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Y-products of paracompact Cech-scattered spaces

HIDENORI TANAKA

Abstract. In this paper, we shall discuss X-products of paracompact Cech-scattered
spaces and show the following: (1) Let ¥ be a X-product of paracompact Cech-scattered
spaces. If 3 has countable tightness, then it is collectionwise normal. (2) If ¥ is a X-
product of first countable, paracompact (subparacompact) Cech-scattered spaces, then
it is shrinking (subshrinking).

Keywords: X-product, C-scattered, Cech-scattered, paracompact, subparacompact, col-
lectionwise normal, shrinking, subshrinking, countable tightness

Classification: Primary 54B10, 54D15, 54D20, 54G12

1. Introduction

Since the concept of Y-products was introduced by Corson [Co|, the normality
of X-products has been studied by several authors. In particular, the normal-
ity of ¥-products of metric spaces was proved by Gul’ko [Gu] and Rudin [R1].
Furthermore, Rudin [R2] proved the shrinking property of %-products of metric
spaces. So, the shrinking property of ¥-products has been another interesting
subject (Yajima [Y2]).

Telgarsky [Te] defined C-scattered spaces, which is a generalization of scattered
spaces and locally compact spaces. As the spaces consisting of ordinals (with the
usual order topology) are scattered, many important examples using ordinals are
scattered. The author and Yajima [TY] showed the following (cf. Hanaoka and
the author [HaT)):

(A) Let X be a X-product of paracompact C-scattered spaces. If ¥ has countable
tightness, then it is collectionwise normal.

(B) If ¥ is a X-product of first countable, paracompact (subparacompact) C-
scattered spaces, then it is shrinking (subshrinking).

On the other hand, Kombarov [1] proved the following.

(C) Let X be a Y-product of paracompact Cech-complete spaces. If ¥ has count-
able tightness, then it is collectionwise normal.

Furthermore Kombarov [2] also proved the following.
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(D) Let ¥ be a X-product of paracompact p-spaces. Then the following are
equivalent:

(a) X has countable tightness,
(b) X is collectionwise normal,
(¢) X is normal.

Hohti and Ziqgiu [HZ] introduced the concept of Cech-scattered spaces, which is
a generalization of C-scattered spaces. Aoki, Mori and the author [AMT], Higuchi
and the author [HiT] proved that if Y is a perfect paracompact (hereditarily Lin-
delof, perfect subparacompact) space and { Xy, : n € w} is a countable collection of
paracompact (Lindel6f, subparacompact) Cech-scattered spaces, then the product
Y x [],ew Xn is paracompact (Lindelf, subparacompact).

It seems to be natural to consider ¥-products of paracompact Cech-scattered
spaces. So, we shall discuss normality and shrinking property of X-products of
paracompact Cech-scattered spaces and obtain generalizations of (A), (B) and (C)
as follows: (1) Let ¥ be a ¥-product of paracompact Cech-scattered spaces. If ¥
has countable tightness, then it is collectionwise normal. (2) If ¥ is a ¥-product
of first countable, paracompact (subparacompact) Cech-scattered spaces, then it
is shrinking (subshrinking).

All spaces are assumed to be Tychonoff spaces. Let w denote the set of natural
numbers and |A| denote the cardinality of a set A. Undefined terminology can be
found in Engelking [E].

2. Preliminaries

A space X is said to be scattered if every nonempty (closed) subset A of X has
an isolated point in A. A space X is said to be C-scattered if for every nonempty
closed subset A of X, there is an z € A which has a compact neighborhood in
A. Then scattered spaces and locally compact spaces are C-scattered. A space
X is said to be Cech-scattered if for every nonempty closed subset A of X, there
is an z € A which has a Cech-complete neighborhood in A. It is well known
that the space of irrational numbers P = w® is not C-scattered. However, it is
Cech-complete and hence, is Cech-scattered.

Let X be a space. For a closed subset A of X, let

A* = {z € A:x has no Cech-complete neighborhood in A}.

Let A0 = A Alet]) — (A(a))* and A(®) = Np<a AW) for a limit ordinal .

Note that every A@) s a closed subset of X and X is Cech-scattered if and only
if X(@) = ¢ for some ordinal .

Let X be a Cech-scattered space. A subset A of X is said to be topped if there
is an ordinal a(A) such that A N X(@(4) is a nonempty Cech-complete subset
and AN XA+ — ¢ Let Top(4) = AN X(@A) 1t is clear that if X and Y
are Cech-scattered spaces, then the product X x Y is Cech-scattered.
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Lemma 1 (Engelking [E]). A space X is Cech-complete if and only if there is a
sequence (Ay) of open covers of X satisfying that if F is a collection of closed
subsets of X, with the finite intersection property, such that for eachn € w, there
are Fy, € F and Ay, € A, with F,, C Ay, then the intersection (| F is nonempty.

(Ap) is said to be a complete sequence of open covers of X. It is well known
that if F satisfies the condition, then (| F is countably compact. So, if X is
subparacompact, then [ F is compact.

Let n € w, {X; : i < n} be a finite collection of spaces and X = [[,-,, X;.
A subset of the form A = [],., A; is said to be a rectangle in X. A rectangle
A = [[;<,, A; in X is said to be open (closed) if A; is open (closed) in X; for
each i < n. An open (closed) rectangle A = [Li<,, 4i in X is said to be topped
if for each i < n, A; (A4;) is topped in X; and let Top(4) = [],,, Top(4;)
(Top(A) = [1;<, Top(4;)). A cover A of X is said to be open (closed) rectangle
if it consists of open (closed) rectangles.

For Cech-scattered spaces, we have the following, which is essentially proved
by [AMT] and [HiT]. So we omit the proofs of them.

Lemma 2. (1) If{X; :4i < n}, n € w, is a finite collection of paracompact
Cech-scattered spaces, then for every open cover U of the product X = [Li<,, Xi,
there is a o-locally finite cover V of X, consisting of topped, open rectangles such
that for each V €V, thereis an U € U with V C U.

(2) If {X;:i < n}, n € w, is a finite collection of subparacompact Cech-scattered
spaces, then every open cover of the product X = [],,, X; has a o-locally finite
refinement, consisting of topped, closed rectangles.

Let U, V be collections of subsets of a space X and A C X. Define U = {U :

UecUy,UAV={UNV:UclandV € V}andU|A={UNA:U € U}. For
a mapping f: X — Y of X to a space Y and a collection W of subsets of Y, let
fU)={fU): U eU} and f~LW) = {f~1(W): W € W}.
Basic constructions. I. Let n € w, {X; : ¢ < n} be a finite collection of
topped, Cech-scattered spaces and X = [Li<,, Xi. For each R C {0,1,--- ,n}, let
pr: X — Xg = [l;cp Xi be the projection of X onto Xg. Since pr(Top(X)) is
Cech-complete, take a complete sequence (A(R);) of open (in pr(Top(X))) covers
of pr(Top(X)). For each j € w, let U; = /\{p}}l(A(R)j) : R c {0,1,---,n}}
Then (U}) is a sequence of open (in Top(X)) covers of Top(X) such that for
R c {0,1,---,n} and j € w, pr(U;) refines A(R); and hence, (pr(lf;)) is a
complete sequence of open covers of pgr(Top(X)).

II. Furthermore, assume that every X; is paracompact (subparacompact). For
each U € Uy, there is an open subset U’ of X such that U’ N Top(X) = U. By
Lemma 2, there is a o-locally finite cover Ag of X, consisting of topped open
(closed) rectangles, such that Ag refines {U’ : U € Uy} U{X — Top(X)}. For each
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A € Ay, Top(A) is Cech-complete. We say that {Top(A) : A € Ag} is a o-locally
finite collection of Cech-complete subsets of X, induced by Uy. Inductively, we
have a sequence (A;) of o-locally finite covers of X, consisting of topped open
(closed) rectangles, such that for each j € w, A; 1 refines A; and A; refines U;.
Then, for R C {0,1,---,n} and j € w, pr(A;| Top(X)) refines A(R);. So, if
every X; is paracompact, then for each R C {0,1,---,n}, (pr(A;| Top(X))) is
a complete sequence of topped, open rectangle covers of Top(Xpg). We say that
(A;j| Top(X)) is a complete sequence of topped, open rectangle covers of Top(X).

3. Normality of ¥-products

Let {X) : A € A} be a collection of spaces. We may assume that the index set
A is uncountable and every X contains at least two points. Let X = [[ycp X
and take a point * = (z3) € X. The subspace

Y ={z = (zx) € X : [Supp(v)| <w}

of X is called a Y-product of spaces X, A € A, where Supp(z) ={\ € A:x) #
xy}. The x* € ¥ is called a base point of ¥. The mention of base point z* is
often omitted.

For a set A, we denote [A]<“ the set of all finite subsets of A. For each
R € [A]<¥, we also denote Xp the finite subproduct [Tycp X of ¥, and denote
by pr the projection of ¥ onto Xpi. In particular, Py 18 denoted by p, for

each A € A. Furthermore, we denote by pg the projection of X/ onto Xp for
R, R € [A]<% with R C R'. For each R € [A]<%, let ¥5_g be the ¥-product of
spaces X, A € A — R, with the base point z* | (A — R) = (23),cp_p-
Let © be an index set such that 6,7 € © assign Ry, Ry € [A]<*. Then Xp_,
XRgv XR@-R—Y? EA—qu PR,> PRy and pge are abbreviated by Xy, Xp, XG_'Y’
Y

YA—~s DPys P and p,o; respectively.

Let R € [A]<%. A subset H is said to be R-cylindrically open (closed) in ¥
if H = [[xecg Hx X EA—R, where []\c H) is an open (closed) rectangle in Xpr
and H is said to be cylindrically open (closed) in ¥ if H is R-cylindrically open
(closed) in X for some R € [A]<“. The set of all cylindrically open subsets in X
is a base in 3. Notice that for every R-cylindrically open (closed) set H in ¥, H
is homeomorphic to p;zlp r(H). Let R € [A]<“. An R-cylindrically open (closed)
subset H = [[ycp H) X ¥a_g in ¥ is said to be topped if pr(H) = [[\ep H) is
topped in Xp. Let Top(H) = Top(pr(H)). Then Top(H) is Cech-complete.

Let X be a space and D be a collection of subset of X. We say that D
is discrete at * € X if there is an open neighborhood U of x in X such that
HD eD:DNU # 0}| < 1. D is said to be discrete in X if for each z in X, D
is discrete at x. A space X is said to be collectionwise normal if every discrete
collection of closed subsets of X can be separated by disjoint open subsets.
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A space X has countable tightness if for each A C X and x € A, there is
a countable subset B C A such that x € B. Every first countable space has
countable tightness. Kombarov and Malykhin [KM] proved that a ¥-product X
has countable tightness if and only if every finite subproduct of ¥ has countable
tightness.

Lemma 3 (Yajima [Y1]). Let X be a space which has countable tightness, B be
a collection of subsets of Y and p : Y — X be a continuous mapping from Y
into X. If p(B) is not discrete at © € X, then there is a countable subset M of
\J B such that p(B| M) is not discrete at x.

Let © = UJ,,c,, ©n be an index set, constructed inductively. If 6 € ©,, n > 1,
is constructed by p € ©y_1, then we denote §_ = p.

Theorem 1. Let ¥ be a X-product of paracompact Cech-scattered spaces. If ¥
has countable tightness, then it is collectionwise normal.

PROOF: Let ¥ be a E-product of paracompact Cech-scattered spaces Xy, A € A,
with a base point 2* = (23) € X. For each x € ¥, we denote Supp(z) = {A;; :
i € w} and for each n € w, let (Supp(z))n = {Az,0, Az, 15 Az,2,- -+ 5 Az}

Let D be a discrete collection of closed subsets in X. A subset F' of ¥ is said
to satisfy (*) if there are a finite collection {B(i) : i < n} of cylindrically open
subsets in ¥ such that F' C |J;<,, B(i) and for each ¢ < n, B(i) meets at most
one member of D. a

To construct sequences of o-locally finite collections of cylindrically open sub-
sets in ¥, define the following: (H,Cp, (A(H);),zxg) € B if

(1) (a) H is a topped, Rp-cylindrically open subset in ¥ and C'y = Top(H ),
(b) (A(H);) is a complete sequence of topped, open (in C'g) rectangle covers
of CH,
(C) TH € XRH-

Inductively, for each n € w, we obtain collections Gy, Hy, of topped, cylindri-
cally open subsets of ¥ and an index set ©, = ©;F U O, of n-th level of a tree
with the height w and index sets 'y = Fg_ @Iy such that 0 € ©,, v € I'g assign
finite subsets R, Ry, Py € [A]<“ and an index set 2, = E:’/‘ ®E7, Cech-complete
sets Cy, Cp, a point xy, a countable subset Yy C 3 (if possible), satisfying the
following conditions (2)—(5): for each n € w,

(2) Gn = {Gy : 0 € ©;'} is o-locally finite in ¥ such that G meets at most one
member of D for each G € G,
(3) Hp, = {Hp : 0 € ©,,} is o-locally finite in X,
(4) for n > 1,
(a) for each 0_ € ©,,_1,{Cy : v € Ty_} is a o-locally finite collection of Cech-
complete closed subsets of Hy_, induced by A(f—)g and FJ, ={yeTly_:

CyNCy_ # 0 and Cy x HAEA—R«,{‘TX} satisfies (*)} and T’y =T}y_ _F;)i_,v
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(b) for each v € I'g_, 24 = E;/" @ E5 is defined and OF ={0 = (1,8 :7¢€
Iy £ €Br,0- €0, 1},0, ={0=(1,&) :yely L €E5,0_ ¢
O, ,}and ©, =06} ®0O,,

(c) - < 0,

(d) Ry_ C R,

(5) for 0 € ©, and 0_€O__,,n>1,

n—1’
(a) Hy_ is a topped, R,_-cylindrically open subset in ¥ such that
(Hg_,Cy_,(A(0-);), mg_) € B, where Hy =]l \ep, Ho_ X Tp—y_,
(b) H). —UGn CU{H,: p €Oy with 0 < u} C Hy_,
(c) Pp={N€ Ry_ :a(Hy \) < a(Hg_ )},
(d)ifye 1"3‘7, then
(d-1) zg = (zg,x) € Ho_,
(d-2) Yy = {yp,; : i € w} is a countable subset of | JD such that p (D |Yyp)

is not discrete at xg in X,
(d-3) if A € Rg_ and T\ ¢ pr(Cy_), then \ € Py,

(d-4) Rg = U{(Supp(yp,j))k : 1 < 0 and j,k <n}U Ry,
and if y € T’y , then

(d-5) Rg = Ry =Ry_,
(d-6) zg = x4_,

(e) Cp = Top(Hy) and (A(0);) is a complete sequence of topped, open (in Cp)
rectangle covers of Cy such that for R C Rg_ with RN Py = 0, p}y%(A(H)j)
refines pJ; (A(6-);4+1) for each j € w,

(f) (Hy, Cy, (A(0);),x9) € B.

Let Gy = @3‘ = {(}. Take an arbitrary A9 € A and a o-locally finite open
cover H' = {Hé 10 € Oy} of Xy, such that for each 0 € @a,ﬁé is topped. Let
Hy = pXOI(Hé) for each § € © and Ho = {Hp : 6 € ©; }. Then Hy is a o-locally
finite collection of topped, cylindrically open subsets in . For each 6 € O, let
Cp = Top(Hy) and take a complete sequence (A(f);) of open (in Cy) covers of
Cp and a 2y € Cy. Then, for each 0 € O, (Hy, Cy, (A(0);),z9) € B.

Let n € w and assume that for each k < n, we have already obtained collections
Gn, Hy, and other collections, satisfying the conditions (2)—(5). Take a 6_ € O, .
Let (Hg_,Cy_, (A(0-);),79_) € Band Hg = HAG% Hy x ¥p_,_. For each
A € A(0-)p, take an open subset B4 of HAERL Hy), = HAGRL H) such that
BoNCy_ = A. By Lemma 2(1), there is a o-locally finite collection W'(0_) =
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{W,/Y : v € T'y_} of topped, open rectangles of X,  such that H)\ER»L Hy, =
UW/(6-) and for each element W’ € W/(f—), W' is contained in some member
of {Ba: A€ A(0-)o} U{llrer, Hr—Co_}-

For each v € T'y_, let C, = Top(Wi/ X YpA_~_) and I‘gl ={yeTly :CyN
Co_ # 0 and Cy x [[yep—g, {23} satisfies ()} and I'y =Ty - ry .

Let v € 1"3’7. Then there are a finite collection {B(i) : ¢ < n} of R(i)-
cylindrically open subsets in £, i < n, such that Cy x[[xep—, {23} C U;<,, B(7)

and for each i < n, B(i) meets at most one member of D. Put Ry, = R,_ U
(Uign R(i)) and Wy = W—/y X Xfy_gi. Put

® = {z € W, : py(D) is not discrete at = in X,}.

Then @ is a closed subset of W, and p(Cy x HAEA—RL {z3}) N ® = . For

each z € W, — @ — JL Ji—o py(B(i)), take an open rectangle neighborhood U(x)

of x in X, such that U(z) meets at most one member of D and for each 2 =
(z)) € @, take an open rectangle neighborhood U(z) = HAERW U(zy) of x in

Xy, such that if z) ¢ pA(Cy x [Inea—p, {2}}), A € Ry, then U(z)) NpA(Cy x
H)\EA—R(L {z3}) = 0. By Lemma 2(1), there is a 0-locally finite (in X) collection

={Ve: €=}, Ve = HAGRW Ve for each £ € Z,, of topped, open rectangles
in Wy such that Wy = JVy = U{Ve : £ € By} and {V; : £ € E,} refines
{U(z) 1w € Wy = Uil py(B(i)} U {py(B(0)), - ,py(B(n))}. Put

EZ; {¢ € 2 : V¢ meets at most one member of p~ (D)}
and = zEfy—E:Y". Let
OF ={(1,¢): £ €=} and O] ={(7,€): £ €EJ}.

For each 6 = (v,£) € ©F, let Gy = p;l(Vg) For each 0 = (v,¢) € ©7,
Hy = p;l(Vg) = HAERW Hg ) x ¥p_, is a topped, Ry-cylindrically open subset
of ¥. Take an zg = (wg,)) € ® such that Ve C U(xg). Since X, has countable
tightness, it follows from Lemma 3 that there is a countable subset Yy = {yg; :
i € w} of [JD such that py(D|Yp) is not discrete at zy in X,. Let Py = {\ €
Ry : pa(Hg) Npr(Cy_) = HypxNpx(Cp_) = 0}. Then it is easy to prove the
following.
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Claim 1. Let 6 € ©5 and A € Ry_. Then
(1) a(Hy,\) < a(Hg_ ) and X € Py if and only if a(Hg ) < a(Hg_ ),
(2) if g\ ¢ px(Cy_), then X € Py.

Let Cy = Top(Hy). If A € Ry_ — Py, then py(Cy) = px(Hg) N pr(Cy_). Take
a complete sequence (A(f);) of topped, open (in Cy) rectangle covers of Cy such
that if R C Ry_ with RN Py = 0, pl(A(0);) refines ply (A(6_)j11) for each
J € w. Then (Hy, Cy, (A(0);),7q) € B.

Assume that v € Ty . Let Ry = Rg_, Wy = W], =% = ©F = G, = {0},

E; = {g’y}v ‘/EW = W’*{a 6'; = {(755’7)} For 6 = (Vag’y)v Hy = p';l(W’*/) and
Cy = Top(Hy). Define Py as before and let g9 = zy_. Take a complete sequence
(A(8);) of open (in Cp) rectangle covers of Cy, satisfying the same condition for
each R C Ry with RN Py =0. For 0 @;, yeTly , (Hg,Cg, (A(@)j),xg) eB.

Let ©f , =U{0F :7 €Ty ,0-€06,},0,,,=U{0;:7€Ty_0- €O}
and ©pq1 =0, ®O, ;. For € O, and € O, u < 0if _ = p and
there are v € I'g_ and § € ©F such that § = (7,8). Let Goy1 ={Gy : 0 € @L_l}
and Hpy1 = {Hp:0 €O, 1} Then G,11 and Hy41 satisfy (2) and (3). Other
properties are satisfied by the above construction.

Let G = Upew n- By (2), it suffices to prove that G covers ¥. Assume
that G does not cover ¥. Take an x = (z)) € ¥ — JG. Then, by (5)(b), we
can inductively choose a sequence {fp,: n € w} such that 0, = (v, &) € O,
€Ly, 1, &n €55, 0p—1 <bp,n>1and x € Hy, for each n € w.

Claim 2. {n>1:v, € 1"3'”71} is infinite.

PROOF: Assume that {n > 1: v, € Fg‘ 71} is finite. Then there is an ng > 1

such that if n > ng, then ~, ¢ Fg_n717 that is, v, € F;n—l. Then for each
n = ng, Ry, = Ry, = Ry, = R9n0' Let A\ € Rgno and n > mng. If A € Py ,
then by (5)(c), we have a(px(Cp,,,)) < a(pr(Cy,))- So, there is an ny > ng
such that if n > ny, then X ¢ Py and hence, a(p)(Cy,)) = Oé(PA(CGM)) and
pA(Cy,,) C p)\(C&LA). Take an 72 € w such that n > ny for A € Ry, . Thus,
if n > n, then Ry, NP, = 0 and hence, Py, = (). Then {Cy, : n > n}is a
decreasing sequence of nonempty closed subsets of Cy.. For each n > 7, there
is an A, € A(0n)o such that Cy C A,. By (5)(e), there is an A}, € A(67)n—s
such that A, C Aj,. Then C' = (), Cs, is nonempty and compact. Let
C =C x H)\eA—Rgﬁ {#3}. Then C is compact. There is a finite collection
{B(i) : i < k} of cylindrically open subsets in ¥ such that C' C |J;<;, B(i) and
for each i < k, B(i) meets at most one member of D. Then, by Lemma 1, there
is an m > 7 such that C,,, x HAEA—R%,L{IX} C U<k B(9). Thus vy, € I‘g‘mﬂ,
which is a contradiction. ]
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By Claim 2, {n >1:v, € I‘g‘ 71} is infinite. So there is a mapping ¢ : w — w

such that 1 < ¢(0) and for each n € w, ¢(n) < ¢(n + 1), Yg(n) € F;)"d)( V1

Prom (P 3/'9¢(n)) is not discrete at g, =~ and for each k (p(n) < k < ¢p(n+1)),
Y €Ty, - Let Q = Unew R, = Unecw R, - Then

Claim 3. (1) Ro, .y € Byyrny © Royp, for each n € w and hence, for each
finite subset F' C @, there is an n > 1 such that F C R%(n),

(2) U{Supp(y) : y € Yy, ,n € w} C Q.

After this in proof, we omit the index letter 6, v and ¢ for simplicity. That is,
Yo(n) :
LG4y H‘%(n) s Boyymys Prace) » Prary» P‘%(n) , Cg(bw and A(Gd)(n))j are abbreviated
by xn, Hp, Rn, P}, Pk, Pn, Cn and A(n); respectively.

Claim 4. For each A € (@, there is an m) € w such that for n > my, A\ €
Rp—1 — Pp and x, \ € pA(Crn) C pA(Cp—1).

PROOF: For each A € @, by Claim 3(1), take an m € w such that if n > m, then
A € R,_1. By the similar proof of Claim 2, there is an my € w with my > m
such that if n > my, then A\ ¢ P,. If there is an n > m such that xz,, x & px(Cy),
then by (5)(d-3), A € Py, which is a contradiction. Thus for each n > my,

Tpx € PA(Cn) C pA(Cr—1)- O

For m,k > 1 with m > k, let E}* = {pj(xn) : n > m}. Then, for each m > k,
E,T"‘l C E}". Notice that for each n > m, p} : X%(n) — X%(k).
my > k with mg > max{my : A\ € R}. It follows from Claim 4 that for each
n > my, Ry N Py = 0. Thus pi(zn)y = Ty )\ € PA(Cm,,) for X € Ry and n > my,.
Thus {E]" : m > my} is a decreasing sequence of closed subsets of p),* (Cpp,, ). Let
m > my. Then we obtain A,, € A(Hm)o and A, € p,™* (A(Hmy, ) -, ) such
that E]" C pi*(Cm) C p(Am) C Aj,. Thus Ky = N> EF' (=N EM)
is nonempty and compact. Since pz""l(Kk_H) C K}, for each k € w, {Kk,pg"'l}
is an inverse sequence of nonempty compact spaces. Hence there is a point (z3) €
@{Kk,pg"'l}. Define a point z = (z)) € ¥ such that pg(z) = 2}, for each k > 1
and z) = z) otherwise.

We can show that D is not discrete at z. However, by Claim 4 and (5)(d-2),
this is verified in the same manner as the proof of [K1, Theorem 1]. O

Choose an

m>my

4. Shrinking property of X-products

A space X is said to be shrinking if for every open cover {Uy : A € A} of X
there is a closed cover {F) : A € A} of X such that F, C Uy for each A € A.
A space X is said to be subshrinking if for every open cover {Uy : A € A} of X,
there is a closed cover {F) , : A € A and n € w} of X such that F), C U for
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each A € A and n € w. It is well known that a space X is shrinking if and only if
it is normal and subshrinking.

Let {X : A € A} be a collection of spaces and ¥ be a Y-product of them.
We may take a point yy € X, different from 23} for each A € A. For each
s € [A — R]<“, an open neighborhood W; of z* | (A — R) in X_g is said to be
s-basic if Ws = [[\es Wa X Ep_(gus), where W) is an open neighborhood of 3
in X with yy ¢ W, for each A € s.

Let G = {Gy : v € T} be an open cover of ¥. For R € [A]<% and a subset F
in Xg, let

M(F) ={s € [A— R|<“: there is an s-basic open neighborhood
Ws of 2*|(A— R) such that F x Wy C G, for some v € Y}.

Lemma 4 (Tanaka and Yajima [TY]). Let X be a X-product of spaces Xy, A € A,
and let G = {Gy : v € T} be an open cover of . If there is a o-locally finite
closed cover {Eg : 6 € ©1} of ¥ such that each Ey, 0 = (v,£) € ©F, v € Ty_,

§ € Ey, 0_ € 0, is an Ry-cylindrically closed set in ¥, satisfying

Eg < [ J{pal, (Ws) : s € M(py(Ep))},

where Ry € [A]<* and pjy_., denotes the projection of ¥ onto ¥5_., then there
is a closed cover {Fy, : v € T and n € w} of ¥ such that F, , C G, for each
veT andn € w.

Theorem 2. If ¥ is a Y-product of first countable, subparacompact Cech-
scattered spaces, then it is subshrinking.

PRrROOF: Let 3 be a ¥-product of first countable, subparacompact DC-like spaces
X\, A € A, with a base point #* = (23) € X. Let G = {Gy : v € T} be an open
cover of 3. A subset A of ¥ is said to satisfy (**) if there is a finite collection B
of cylindrically open subsets in ¥ such that A C |JB and for each B € B, there
is a G € G such that B C G.

Define a collection B similarly: (E,Cg, (A(E);),zg) € B if

(1) (a) E = [Ixerp Ex X EA—Rg is a topped, Rp-cylindrically closed subset in
¥ and Cg = Top(E),
(b) (A(E);) is a sequence of open (in Cf) covers of Cf such that for each
R C R, (ng (A(E);)) is a complete sequence of open covers ofpf;E (Cg),
(C) rp € XRE'
Inductively, for each n € w, we shall obtain an index set ©,, = O, ®©,, of n-th

level of a tree with height w such that 6§ € ©,, and v € T'y assign cylindrically closed
subset Fy, index sets I'g and =, = E;/" © E7, finite subsets Ry, Ry, Py € [A]<v,
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Cech-complete subsets Cy, Cp, points zg € X, y, ) € X, basic open subsets
Uy(+), Uy(- k) C X, satisfying the following conditions (2)—(5): for n € w,

(2) {Ep : 0 € ©y} is o-locally finite in 3,

(3) for n > 1,

(a) for each 6 € ©,,_1, {C : v € Ty_} is a o-locally finite collection of Cech-
complete closed subsets of Ey_, induced by A(6_)g and Fg_, ={yeTly_:
CyNCy_ # 0 and Cy x HAEA—R«, {x}} satisfy (**)} and Ty =T4y_ _Fg_,v

(b) for each vy € I'g_, 24 = Ejy_ @ E5 is defined and OF ={0= (1,8 :v¢€

Iy £ €E250- €0, 1},0, ={0=(1.§ :ye€ly £ €E,0_ ¢
0, 1}, 0, =06} ®06,
and for each 0 = (v,&) € Oy,

(c) 60— < 0,
(d) RG, - R’Yv

(4) for each 0 € O3f, Fy € oL (Ws) : s € M(py (Eg))},
(5) for each 0 = (v,£) € ©,,v€ly_,E € E],0- €0,

n—1’

(a) Ep_ is a topped, R,_-cylindrically closed set in ¥, where
Ey = HAER«,7 Eg)\ X EA—’L such that (Egi,Cgi, (.A(e_)j),xgi) € B,

(b) Eg_ =U{Eu: p €Oy with 0 < p},

(c) for each x € X, {Uy(, k) : k € w} is a neighborhood base at z, consisting
of basic open subsets in X, such that U, (z) = Uy(x,0) and U, (z, k+1) C
Uy (z, k) for each k € w,

(d) Pp={N€ Rg_ : a(Ey ) < a(Eg_ )},

(e)ify e 1"3’7, then

(e-1) g = (zg,\) € Py(Ep_),

(e-2) py(Ep) C Uy(xg),

(e-3) p3_(Uy(zg)) C Uy_(g_), where n > 2 and 0 = (7,£) and 6— =
(v—,¢&) fory— €Ty, £ €2y, pe®, ,and ¢ €5,

(e4) o0 € p3 (U w0, ) — Uty (W) : s € M(U, (g, K))} for each
ke w,

(e-5) if A € Rg_ with o\ ¢ px(Cy_), then X € Py,

(e-6) Rg = U{(Supp(yp,j))k : 1 < 0 and j, k < n} U Ry

and if y € I’y , then

(6'6) Ry = R'Y =Ry_,
(6_7) g = Tg_,
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(f) Cy = Top(Ey) and (A(f);) is a sequence of open (in Cy) covers of Cy such
that for R C R,
(1) pj(A();) is a complete sequence of open (in pj(Cy)) covers of
PR(Co),
(£-2) if R C Ry_ with RN Py = 0, then p},(A(0)j) refines pi{ (AO-)j+1)
for each j € w,
(8) (Eg,Co, (A(0);),z9) € B.

Take an arbitrary Ag € A and a o-locally finite closed cover &' = {Ej, : 0 €
O, } of Xy, such that for each § € O, Ej is topped. Put Of = {0} and
Oy = O ®O; = ©y. For each 0 € Oy, let By = pxol(Eg)) and let Cy =
Top(Ep). Take a complete sequence (A(f);) of open (in Cy) covers of Cp and a
xg € Cp. Let (Uy,(xg,k)) be a countable, open neighborhood base at zg in X},
such that Uy, (zg,k 4+ 1) C Uy,(xg, k) for each k € w. Then, for each § € O,
(E97 007 (A(H)J)JCG) € B.

Let n € w and assume that for each & < n, we have already obtained a

collection { Ey : 6 € O} and other collections, satisfying (2)—(5). Takeaf_ € ©;,.
Let (Eg_,Cyp_, A(0-)j,29_) € B, where E = HAGRL E\ x ¥z g, . For each

A € A(6-)p, take an open subset B4 in HAERL E) such that B4 N Cg = A.

By Lemma 2(2), there is a o-locally finite collection H(E) = {H’, : v € Ty_} of
topped, closed rectangle subsets of [[\cp. ~ Ei such that [[\cp — Ex = UH(E)

and for each y € Ty_, H!, is contained in some member of {B4 : A € A(f-)o} U
{Iher, Bx—Co_}-

For each v € Ty_, let Cy = Top(H), x Xp_,_) and I ={yeTp :CyN
Cp_ # 0 and Cy x HA—RL {23} satisfy (**)} and Ty =Tyg_ — F;,-

Let v € FJ,- Then there is a finite collection B of cylindrically open subsets
in ¥ such that Cy x [[xep—, {2}} C UB and for each B € B, thereisa G € G
such that B C G. Define R, as before and H, = H,’Y X Xy__. Let

Q={V:V isan open subset in X, meeting H, such that
py (V) c Utppl (We) 1 s € M(V)}} and

o, =H, -

It is clear that p(C, x HAGA—RL {z3})N®, = (. By Lemma 2(2), every open

cover of H, has a o-locally finite refinement, consisting of topped, closed rectan-
gles. The rest of the construction is similar to that in the proofs of Theorem 1,
[TY, Theorem 4.2] and [Y2, Theorem 4].
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Let © = Upew On, O =U,>1 O and € = {Ey : 6 € ©1}. It follows from
(2) and (5) that &£ is a o-locally finite collection of cylindrically closed sets in X
and for each § € ©T, Fy C U{pXiy(Ws) : s € M(py(Ey))}. By Lemma 4, it
suffices to prove that £ is a cover of 3. Assume that there is a point z = (z)) €
Y —UE&. By (5)(b), we can inductively choose a sequence {6, : n € w} such that
On = (Y én) € On, e €Ty, |, &n € B, On—1 < bp,n >1and z € Ey, for
each n € w. By the same proof of Claim 2 in Theorem 1, {n € w : vy, € 1"3'”71}

is infinite. Then there is also a mapping ¢ : w — w such that for each n € w,
p(n) < ¢p(n + 1), vg(n) € I‘g;(nkl and for each k (¢(n) < k < ¢(n + 1)),
Yk € F];_l.

As the proof of Theorem 1, we also omit the index letter #, ~ and ¢ for
simplicity. Let Q@ = J,,c,, Bn- As the same way as Claim 4 in Theorem 1, for
each A € @, there is an m) > 1 such that for each n > my, A € R,—1 — Py,
Tp x € pA(Cn) C pA(Cp—1). (We similarly use Cy,.) Let us define F}" (we use E}"
in the proof of Theorem 1) and K}, for each k,m > 1 with m > k as before. Then
there is a point (zx) € liLn{Kk,p]]z""l}. Define a point z = (z,) € X such that
pr(2) = zj, for each k € w and z) = z} otherwise. Then we have a contradiction
in the same argument as [Y2, Lemma 7). O

By Theorem 1, 2, we have

Theorem 3. If ¥ is a X-product of first countable, paracompact Cech-scattered
spaces, then it is shrinking.
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