AR’s.

Proof: We can define a map λ : LSCB(X)
2 × I→ LSCB(X) as follows:

λ(f, g, t)(x) = (1− t)f(x) + tg(x) for each (f, g, t) ∈ LSCB(X)
2 × I.

Then, λ(f, g, 0) = f , λ(f, g, 1) = g and λ(f, f, t) = f , namely LSCB(X) is equi-
connected, so LSCB(X) is path-connected and locally path-connected. Note that
LSCB(X) is a Lawson semilattice as a subsemilattice of the Lawson semilattice
Cld∗F (X×R) (Proposition 3.3). Therefore, LSCB(X) is an AR by Proposition 3.2.
Since LSCB(X) is homotopy dense in L(X) by Proposition 3.1, it follows that
L(X) and LSC(X) are AR’s. Moreover, since LSC(X) \ LSCB(X) is homotopy
dense in L(X) by Proposition 3.5, LSC(X) \ LSCB(X) is also an AR. �

4Here, a map is a continuous function
5Two maps f, g : X → Y are U-close if each {f(x), g(x)} is contained in some U ∈ U .
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4. Proof of Theorems

The following property is called the disjoint cells property.

• For each n ∈ N, and each open cover U of X , every maps f, g : In → X
are U-close to maps f ′, g′ : In → X such that f ′(In) ∩ g′(In) = ∅.

To prove Theorem 1.1, we apply the following Toruńczyk’s characterization of the
Hilbert cube [10] ([8, Corollary 7.8.4]).

Theorem 4.1. In order that X ≈ Q, it is necessary and sufficient that X is a
compact AR with the disjoint cells property. �

Using this characterization of Q, we shall show Theorem 1.1.

Proof of Theorem 1.1: The “necessity” follows from Corollary 2.5 and Fact.
We prove the “sufficiency”. By Corollary 2.4 and Proposition 3.7, L(X) is a
compact AR. Since both LSCB(X) and L(X) \ LSCB(X) are homotopy dense in
L(X) by Propositions 3.1 and 3.5, L(X) has the disjoint cells property. Thus, we
have L(X) ≈ Q by Theorem 4.1. �

In [1], introducing the notion of cap-sets characterizing subsets M ⊂ Q such
that (Q, M) ≈ (Q,Σ), R. Anderson proved that (Q,Σ) ≈ (Q, Q \ s) (cf. [3]). The
following is a combination of Lemmas 4.2 and 4.4 in [3].

Lemma 4.2. Suppose that (Q, M) ≈ (Q,Σ). If L is a Zσ-set in Q and K is a
Z-set in Q then (Q, (M ∪ L) \ K) ≈ (Q,Σ). �

The following is the combination of Lemmas 4.3 and 4.4 in [3].

Lemma 4.3. Suppose that (Q, M) ≈ (Q, N) ≈ (Q,Σ) and K is a Z-set in Q
with K∩M = K∩N . Then, for each ε > 0, there is a homeomorphism h : Q → Q
such that h(M) = N , h|K = id and h is ε-close to id. Moreover if M ∪ N ⊂ s
then h also satisfies h(Q \ s) = Q \ s, that is, h(s) = s. �

A tower (Mi)i∈N of closed sets in X has the deformation property in X if there
is a homotopy h : X × I→ X such that h0 = id and, for each t > 0, h(X × [t, 1])
is contained in someMi. We apply the following Curtis’ result ([4, Corollary 4.9]:

Lemma 4.4. LetM =
⋃

i∈N
Mi ⊂ Q, whereM1 ⊂ M2 ⊂ · · · satisfy the following

conditions:

(1) Mi ≈ Q for each i ∈ N;
(2) each Mi is a Z-set in Mi+1;

(3) (Mi)i∈N has the deformation property in Q.

Then, (Q, M) ≈ (Q,Σ). �

Before proving Theorems 1.2 and 1.3, we show the following:
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Theorem 4.5. For a Hausdorff space X , (L(X), LSCB(X)) ≈ (Q,Σ) if and only
if X is locally compact, second countable and infinite.

Proof: The “only if” part follows from Theorem 1.1. To see the “if” part,
assume that X is locally compact and second countable. For each n ∈ N, let

Bn = {f ∈ L(X) | f(X) ⊂ [−n, n]} and

Fn = {f ∈ Bn | f(x) = n except for finitely many x ∈ X}.

Then, as is easily observed, (Bn, Fn) ≈ (L(X), F (X)), hence we have Bn ≈ Q by
Theorem 1.1 and Fn is homotopy dense in Bn by Lemma 3.4. Since Bn∩Fn+1 = ∅
and Fn+1 is homotopy dense in Bn+1, it follows that Bn is a Z-set in Bn+1.
Let ξ : L(X) × I → L(X) be the homotopy defined in §3. For each t > 0,
choose n ∈ N so that n ≥ 1/t. Then, ξ(L(X) × [t, 1]) ⊂ Bn. Thus, (Bn)n∈N

has the deformation property in L(X). Since LSCB(X) =
⋃

n∈N
Bn, we have

(L(X), LSCB(X)) ≈ (Q,Σ) by Lemma 4.4. �

To prove Theorem 1.2, we use the following:

Lemma 4.6. For every second countable compact infinite Hausdorff space X ,
L−∞(X) ≈ Q.

Proof: By Lemma 3.6, L−∞(X) is a compact AR. Let η : L(X)× I→ L(X) be
the homotopy defined in §3. Observe that η(L−∞(X) × I) ⊂ L−∞(X). Since X
is infinite, it follows that

ηt(L−∞(X)) ⊂ L−∞(X) \ F (X) for t > 0,

whence L−∞(X) \ F (X) is homotopy dense in L−∞(X). Moreover, by the same
arguments as the proof of Lemma 3.4, it can be shown that F (X) ∩ L−∞(X) is
homotopy dense in L−∞(X). Hence, L−∞(X) has the disjoint cells property. By
Theorem 4.1, we have L−∞(X) ≈ Q. �

Now, we shall prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2: The implication (c)⇒ (b) is obvious. By Corollary 2.5,
Proposition 2.7(3) and Fact, we have the implication (b) ⇒ (a).

(a) ⇒ (c): By Theorem 4.5 above, we have

(L(X), LSCB(X)) ≈ (Q,Σ) ≈ (ConeQ,Σ× (0, 1)).

Since L−∞(X) is a Z-set in L(X) by Lemma 3.6(2) and L−∞(X) ≈ Q by
Lemma 4.6, we can apply the Z-set unknotting theorem to obtain a homeomor-
phism g : L(X) → ConeQ such that g({∅}) = {∗} and g(L−∞(X)) = Q × {0}.
Note that

(Q × {0} ∪ {∗}) ∩ g(LSCB(X)) = ∅.
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By Lemma 4.3, we have a homeomorphism h : ConeQ → ConeQ such that

hg(LSCB(X)) = Σ× (0, 1) and h|Q × {0} ∪ {∗} = id,

whence it follows that

hg(LSC(X)) = hg(L(X) \ (L−∞(X) ∪ {∅}))

= ConeQ \ (Q × {0} ∪ {∗}) = Q × (0, 1).

This completes the proof. �

Proof of Theorem 1.3: The implication (c)⇒ (b) is obvious. The implication
(b) ⇒ (a) follows from Corollary 2.5 and Proposition 2.7(2).

(a) ⇒ (c): We can write X =
⋃

n∈N
Xn, where intX1 is infinite, each Xn is

compact and Xn $ intXn+1. For each n ∈ N, let

Mn = {f ∈ L(X) | f(X \ intXn) = {−∞}} and

Nn = {f ∈ Mn | f(intXn) is a bounded subset of R}.

Then, as is easily observed, we have

(Mn, Nn) ≈ (L(intXn), LSCB(intXn)),

whence Mn ≈ Q by Theorem 1.1 and Nn is homotopy dense in Mn by Proposi-
tion 3.1. Since (X \ intXn)∩ intXn+1 6= ∅, we haveMn ∩Nn+1 = ∅, whence Mn

is a Z-set in Mn+1 because Nn+1 is homotopy dense in Mn+1. We can define a
homotopy h : L(X)× I→ L(X) as follows: h0 = id,

h1/n(f) = f ∪ (X \ intXn)× R,

and, for 1/(n+ 1) < t < 1/n,

ht(f) = h1/(n+1)(f) ∪ (X \ intXn)× [ϕn(t),∞),

where ϕn : (1/(n+ 1), 1/n)→ R is a continuous monotone function such that

lim
t→1/(n+1)

ϕn(t) = −∞ and lim
t→1/n

ϕn(t) =∞.

For each t > 0, choose n ∈ N so that n ≥ 1/t. Then, h(L(X) × [t, 1]) ⊂ Mn.
Thus, (Mn)n∈N has the deformation property in L(X). Let M =

⋃

n∈N
Mn. We

have (L(X), M) ≈ (Q,Σ) by Lemma 4.4.
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On the other hand, LSC(X) is a homotopy dense Gδ-set in L(X) by Proposi-
tions 2.7(1) and 3.1. Then,

L−∞(X) ∪ {∅} = L(X) \ LSC(X)

is a Zσ-set in L(X). Since M ⊂ L−∞(X), we apply Lemma 4.2 to have

(L(X), L−∞(X) ∪ {∅}) ≈ (Q,Σ) ≈ (Q, Q \ s),

hence (L(X), LSC(X)) ≈ (Q, s). Then, it follows from Lemma 4.3 that

(L(X), LSC(X), LSCB(X)) ≈ (Q, s,Σ).

The proof is completed. �

Remark. In the proof above, we have (L(X), L−∞(X)) ≈ (Q,Σ) by the same
reason as L−∞(X) ∪ {∅}, that is,

Proposition 4.7. For every second countable locally compact non-compact

Hausdorff space X , (L(X), L−∞(X)) ≈ (Q,Σ) ≈ (Q, Q \ s). �
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