Topological structure of the space of lower semi-continuous functions

Katsuro Sakai, Shigenori Uehara

Abstract. Let L(X) be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space X, where, by identifying each f with the epi-graph epi(f), L(X) is regarded the subspace of the space $Cld_F^*(X \times \mathbb{R})$ of all closed sets in $X \times \mathbb{R}$ with the Fell topology. Let

$$LSC(X) = \{ f \in L(X) \mid f(X) \cap \mathbb{R} \neq \emptyset, \ f(X) \subset (-\infty, \infty] \} \text{ and} \\ LSC_{B}(X) = \{ f \in L(X) \mid f(X) \text{ is a bounded subset of } \mathbb{R} \}.$$

We show that L(X) is homeomorphic to the Hilbert cube $Q = [-1,1]^{\mathbb{N}}$ if and only if X is second countable, locally compact and infinite. In this case, it is proved that $(L(X), LSC(X), LSC_B(X))$ is homeomorphic to $(\operatorname{Cone} Q, Q \times (0,1), \Sigma \times (0,1))$ (resp. (Q, s, Σ)) if X is compact (resp. X is non-compact), where $\operatorname{Cone} Q = (Q \times \mathbf{I})/(Q \times \{1\})$ is the cone over $Q, s = (-1, 1)^{\mathbb{N}}$ is the pseudo-interior, $\Sigma = \{(x_i)_{i \in \mathbb{N}} \in Q \mid \sup_{i \in \mathbb{N}} |x_i| < 1\}$ is the radial-interior.

Keywords: space of lower semi-continuous functions, epi-graph, Fell topology, Hilbert cube, pseudo-interior, radial-interior

Classification: 57N20, 54C35

1. Introduction

The set of all closed sets in a (topological) space X is denoted by $\operatorname{Cld}^*(X)$ and let $\operatorname{Cld}(X) = \operatorname{Cld}^*(X) \setminus \{\emptyset\}$. For each $U \subset X$, we denote

$$U^{-} = \{A \in \operatorname{Cld}^{*}(X) \mid A \cap U \neq \emptyset\} \text{ and}$$
$$U^{+} = \{A \in \operatorname{Cld}^{*}(X) \mid A \subset U\}.$$

The *Fell topology* on $Cld^*(X)$ is the topology generated by

$$\{U^- \mid U \subset X \text{ is open}\} \cup \{(X \setminus K)^+ \mid K \subset X \text{ is compact}\}.$$

By $\operatorname{Cld}_F^*(X)$ (or $\operatorname{Cld}_F(X)$), we denote the space $\operatorname{Cld}^*(X)$ (or $\operatorname{Cld}(X)$) with the Fell topology.¹ In the paper [9], it is proved that $\operatorname{Cld}_F^*(X)$ (resp. $\operatorname{Cld}_F(X)$) is

¹Note that the hyperspace $\operatorname{Cld}_V(X)$ with the Vietoris topology is metrizable if and only if X is compact metrizable. On the other hand, $\operatorname{Cld}_F^*(X)$ (or $\operatorname{Cld}_F(X)$) is metrizable if and only if X is locally compact and separable metrizable [2, Theorem 5.1.5].

homeomorphic to (\approx) the Hilbert cube $Q = [-1, 1]^{\mathbb{N}}$ (resp. $Q \setminus \{0\}$) if and only if X is a locally compact, locally connected, separable metrizable space which has no compact components.

By $[-\infty,\infty]$, we denote the extended real line. For an extended real-valued function $f: X \to [-\infty,\infty]$, let

$$epi(f) = \{ (x, t) \in X \times \mathbb{R} \mid t \ge f(x) \},\$$

which is called the epi-graph of f. Note that

• f is lower semi-continuous if and only if epi(f) is closed in $X \times \mathbb{R}$,

whence f can be regarded as a lower semi-continuous real-valued function defined on the set $f^{-1}(\mathbb{R}) \subset X$.

Let L(X) be the space of all lower semi-continuous extended real-valued functions on X, where, by identifying each f with epi(f), L(X) is considered the subspace of the space $Cld_F^*(X \times \mathbb{R})$. In this paper, we show the following:

Theorem 1.1. For a Hausdorff space X, $L(X) \approx Q$ if and only if X is locally compact, second countable and infinite.

In this paper, we also study the following subspaces:

$$LSC(X) = \{ f \in L(X) \mid f(X) \cap \mathbb{R} \neq \emptyset, \ f(X) \subset (-\infty, \infty] \};$$

$$LSC_{B}(X) = \{ f \in L(X) \mid f(X) \text{ is a bounded subset of } \mathbb{R} \}.$$

Observe that $L(X) \supset LSC(X) \supset LSC_B(X)$. Each $f \in LSC(X)$ is called a *proper* lower semi-continuous extended real-valued function. Each $f \in LSC_B(X)$ is a bounded lower semi-continuous real-valued function defined on the whole space X.

Let $\mathbf{I} = [0, 1]$ be the closed unit interval. By Cone X, we denote the *cone* over X which is the quotient space obtained from $X \times \mathbf{I}$ by shrinking $X \times \{1\}$ to a point * (called the *vertex*), that is,

$$\operatorname{Cone} X = (X \times \mathbf{I}) / (X \times \{1\}).$$

Throughout this paper, we use the homeomorphism $\theta : [-\infty, \infty] \to \mathbf{I}$ defined as follows:

$$\theta(-\infty) = 0, \ \theta(\infty) = 1 \text{ and } \theta(t) = \frac{1}{2} \left(\frac{t}{1+|t|} + 1 \right).$$

Let Δ^n be the standard *n*-simplex and rint Δ^n the radial interior of Δ^n , i.e.,

$$\Delta^{n} = \{(t_{1}, \dots, t_{n+1}) \in \mathbf{I}^{n+1} \mid \sum_{i=1}^{n+1} t_{i} = 1\};$$

rint $\Delta^{n} = \{(t_{1}, \dots, t_{n+1}) \in \Delta^{n} \mid t_{i} > 0 \text{ for } i = 1, \dots, n+1\}.$

In case X is finite, we can easily see that $L(X) \approx \Delta^n \approx \text{Cone}\,\Delta^{n-1}$, where n = card X. Indeed, write $X = \{x_1, \ldots, x_n\}$ and define $p : L(X) \to \text{Cone}\,\Delta^{n-1}$ as follows:

$$p(f) = \begin{cases} * \text{ (the vertex of Cone } \Delta^{n-1}) & \text{if } f = \emptyset, 2 \\ \left(\frac{1 - \theta(f(x_1))}{\sigma(f)}, \dots, \frac{1 - \theta(f(x_n))}{\sigma(f)}, \theta(\min f(X))\right) & \text{otherwise,} \end{cases}$$

where $\sigma(f) = \sum_{i=1}^{n} (1 - \theta(f(x_i)))$. Then, p is a homeomorphism such that

$$p(\operatorname{LSC}(X)) = \Delta^{n-1} \times (0,1)$$
 and $p(\operatorname{LSC}_{\operatorname{B}}(X)) = \operatorname{rint} \Delta^{n-1} \times (0,1).$

Thus, we have the following:

Fact. For a finite T_1 -space X with card X = n,

$$\begin{split} (\mathcal{L}(X),\, \mathrm{LSC}(X),\, \mathrm{LSC}_{\mathcal{B}}(X)) \\ &\approx (\mathrm{Cone}\,\Delta^{n-1},\, \Delta^{n-1}\times(0,1),\,\,\mathrm{rint}\,\Delta^{n-1}\times(0,1)). \end{split}$$

In this paper, we generalize this fact into the case X is infinite. Let

$$s = (-1,1)^{\mathbb{N}}$$
 and $\Sigma = \{(x_i)_{i \in \mathbb{N}} \in Q \mid \sup_{i \in \mathbb{N}} |x_i| < 1\},\$

which are called the *pseudo-interior* and the *radial interior* of Q, respectively. We prove the following two generalizations:

Theorem 1.2. For a Hausdorff space X, the following are equivalent:

- (a) X is second countable, compact and infinite;
- (b) $(L(X), LSC(X)) \approx (Cone Q, Q \times (0, 1));$
- (c) $(L(X), LSC(X), LSC_B(X)) \approx (Cone Q, Q \times (0, 1), \Sigma \times (0, 1)).$

In the above, the vertex $* \in \text{Cone } Q$ corresponds to the function $\emptyset \in L(X)$.

Theorem 1.3. For a Hausdorff space X, the following are equivalent:

- (a) X is second countable, locally compact and non-compact;
- (b) $(L(X), LSC(X)) \approx (Q, s);$
- (c) $(L(X), LSC(X), LSC_B(X)) \approx (Q, s, \Sigma).$

Remark. It should be remarked that

$$(Q, s, \Sigma) \approx (\operatorname{Cone} Q, s \times (0, 1), \Sigma \times (0, 1)).$$

One should also keep in mind that the complement $L(X) \setminus LSC(X)$ in Theorem 1.3 is connected, but the one in Theorem 1.2 has two components $\{\emptyset\}$ and $\{f \in L(X) \mid -\infty \in f(X)\}$.

²Here, $f = \emptyset$ means that f is the constant function $x \mapsto \infty$.

2. Metrizability and closedness

The following follows from the result of Fell [5] (cf. [2, Theorem 5.1.3]):

Proposition 2.1. For every Hausdorff space X, $\operatorname{Cld}_F^*(X \times \mathbb{R})$ is compact. If X is locally compact then $\operatorname{Cld}_F^*(X \times \mathbb{R})$ is a compact Hausdorff space.

Let $\operatorname{Cld}_F(X) = \operatorname{Cld}_F^*(X) \setminus \{\emptyset\}$. Then, the hyperspace $\operatorname{Cld}_F(X)$ can be regarded as a subspace of $\operatorname{LSC}_B(X)$ by the embedding $i : \operatorname{Cld}_F(X) \to \operatorname{LSC}_B(X)$ defined by

$$i(A)(x) = \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{if } x \notin A. \end{cases}$$

Moreover, by identifying $x \in X$ with $\{x\} \in \operatorname{Cld}_F(X)$, we can also regard X as a subspace of $\operatorname{Cld}_F(X)$. Since $\operatorname{Cld}_F^*(X \times \mathbb{R})$ (resp. $\operatorname{Cld}_F(X)$) is metrizable if and only if $X \times \mathbb{R}$ (resp. X) is locally compact and second countable by [2, Theorem 5.1.5], we have the following:

Proposition 2.2. For a Hausdorff space X, the following are equivalent:

- (a) X is locally compact and second countable;
- (b) $\operatorname{Cld}_F^*(X \times \mathbb{R})$ is metrizable;
- (c) L(X) is metrizable;
- (d) LSC(X) is metrizable;
- (e) $LSC_B(X)$ is metrizable;
- (f) $\operatorname{Cld}_F(X)$ is metrizable.

Proposition 2.3. A Hausdorff space X is locally compact if and only if the space L(X) is closed in $\operatorname{Cld}_{F}^{*}(X \times \mathbb{R})$.

PROOF: To see the "only if" part, assume that X is locally compact. For each $A \in \operatorname{Cld}_F^*(X \times \mathbb{R}) \setminus \operatorname{L}(X)$, we have $x \in X$ and $r_1 < r_2 \in \mathbb{R}$ such that $(x, r_1) \in A$ and $(x, r_2) \notin A$. Choose an open neighborhood V of x in X and $\delta > 0$ so that $\operatorname{cl} V$ is compact and

$$\operatorname{cl} V \times (r_2 - \delta_1, r_2 + \delta) \subset (X \times \mathbb{R}) \setminus A.$$

Let $K = \operatorname{cl} V \times [r_2 - \delta, r_2 + \delta]$ and $U = V \times (-\infty, r_2 - \delta)$. Then,

$$A \in U^{-} \cap ((X \times \mathbb{R}) \setminus K)^{+} \subset \operatorname{Cld}_{F}^{*}(X \times \mathbb{R}) \setminus \operatorname{L}(X).$$

Hence, $\operatorname{Cld}_F^*(X \times \mathbb{R}) \setminus L(X)$ is open in $\operatorname{Cld}_F^*(X \times \mathbb{R})$, that is, L(X) is closed.

Now, to see the "if" part, assume that X is not locally compact, whence we have $x_0 \in X$ which has no compact neighborhoods in X. Let

$$A = (X \times [1, \infty)) \cup \{(x_0, 0)\} \in \operatorname{Cld}_F^*(X \times \mathbb{R}) \setminus L(X).$$

For each neighborhood W of A in $\operatorname{Cld}_F^*(X \times \mathbb{R})$, we can choose open sets $U_1, \ldots, U_n \subset X \times \mathbb{R}$ and a compact set $K \subset X \times \mathbb{R}$ so that $(x_0, 0) \in U_1$ and

$$A \in U_1^- \cap \dots \cap U_n^- \cap ((X \times \mathbb{R}) \setminus K)^+ \subset W.$$

Since $\operatorname{pr}_X(K)$ is compact, $\operatorname{pr}_X(K)$ is not a neighborhood of x_0 in X, hence $\operatorname{pr}_X(U_1) \not\subset \operatorname{pr}_X(K)$. Thus, we have $x_1 \in \operatorname{pr}_X(U_1) \setminus \operatorname{pr}_X(K)$. We define $g \in \operatorname{L}(X)$ by

$$g(x) = \begin{cases} 0 & \text{if } x = x_1, \\ 1 & \text{if } x \neq x_1. \end{cases}$$

By identifying g with the epi-graph, we can write as follows:

$$g = (X \times [1, \infty)) \cup (\{x_1\} \times [0, \infty)).$$

Then, it is easy to see that

$$g \in U_1^- \cap \dots \cap U_n^- \cap ((X \times \mathbb{R}) \setminus K)^+ \subset W.$$

Hence, $W \cap L(X) \neq \emptyset$. This means that $A \in cl L(X)$, that is, L(X) is not closed in $Cld_F^*(X \times \mathbb{R})$.

As corollaries of propositions above, we have the following:

Corollary 2.4. A Hausdorff space X is locally compact if and only if the space L(X) is a compact Hausdorff space.

Corollary 2.5. A Hausdorff space X is locally compact and second countable if and only if the space L(X) is a compact metrizable space.

We now consider the subspace:

$$L_{-\infty}(X) = \{ f \in L(X) \mid -\infty \in f(X) \}$$
$$= L(X) \setminus (LSC(X) \cup \{\emptyset\}) \subset L(X).$$

Lemma 2.6. For a locally compact Hausdorff space X, $L_{-\infty}(X)$ is compact if and only if X is compact.

PROOF: Assume that X is compact. For each $f \in L(X) \setminus L_{-\infty}(X)$, we have $b \in \mathbb{R}$ such that $f(X) \subset (b, \infty]$. Then, f has the following open neighborhood in L(X):

$$((X \times \mathbb{R}) \setminus (X \times \{b\}))^+ \cap \mathcal{L}(X) \subset \mathcal{L}(X) \setminus \mathcal{L}_{-\infty}(X).$$

Thus, $L_{-\infty}(X)$ is closed in L(X), hence it is compact by Corollary 2.4.

On the other hand, if X is not compact then it contains an infinite and discrete set $\{x_i \mid i \in \mathbb{N}\}$, where $x_i \neq x_j$ if $i \neq j$. For each $i \in \mathbb{N}$, we define $f_i \in \mathcal{L}_{-\infty}(X)$ by

$$f_i(x) = \begin{cases} -\infty & \text{if } x = x_i, \\ \infty & \text{if } x \neq x_i, \end{cases}$$

that is, $f_i = \operatorname{epi}(f_i) = \{x_i\} \times \mathbb{R}$. For each neighborhood W of \emptyset in L(X), we have a compact set $K \subset X$ such that $((X \times \mathbb{R}) \setminus K)^+ \subset W$. Since $\{x_i \mid i \in \mathbb{N}\}$ is discrete in X and $\operatorname{pr}_X(K)$ is compact, we have $n \in \mathbb{N}$ such that if $i \geq n$ then $x_i \notin \operatorname{pr}_X(K)$, hence $f_i \in ((X \times \mathbb{R}) \setminus K)^+ \subset W$. Thus, the sequence $(f_i)_{i \in \mathbb{N}}$ converges to the function \emptyset . Therefore, $L_{-\infty}(X)$ is not compact.

Proposition 2.7. Let X be a locally compact Hausdorff space.

- (1) If X is σ -compact then LSC(X) is absolutely G_{δ} .
- (2) If X is compact then LSC(X) is open in L(X), hence it is locally compact.
- (3) If X is non-compact then LSC(X) is nowhere locally compact.

PROOF: (1) Since L(X) is a compact Hausdorff space, it suffices to see that LSC(X) is G_{δ} in L(X). Let $X = \bigcup_{n \in \mathbb{N}} X_n$, where each X_n is compact. For each $n \in \mathbb{N}$, let

$$W_n = \{ f \in \mathcal{L}(X) \mid -\infty \notin f(X_n) \}.$$

Then, $LSC(X) = \bigcap_{n \in \mathbb{N}} W_n \setminus \{\emptyset\}$. For each $f \in W_n$, since X_n is compact, we have $r \in \mathbb{R}$ such that $f(X_n) \subset (r, \infty]$, which implies

$$f \in ((X \times \mathbb{R}) \setminus (X_n \times \{r\}))^+ \cap \mathcal{L}(X) \subset W_n.$$

This means that W_n is open in L(X).

(2) For each $f \in LSC(X)$, since X is compact, we have $r \in \mathbb{R}$ such that $f(X) \subset (r, \infty]$. Then,

$$f \in ((X \times \mathbb{R}) \setminus (X \times \{r\}))^+ \cap \mathcal{L}(X) \setminus \{\emptyset\} \subset \mathcal{LSC}(X).$$

Hence, LSC(X) is open in L(X).

(3) For each $f \in \text{LSC}(X)$ and each neighborhood of W in LSC(X), we have open sets $U_1, \ldots, U_n \subset X \times \mathbb{R}$ and a compact set $K \subset X \times \mathbb{R}$ such that

$$f \in U_1^- \cap \dots \cap U_n^- \cap ((X \times \mathbb{R}) \setminus K)^+ \cap \mathrm{LSC}(X) \subset W.$$

Since X is non-compact, we have $x_0 \in X \setminus \operatorname{pr}_X(K)$. For each $i \in \mathbb{N}$, we define $f_i \in W$ as follows:

$$f_i(x) = \begin{cases} f(x_0) - i & \text{if } x = x_0, \\ f(x) & \text{if } x \neq x_0. \end{cases}$$

Then, $(f_i)_{i \in \mathbb{N}}$ converges to $f_{\infty} \in \mathcal{L}_{-\infty}(X)$ defined as follows:

$$f_{\infty}(x) = \begin{cases} -\infty & \text{if } x = x_0, \\ f(x) & \text{if } x \neq x_0. \end{cases}$$

Since L(X) is Hausdorff, $\{f_i \mid i \in \mathbb{N}\}$ is discrete in $LSC(X) \cap cl W$. Therefore, $LSC(X) \cap cl W$ is not compact.

3. Homotopy dense subsets and AR property

A subset Y of a space X is said to be homotopy dense in X if there exists a homotopy $h: X \times \mathbf{I} \to X$ such that $h_0 = \mathrm{id}_X$ and $h_t(X) \subset Y$ for every t > 0, where $h_t: X \to X$ is defined by $h_t(x) = h(x,t)$. Let $\eta, \zeta : \mathrm{L}(X) \times \mathbf{I} \to \mathrm{L}(X)$ be the homotopies defined as follows:

$$\eta_t(f)(x) = \begin{cases} f(x) & \text{if } t = 0, \\ \min\{f(x), 1/t\} & \text{if } t > 0; \end{cases}$$
$$\zeta_t(f)(x) = \begin{cases} f(x) & \text{if } t = 0, \\ \max\{f(x), -1/t\} & \text{if } t > 0. \end{cases}$$

By identifying $\eta_t(f)$ and $\zeta_t(f)$ with the epi-graphs, we can write

$$\eta_t(f) = f \cup X \times [1/t, \infty)$$
 and $\zeta_t(f) = f \cap X \times [-1/t, \infty).$

We shall verify the continuity of η and ζ .

Continuity of η : Let $V \subset X \times \mathbb{R}$ be open. For each $(f,t) \in \eta^{-1}(V^{-})$, $f \cap V \neq \emptyset$ or $X \times [1/t, \infty) \cap V \neq \emptyset$ (the latter does not occur if t = 0). When $f \cap V \neq \emptyset$, $V^{-} \cap L(X)$ is a neighborhood of f in L(X) and $\eta_s(g) \in V^{-}$ for every $g \in V^{-} \cap L(X)$ and $s \in \mathbf{I}$. When $X \times [1/t, \infty) \cap V \neq \emptyset$ (t > 0), it follows that $X \times [a, \infty) \cap V \neq \emptyset$ for some a > 1/t. Then, $t \in (1/a, 1]$ and $X \times [1/s, \infty) \cap V \neq \emptyset$ for every $s \in (1/a, 1]$, which implies that $\eta_s(g) \in V^{-}$ for every $g \in L(X)$ and $s \in (1/a, 1]$. Hence, $\eta^{-1}(V^{-})$ is open in $L(X) \times \mathbf{I}$.

Now, let $K \subset X \times \mathbb{R}$ be compact. For each $(f,t) \in \eta^{-1}(((X \times \mathbb{R}) \setminus K)^+)$, $f \cap K = \emptyset$ and $X \times [1/t, \infty) \cap K = \emptyset$, whence $((X \times \mathbb{R}) \setminus K)^+ \cap L(X)$ is a neighborhood of f in L(X) and $X \times [a, \infty) \cap K = \emptyset$ for some 0 < a < 1/t. Then, $t \in [0, 1/a)$ and $X \times [1/s, \infty) \cap K = \emptyset$ if 0 < s < 1/a. It follows that $\eta_s(g) \in ((X \times \mathbb{R}) \setminus K)^+$ for every $g \in ((X \times \mathbb{R}) \setminus K)^+ \cap L(X)$ and $s \in [0, 1/a)$. Thus, $\eta^{-1}(((X \times \mathbb{R}) \setminus K)^+)$ is open in $L(X) \times \mathbf{I}$.

Continuity of ζ : Let $V \subset X \times \mathbb{R}$ be open. For each $(f,t) \in \zeta^{-1}(V^-)$, we have $(x,r) \in V$ such that $r \geq \max\{f(x), -1/t\}$ $(r \geq f(x)$ if t = 0). Since V is open in $X \times \mathbb{R}$, $(x,r_0) \in V$ for some $r_0 > r$. Let $r < r_1 < r_0$ and $W = V \cap X \times (r_1, \infty)$. Then, $W^- \cap L(X)$ is a neighborhood of f in L(X). Since $-1/t < r_1$, we have a > t so that $-1/s < r_1$ if 0 < s < a. Then, $t \in [0, a)$. Let $g \in W^-$ and $s \in [0, a)$. Then, we have $(x', r') \in W$ with $r' \ge g(x')$. Since $r' > r_1 > -1/s$, it follows that $r' \ge \max\{g(x'), -1/s\}$, which means $\zeta_s(g) \in W^- \subset V^-$. Therefore, $\zeta^{-1}(V^-)$ is open in $L(X) \times I$.

Let $K \subset X \times \mathbb{R}$ be compact and $(f, t) \in \zeta^{-1}(((X \times \mathbb{R}) \setminus K)^+)$, that is, $f \cap X \times [-1/t, \infty) \cap K = \emptyset$. Observe that

$$f \cap X \times \{c\} = f^{-1}((-\infty, c]) \times \{c\}$$
 for each $c \in \mathbb{R}$.

By this fact, it is easy to see that

 $c < d \Rightarrow f \cap X \times [c, \infty) \subset f^{-1}((-\infty, d]) \times [c, d] \cup (f \cap X \times [d, \infty)).$

Then, it follows that $f \cap X \times [a, \infty) \cap K = \emptyset$ for some a < -1/t because K is compact. Let

$$\mathcal{W} = ((X \times \mathbb{R}) \setminus (X \times [a, \infty) \cap K))^+ \cap L(X).$$

Then, \mathcal{W} is a neighborhood of f in L(X) and $t \in (1/|a|, 1]$. For each $g \in \mathcal{W}$ and $s \in (1/|a|, 1], g \cap X \times [-1/s, \infty) \cap K = \emptyset$, which means that $\zeta(g, s) \in ((X \times \mathbb{R}) \setminus K)^+$. Hence, $\zeta^{-1}(((X \times \mathbb{R}) \setminus K)^+)$ is open in $X \times \mathbb{R}$.

We define the homotopy $\xi : L(X) \times I \to L(X)$ by $\xi_t = \eta_t \zeta_t = \zeta_t \eta_t$ for every $t \in I$, that is,

$$\xi_t(f) = (f \cap X \times [-1/t, \infty)) \cup X \times [1/t, \infty) \subset X \times \mathbb{R}.$$

Since $\xi_t(\mathcal{L}(X)) \subset \mathrm{LSC}_{\mathcal{B}}(X)$ for t > 0, we have the following:

Proposition 3.1. The subspace $LSC_B(X)$ is homotopy dense in L(X).

It can be shown that the complement $LSC(X) \setminus LSC_B(X)$ is homotopy dense in LSC(X). At the same time, we shall prove that some other subspaces of L(X)are homotopy dense in L(X) and they are AR's.³ To this end, we use the result on Lawson semilattices.

A topological semilattice is a topological space S equipped with a continuous operator $\forall : S \times S \to S$ which is idempotent, commutative and associative (i.e., $x \vee x = x, x \vee y = y \vee x, (x \vee y) \vee z = x \vee (y \vee z)$). A topological semilattice S is called a *Lawson semilattice* if S admits an open basis consisting of subsemilattices ([7]). A subspace Y of X is called *relatively* LC^0 in X if every neighborhood U of each $x \in X$ contains a neighborhood V of x in X such that any two points $y, z \in V \cap Y$ can be connected by a path in $V \cap Y$. The following is proved in [6, Theorem 5.1].

 $^{{}^{3}}AR = absolute retract; ANR = absolute neighborhood retract.$

Proposition 3.2. Let X be a metrizable Lawson semilattice and $Y \subset X$ a subsemilattice. If Y is relatively LC^0 in X (and Y is connected), then X is an ANR (an AR) and Y is homotopy dense in X, hence Y is also an ANR (an AR).

To apply Proposition 3.2 above, we show the following:

Proposition 3.3. For a Hausdorff space X, the space $\operatorname{Cld}_F^*(X)$ is a Lawson semilattice with the union operator \cup . The spaces $\operatorname{L}(X)$, $\operatorname{LSC}(X)$, $\operatorname{LSC}_B(X)$ and $\operatorname{L}_{-\infty}(X)$ are subsemilattices of $\operatorname{Cld}_F^*(X)$.

PROOF: For each open set $U \subset X$ and each compact set $K \subset X$, U^- and $(X \setminus K)^+$ are subsemilattices of $\operatorname{Cld}_F^*(X)$. Hence, $\operatorname{Cld}_F^*(X)$ has an open basis consisting of subsemilattices. The continuity of \cup is easily observed. The second statement is evident.

We consider the following subspace:

$$F(X) = \{ f \in \text{LSC}(X) \mid f(x) = \infty \text{ except for finitely many } x \in X \}$$
$$= \{ f \in \text{LSC}(X) \mid f^{-1}(\mathbb{R}) \text{ is finite} \}.$$

As is easily observed, F(X) is a dense subsemilattice of LSC(X). Moreover, it should be noted that $F(X) \cap LSC_B(X) = \emptyset$ if X is infinite.

Lemma 3.4. For every second countable locally compact Hausdorff space X, F(X) is homotopy dense in LSC(X).

PROOF: By Proposition 3.2, it suffices to show that F(X) is relatively LC^0 in LSC(X). To this end, let $f \in LSC(X)$ and W an open neighborhood of f in LSC(X). Since LSC(X) is a Lawson semilattice, we may assume that W is a subsemilattice of LSC(X). For each $f_1, f_2 \in W \cap F(X)$, we can define a path $h: \mathbf{I} \to F(X)$ as follows:

$$h(t)(x) = \begin{cases} f_1(x) & \text{if } f_1(x) \le f_2(x), \\ \theta^{-1}((1-t)\theta(f_1(x)) + t\theta(f_2(x))) & \text{if } f_2(x) < f_1(x), \end{cases}$$

where $\theta : [-\infty, \infty] \to \mathbf{I}$ is the homeomorphism defined in §1. It is easy to see that h is a path in $W \cap F(X)$ connecting $h(0) = f_1$ and $h(1) = f_1 \cup f_2$. Similarly, f_2 can be connected to $f_1 \cup f_2$ by a path in $W \cap F(X)$. Then, f_1 and f_2 are connected by a path in $W \cap F(X)$. Therefore, F(X) is relatively LC^0 in LSC(X).

Since $F(X) \subset LSC(X) \setminus LSC_B(X)$, the following follows from Lemma 3.4:

Proposition 3.5. For every infinite second countable locally compact Hausdorff space X, $LSC(X) \setminus LSC_B(X)$ is homotopy dense in LSC(X).

A closed subset $A \subset Y$ is called a Z-set in Y if for each open cover \mathcal{U} , there exists a map⁴ $f: Y \to Y \setminus A$ which is \mathcal{U} -close to the identity.⁵ A countable union of Z-sets is called a Z_{σ} -set. One should note that a closed set (resp. an F_{σ} -set) $A \subset Y$ is a Z-set (resp. a Z_{σ} -set) if the complement $Y \setminus A$ is homotopy dense in Y.

Lemma 3.6. Let X be a second countable locally compact Hausdorff space.

- (1) The space $L_{-\infty}(X)$ is an AR.
- (2) If X is compact then $L_{-\infty}(X)$ is a compact Z-set in L(X).
- (3) If X is non-compact then $L_{-\infty}(X)$ is homotopy dense in L(X).

PROOF: (1) Take $f_1, f_2 \in L_{-\infty}(X)$. All the same as in the proof of Lemma 3.4, we can obtain a path $h : \mathbf{I} \to L_{-\infty}(X)$ from f_1 to f_2 , hence $L_{-\infty}(X)$ is pathconnected. Recall that $L_{-\infty}(X)$ is a Lawson semilattice. If both f_1 and f_2 are in some open subsemilattice W of $L_{-\infty}(X)$, then h is a path in W. Hence, $L_{-\infty}(X)$ is LC^0 . Thus, $L_{-\infty}(X)$ is an AR by Proposition 3.2.

(2) By Lemma 2.6, $L_{-\infty}(X)$ is compact. Since $L_{-\infty}(X) \cap LSC_B(X) = \emptyset$ and $LSC_B(X)$ is homotopy dense in L(X) by Proposition 3.1, it follows that $L_{-\infty}(X)$ is a Z-set in L(X).

(3) When X is non-compact, it is easy to see that $L_{-\infty}(X)$ is dense in L(X). Similarly to Lemma 3.4, we can prove that $L_{-\infty}(X)$ is homotopy dense in L(X).

Proposition 3.7. Let X be a second countable locally compact Hausdorff space. Then, L(X), LSC(X), $LSC_B(X)$ and $LSC(X) \setminus LSC_B(X)$ are AR's.

PROOF: We can define a map $\lambda : LSC_B(X)^2 \times \mathbf{I} \to LSC_B(X)$ as follows:

$$\lambda(f, g, t)(x) = (1 - t)f(x) + tg(x)$$
 for each $(f, g, t) \in \mathrm{LSC}_{\mathrm{B}}(X)^2 \times \mathbf{I}$.

Then, $\lambda(f, g, 0) = f$, $\lambda(f, g, 1) = g$ and $\lambda(f, f, t) = f$, namely $LSC_B(X)$ is equiconnected, so $LSC_B(X)$ is path-connected and locally path-connected. Note that $LSC_B(X)$ is a Lawson semilattice as a subsemilattice of the Lawson semilattice $Cld_F^*(X \times \mathbb{R})$ (Proposition 3.3). Therefore, $LSC_B(X)$ is an AR by Proposition 3.2. Since $LSC_B(X)$ is homotopy dense in L(X) by Proposition 3.1, it follows that L(X) and LSC(X) are AR's. Moreover, since $LSC(X) \setminus LSC_B(X)$ is homotopy dense in L(X) by Proposition 3.5, $LSC(X) \setminus LSC_B(X)$ is also an AR.

⁴Here, a map is a continuous function

⁵Two maps $f, g: X \to Y$ are \mathcal{U} -close if each $\{f(x), g(x)\}$ is contained in some $U \in \mathcal{U}$.

4. Proof of Theorems

The following property is called the *disjoint cells property*.

• For each $n \in \mathbb{N}$, and each open cover \mathcal{U} of X, every maps $f, g: \mathbf{I}^n \to X$ are \mathcal{U} -close to maps $f', g': \mathbf{I}^n \to X$ such that $f'(\mathbf{I}^n) \cap g'(\mathbf{I}^n) = \emptyset$.

To prove Theorem 1.1, we apply the following Toruńczyk's characterization of the Hilbert cube [10] ([8, Corollary 7.8.4]).

Theorem 4.1. In order that $X \approx Q$, it is necessary and sufficient that X is a compact AR with the disjoint cells property.

Using this characterization of Q, we shall show Theorem 1.1.

PROOF OF THEOREM 1.1: The "necessity" follows from Corollary 2.5 and Fact. We prove the "sufficiency". By Corollary 2.4 and Proposition 3.7, L(X) is a compact AR. Since both $LSC_B(X)$ and $L(X) \setminus LSC_B(X)$ are homotopy dense in L(X) by Propositions 3.1 and 3.5, L(X) has the disjoint cells property. Thus, we have $L(X) \approx Q$ by Theorem 4.1.

In [1], introducing the notion of cap-sets characterizing subsets $M \subset Q$ such that $(Q, M) \approx (Q, \Sigma)$, R. Anderson proved that $(Q, \Sigma) \approx (Q, Q \setminus s)$ (cf. [3]). The following is a combination of Lemmas 4.2 and 4.4 in [3].

Lemma 4.2. Suppose that $(Q, M) \approx (Q, \Sigma)$. If L is a Z_{σ} -set in Q and K is a Z-set in Q then $(Q, (M \cup L) \setminus K) \approx (Q, \Sigma)$.

The following is the combination of Lemmas 4.3 and 4.4 in [3].

Lemma 4.3. Suppose that $(Q, M) \approx (Q, N) \approx (Q, \Sigma)$ and K is a Z-set in Q with $K \cap M = K \cap N$. Then, for each $\varepsilon > 0$, there is a homeomorphism $h : Q \to Q$ such that h(M) = N, h|K = id and h is ε -close to id. Moreover if $M \cup N \subset s$ then h also satisfies $h(Q \setminus s) = Q \setminus s$, that is, h(s) = s.

A tower $(M_i)_{i \in \mathbb{N}}$ of closed sets in X has the *deformation property* in X if there is a homotopy $h: X \times \mathbf{I} \to X$ such that $h_0 = \text{id}$ and, for each t > 0, $h(X \times [t, 1])$ is contained in some M_i . We apply the following Curtis' result ([4, Corollary 4.9]:

Lemma 4.4. Let $M = \bigcup_{i \in \mathbb{N}} M_i \subset Q$, where $M_1 \subset M_2 \subset \cdots$ satisfy the following conditions:

- (1) $M_i \approx Q$ for each $i \in \mathbb{N}$;
- (2) each M_i is a Z-set in M_{i+1} ;
- (3) $(M_i)_{i \in \mathbb{N}}$ has the deformation property in Q.

Then, $(Q, M) \approx (Q, \Sigma)$.

Before proving Theorems 1.2 and 1.3, we show the following:

Theorem 4.5. For a Hausdorff space X, $(L(X), LSC_B(X)) \approx (Q, \Sigma)$ if and only if X is locally compact, second countable and infinite.

PROOF: The "only if" part follows from Theorem 1.1. To see the "if" part, assume that X is locally compact and second countable. For each $n \in \mathbb{N}$, let

$$B_n = \{ f \in \mathcal{L}(X) \mid f(X) \subset [-n, n] \} \text{ and}$$

$$F_n = \{ f \in B_n \mid f(x) = n \text{ except for finitely many } x \in X \}.$$

Then, as is easily observed, $(B_n, F_n) \approx (L(X), F(X))$, hence we have $B_n \approx Q$ by Theorem 1.1 and F_n is homotopy dense in B_n by Lemma 3.4. Since $B_n \cap F_{n+1} = \emptyset$ and F_{n+1} is homotopy dense in B_{n+1} , it follows that B_n is a Z-set in B_{n+1} . Let $\xi : L(X) \times \mathbf{I} \to L(X)$ be the homotopy defined in §3. For each t > 0, choose $n \in \mathbb{N}$ so that $n \geq 1/t$. Then, $\xi(L(X) \times [t, 1]) \subset B_n$. Thus, $(B_n)_{n \in \mathbb{N}}$ has the deformation property in L(X). Since $\mathrm{LSC}_{\mathrm{B}}(X) = \bigcup_{n \in \mathbb{N}} B_n$, we have $(L(X), \mathrm{LSC}_{\mathrm{B}}(X)) \approx (Q, \Sigma)$ by Lemma 4.4.

To prove Theorem 1.2, we use the following:

Lemma 4.6. For every second countable compact infinite Hausdorff space X, $L_{-\infty}(X) \approx Q$.

PROOF: By Lemma 3.6, $L_{-\infty}(X)$ is a compact AR. Let $\eta : L(X) \times \mathbf{I} \to L(X)$ be the homotopy defined in §3. Observe that $\eta(L_{-\infty}(X) \times \mathbf{I}) \subset L_{-\infty}(X)$. Since X is infinite, it follows that

$$\eta_t(\mathcal{L}_{-\infty}(X)) \subset \mathcal{L}_{-\infty}(X) \setminus F(X) \text{ for } t > 0,$$

whence $L_{-\infty}(X) \setminus F(X)$ is homotopy dense in $L_{-\infty}(X)$. Moreover, by the same arguments as the proof of Lemma 3.4, it can be shown that $F(X) \cap L_{-\infty}(X)$ is homotopy dense in $L_{-\infty}(X)$. Hence, $L_{-\infty}(X)$ has the disjoint cells property. By Theorem 4.1, we have $L_{-\infty}(X) \approx Q$.

Now, we shall prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2: The implication (c) \Rightarrow (b) is obvious. By Corollary 2.5, Proposition 2.7(3) and Fact, we have the implication (b) \Rightarrow (a).

(a) \Rightarrow (c): By Theorem 4.5 above, we have

$$(L(X), LSC_B(X)) \approx (Q, \Sigma) \approx (Cone Q, \Sigma \times (0, 1)).$$

Since $L_{-\infty}(X)$ is a Z-set in L(X) by Lemma 3.6(2) and $L_{-\infty}(X) \approx Q$ by Lemma 4.6, we can apply the Z-set unknotting theorem to obtain a homeomorphism $g: L(X) \to \text{Cone } Q$ such that $g(\{\emptyset\}) = \{*\}$ and $g(L_{-\infty}(X)) = Q \times \{0\}$. Note that

$$(Q \times \{0\} \cup \{*\}) \cap g(\mathrm{LSC}_{\mathbf{B}}(X)) = \emptyset.$$

By Lemma 4.3, we have a homeomorphism $h: \operatorname{Cone} Q \to \operatorname{Cone} Q$ such that

$$hg(LSC_B(X)) = \Sigma \times (0,1)$$
 and $h|Q \times \{0\} \cup \{*\} = id$,

whence it follows that

$$hg(LSC(X)) = hg(L(X) \setminus (L_{-\infty}(X) \cup \{\emptyset\}))$$

= Cone Q \ (Q × {0} \ {*}) = Q × (0,1).

This completes the proof.

PROOF OF THEOREM 1.3: The implication (c) \Rightarrow (b) is obvious. The implication (b) \Rightarrow (a) follows from Corollary 2.5 and Proposition 2.7(2).

(a) \Rightarrow (c): We can write $X = \bigcup_{n \in \mathbb{N}} X_n$, where int X_1 is infinite, each X_n is compact and $X_n \subsetneqq int X_{n+1}$. For each $n \in \mathbb{N}$, let

$$M_n = \{ f \in \mathcal{L}(X) \mid f(X \setminus \operatorname{int} X_n) = \{ -\infty \} \} \text{ and}$$
$$N_n = \{ f \in M_n \mid f(\operatorname{int} X_n) \text{ is a bounded subset of } \mathbb{R} \}.$$

Then, as is easily observed, we have

$$(M_n, N_n) \approx (\operatorname{L(int} X_n), \operatorname{LSC}_{\operatorname{B}}(\operatorname{int} X_n)),$$

whence $M_n \approx Q$ by Theorem 1.1 and N_n is homotopy dense in M_n by Proposition 3.1. Since $(X \setminus \text{int } X_n) \cap \text{int } X_{n+1} \neq \emptyset$, we have $M_n \cap N_{n+1} = \emptyset$, whence M_n is a Z-set in M_{n+1} because N_{n+1} is homotopy dense in M_{n+1} . We can define a homotopy $h : L(X) \times \mathbf{I} \to L(X)$ as follows: $h_0 = \text{id}$,

$$h_{1/n}(f) = f \cup (X \setminus \operatorname{int} X_n) \times \mathbb{R},$$

and, for 1/(n+1) < t < 1/n,

$$h_t(f) = h_{1/(n+1)}(f) \cup (X \setminus \operatorname{int} X_n) \times [\varphi_n(t), \infty),$$

where $\varphi_n: (1/(n+1), 1/n) \to \mathbb{R}$ is a continuous monotone function such that

$$\lim_{t \to 1/(n+1)} \varphi_n(t) = -\infty \text{ and } \lim_{t \to 1/n} \varphi_n(t) = \infty.$$

For each t > 0, choose $n \in \mathbb{N}$ so that $n \ge 1/t$. Then, $h(L(X) \times [t, 1]) \subset M_n$. Thus, $(M_n)_{n \in \mathbb{N}}$ has the deformation property in L(X). Let $M = \bigcup_{n \in \mathbb{N}} M_n$. We have $(L(X), M) \approx (Q, \Sigma)$ by Lemma 4.4.

On the other hand, LSC(X) is a homotopy dense G_{δ} -set in L(X) by Propositions 2.7(1) and 3.1. Then,

$$\mathcal{L}_{-\infty}(X) \cup \{\emptyset\} = \mathcal{L}(X) \setminus \mathrm{LSC}(X)$$

is a Z_{σ} -set in L(X). Since $M \subset L_{-\infty}(X)$, we apply Lemma 4.2 to have

$$(\mathcal{L}(X), \mathcal{L}_{-\infty}(X) \cup \{\emptyset\}) \approx (Q, \Sigma) \approx (Q, Q \setminus s),$$

hence $(L(X), LSC(X)) \approx (Q, s)$. Then, it follows from Lemma 4.3 that

 $(L(X), LSC(X), LSC_B(X)) \approx (Q, s, \Sigma).$

The proof is completed.

Remark. In the proof above, we have $(L(X), L_{-\infty}(X)) \approx (Q, \Sigma)$ by the same reason as $L_{-\infty}(X) \cup \{\emptyset\}$, that is,

Proposition 4.7. For every second countable locally compact non-compact Hausdorff space X, $(L(X), L_{-\infty}(X)) \approx (Q, \Sigma) \approx (Q, Q \setminus s)$.

References

- [1] Anderson R.D., On sigma-compact subsets of infinite-dimensional spaces, unpublished.
- [2] Beer G., Topologies on Closed and Closed Convex Sets, Math. and its Appl. 268, Kluwer Acad. Publ., Dordrecht, 1993.
- Chapman T.A., Dense sigma-compact subsets in infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399–426.
- [4] Curtis D.W., Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), 201–221.
- [5] Fell J.M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476.
- [6] Kubiś W., Sakai K., Yaguchi M., Hyperspaces of separable Banach spaces with the Wijsman topology, Topology Appl. 148 (2005), 7–32.
- [7] Lawson J.D., Topological semilattices with small subsemilattices, J. London Math. Soc. (2) 1 (1969), 719–724.
- [8] van Mill J., Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989.
- [9] Sakai K., Yang Z., Hyperspaces of non-compact metrizable spaces which are homeomorphic to the Hilbert cube, Topology Appl. 127 (2002), 331–342.
- [10] Toruńczyk H., On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), 31–40.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, TSUKUBA, 305-8571, JAPAN *E-mail*: sakaiktr@sakura.cc.tsukuba.ac.jp

TAKAMATSU NATIONAL COLLEGE OF TECHNOLOGY, 355 CHOKUSHI-CHO, TAKAMATSU, 761-8058, JAPAN

E-mail: uehara@takamatsu-nct.ac.jp

(Received March 9, 2005, revised November 11, 2005)

 \Box