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Σ-products of paracompact Čech-scattered spaces

Hidenori Tanaka

Abstract. In this paper, we shall discuss Σ-products of paracompact Čech-scattered
spaces and show the following: (1) Let Σ be a Σ-product of paracompact Čech-scattered
spaces. If Σ has countable tightness, then it is collectionwise normal. (2) If Σ is a Σ-

product of first countable, paracompact (subparacompact) Čech-scattered spaces, then
it is shrinking (subshrinking).

Keywords: Σ-product, C-scattered, Čech-scattered, paracompact, subparacompact, col-
lectionwise normal, shrinking, subshrinking, countable tightness

Classification: Primary 54B10, 54D15, 54D20, 54G12

1. Introduction

Since the concept of Σ-products was introduced by Corson [Co], the normality
of Σ-products has been studied by several authors. In particular, the normal-
ity of Σ-products of metric spaces was proved by Gul’ko [Gu] and Rudin [R1].
Furthermore, Rudin [R2] proved the shrinking property of Σ-products of metric
spaces. So, the shrinking property of Σ-products has been another interesting
subject (Yajima [Y2]).
Telgársky [Te] defined C-scattered spaces, which is a generalization of scattered

spaces and locally compact spaces. As the spaces consisting of ordinals (with the
usual order topology) are scattered, many important examples using ordinals are
scattered. The author and Yajima [TY] showed the following (cf. Hanaoka and
the author [HaT]):

(A) Let Σ be a Σ-product of paracompact C-scattered spaces. If Σ has countable
tightness, then it is collectionwise normal.

(B) If Σ is a Σ-product of first countable, paracompact (subparacompact) C-
scattered spaces, then it is shrinking (subshrinking).

On the other hand, Kombarov [1] proved the following.

(C) Let Σ be a Σ-product of paracompact Čech-complete spaces. If Σ has count-
able tightness, then it is collectionwise normal.

Furthermore Kombarov [2] also proved the following.
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(D) Let Σ be a Σ-product of paracompact p-spaces. Then the following are
equivalent:

(a) Σ has countable tightness,
(b) Σ is collectionwise normal,
(c) Σ is normal.

Hohti and Ziqiu [HZ] introduced the concept of Čech-scattered spaces, which is
a generalization of C-scattered spaces. Aoki, Mori and the author [AMT], Higuchi
and the author [HiT] proved that if Y is a perfect paracompact (hereditarily Lin-
delöf, perfect subparacompact) space and {Xn : n ∈ ω} is a countable collection of
paracompact (Lindelöf, subparacompact) Čech-scattered spaces, then the product
Y ×

∏
n∈ω Xn is paracompact (Lindelöf, subparacompact).

It seems to be natural to consider Σ-products of paracompact Čech-scattered
spaces. So, we shall discuss normality and shrinking property of Σ-products of
paracompact Čech-scattered spaces and obtain generalizations of (A), (B) and (C)
as follows: (1) Let Σ be a Σ-product of paracompact Čech-scattered spaces. If Σ
has countable tightness, then it is collectionwise normal. (2) If Σ is a Σ-product
of first countable, paracompact (subparacompact) Čech-scattered spaces, then it
is shrinking (subshrinking).
All spaces are assumed to be Tychonoff spaces. Let ω denote the set of natural

numbers and |A| denote the cardinality of a set A. Undefined terminology can be
found in Engelking [E].

2. Preliminaries

A space X is said to be scattered if every nonempty (closed) subset A of X has
an isolated point in A. A space X is said to be C-scattered if for every nonempty
closed subset A of X , there is an x ∈ A which has a compact neighborhood in
A. Then scattered spaces and locally compact spaces are C-scattered. A space
X is said to be Čech-scattered if for every nonempty closed subset A of X , there
is an x ∈ A which has a Čech-complete neighborhood in A. It is well known
that the space of irrational numbers P = ωω is not C-scattered. However, it is
Čech-complete and hence, is Čech-scattered.
Let X be a space. For a closed subset A of X , let

A∗ = {x ∈ A : x has no Čech-complete neighborhood in A}.

Let A(0) = A, A(α+1) = (A(α))
∗
and A(α) =

⋂
β<α A(β) for a limit ordinal α.

Note that every A(α) is a closed subset of X and X is Čech-scattered if and only

if X(α) = ∅ for some ordinal α.
Let X be a Čech-scattered space. A subset A of X is said to be topped if there

is an ordinal α(A) such that A ∩ X(α(A)) is a nonempty Čech-complete subset

and A ∩X(α(A)+1) = ∅. Let Top(A) = A ∩X(α(A)). It is clear that if X and Y
are Čech-scattered spaces, then the product X × Y is Čech-scattered.
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Lemma 1 (Engelking [E]). A space X is Čech-complete if and only if there is a
sequence (An) of open covers of X satisfying that if F is a collection of closed
subsets of X , with the finite intersection property, such that for each n ∈ ω, there
are Fn ∈ F and An ∈ An with Fn ⊂ An, then the intersection

⋂
F is nonempty.

(An) is said to be a complete sequence of open covers of X . It is well known
that if F satisfies the condition, then

⋂
F is countably compact. So, if X is

subparacompact, then
⋂
F is compact.

Let n ∈ ω, {Xi : i ≤ n} be a finite collection of spaces and X =
∏

i≤n Xi.

A subset of the form A =
∏

i≤n Ai is said to be a rectangle in X . A rectangle

A =
∏

i≤n Ai in X is said to be open (closed) if Ai is open (closed) in Xi for

each i ≤ n. An open (closed) rectangle A =
∏

i≤n Ai in X is said to be topped

if for each i ≤ n, Ai (Ai) is topped in Xi and let Top(A) =
∏

i≤n Top(Ai)

(Top(A) =
∏

i≤nTop(Ai)). A cover A of X is said to be open (closed) rectangle

if it consists of open (closed) rectangles.
For Čech-scattered spaces, we have the following, which is essentially proved

by [AMT] and [HiT]. So we omit the proofs of them.

Lemma 2. (1) If {Xi : i ≤ n}, n ∈ ω, is a finite collection of paracompact
Čech-scattered spaces, then for every open cover U of the product X =

∏
i≤n Xi,

there is a σ-locally finite cover V of X , consisting of topped, open rectangles such
that for each V ∈ V , there is an U ∈ U with V ⊂ U .

(2) If {Xi : i ≤ n}, n ∈ ω, is a finite collection of subparacompact Čech-scattered
spaces, then every open cover of the product X =

∏
i≤n Xi has a σ-locally finite

refinement, consisting of topped, closed rectangles.

Let U , V be collections of subsets of a space X and A ⊂ X . Define U = {U :
U ∈ U}, U ∧ V = {U ∩ V : U ∈ U and V ∈ V} and U |A = {U ∩A : U ∈ U}. For
a mapping f : X → Y of X to a space Y and a collection W of subsets of Y , let
f(U) = {f(U) : U ∈ U} and f−1(W) = {f−1(W ) :W ∈ W}.

Basic constructions. I. Let n ∈ ω, {Xi : i ≤ n} be a finite collection of
topped, Čech-scattered spaces and X =

∏
i≤n Xi. For each R ⊂ {0, 1, · · · , n}, let

pR : X → XR =
∏

i∈R Xi be the projection of X onto XR. Since pR(Top(X)) is

Čech-complete, take a complete sequence (A(R)j) of open (in pR(Top(X))) covers

of pR(Top(X)). For each j ∈ ω, let Uj = ∧{p
−1
R (A(R)j) : R ⊂ {0, 1, · · · , n}}.

Then (Uj) is a sequence of open (in Top(X)) covers of Top(X) such that for
R ⊂ {0, 1, · · · , n} and j ∈ ω, pR(Uj) refines A(R)j and hence, (pR(Uj)) is a
complete sequence of open covers of pR(Top(X)).

II. Furthermore, assume that every Xi is paracompact (subparacompact). For
each U ∈ U0, there is an open subset U ′ of X such that U ′ ∩ Top(X) = U . By
Lemma 2, there is a σ-locally finite cover A0 of X , consisting of topped open
(closed) rectangles, such that A0 refines {U

′ : U ∈ U0}∪{X−Top(X)}. For each
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A ∈ A0, Top(A) is Čech-complete. We say that {Top(A) : A ∈ A0} is a σ-locally
finite collection of Čech-complete subsets of X , induced by U0. Inductively, we
have a sequence (Aj) of σ-locally finite covers of X , consisting of topped open

(closed) rectangles, such that for each j ∈ ω, Aj+1 refines Aj and Aj refines Uj .

Then, for R ⊂ {0, 1, · · · , n} and j ∈ ω, pR(Aj | Top(X)) refines A(R)j . So, if
every Xi is paracompact, then for each R ⊂ {0, 1, · · · , n}, (pR(Aj | Top(X))) is
a complete sequence of topped, open rectangle covers of Top(XR). We say that
(Aj | Top(X)) is a complete sequence of topped, open rectangle covers of Top(X).

3. Normality of Σ-products

Let {Xλ : λ ∈ Λ} be a collection of spaces. We may assume that the index set
Λ is uncountable and every Xλ contains at least two points. Let X =

∏
λ∈ΛXλ

and take a point x∗ = (x∗λ) ∈ X . The subspace

Σ = {x = (xλ) ∈ X : | Supp(x)| ≤ ω}

of X is called a Σ-product of spaces Xλ, λ ∈ Λ, where Supp(x) = {λ ∈ Λ : xλ 6=
x∗λ}. The x∗ ∈ Σ is called a base point of Σ. The mention of base point x∗ is
often omitted.
For a set Λ, we denote [Λ]<ω the set of all finite subsets of Λ. For each

R ∈ [Λ]<ω, we also denote XR the finite subproduct
∏

λ∈R Xλ of Σ, and denote
by pR the projection of Σ onto XR. In particular, p{λ} is denoted by pλ for

each λ ∈ Λ. Furthermore, we denote by pR′

R the projection of XR′ onto XR for

R, R′ ∈ [Λ]<ω with R ⊂ R′. For each R ∈ [Λ]<ω, let ΣΛ−R be the Σ-product of
spaces Xλ, λ ∈ Λ−R, with the base point x∗ | (Λ−R) = (x∗λ)λ∈Λ−R

.

Let Θ be an index set such that θ, γ ∈ Θ assign Rθ, Rγ ∈ [Λ]<ω . Then XRγ
,

XRθ
, XRθ−Rγ

, ΣΛ−Rγ
, pRγ

, pRθ
and pRθ

Rγ
are abbreviated by Xγ , Xθ, Xθ−γ ,

ΣΛ−γ , pγ , pθ and pθ
γ respectively.

Let R ∈ [Λ]<ω. A subset H is said to be R-cylindrically open (closed) in Σ
if H =

∏
λ∈R Hλ × ΣΛ−R, where

∏
λ∈R Hλ is an open (closed) rectangle in XR

and H is said to be cylindrically open (closed) in Σ if H is R-cylindrically open
(closed) in Σ for some R ∈ [Λ]<ω. The set of all cylindrically open subsets in Σ
is a base in Σ. Notice that for every R-cylindrically open (closed) set H in Σ, H

is homeomorphic to p−1R pR(H). Let R ∈ [Λ]<ω. An R-cylindrically open (closed)
subset H =

∏
λ∈R Hλ × ΣΛ−R in Σ is said to be topped if pR(H) =

∏
λ∈R Hλ is

topped in XR. Let Top(H) = Top(pR(H)). Then Top(H) is Čech-complete.
Let X be a space and D be a collection of subset of X . We say that D

is discrete at x ∈ X if there is an open neighborhood U of x in X such that
|{D ∈ D : D ∩ U 6= ∅}| ≤ 1. D is said to be discrete in X if for each x in X , D
is discrete at x. A space X is said to be collectionwise normal if every discrete
collection of closed subsets of X can be separated by disjoint open subsets.



Σ-products of paracompact Čech-scattered spaces 131

A space X has countable tightness if for each A ⊂ X and x ∈ A, there is
a countable subset B ⊂ A such that x ∈ B. Every first countable space has
countable tightness. Kombarov and Malykhin [KM] proved that a Σ-product Σ
has countable tightness if and only if every finite subproduct of Σ has countable
tightness.

Lemma 3 (Yajima [Y1]). Let X be a space which has countable tightness, B be
a collection of subsets of Y and p : Y → X be a continuous mapping from Y
into X . If p(B) is not discrete at x ∈ X , then there is a countable subset M of⋃
B such that p(B |M) is not discrete at x.

Let Θ =
⋃

n∈ω Θn be an index set, constructed inductively. If θ ∈ Θn, n ≥ 1,
is constructed by µ ∈ Θn−1, then we denote θ− = µ.

Theorem 1. Let Σ be a Σ-product of paracompact Čech-scattered spaces. If Σ
has countable tightness, then it is collectionwise normal.

Proof: Let Σ be a Σ-product of paracompact Čech-scattered spaces Xλ, λ ∈ Λ,
with a base point x∗ = (x∗λ) ∈ Σ. For each x ∈ Σ, we denote Supp(x) = {λx,i :
i ∈ ω} and for each n ∈ ω, let 〈Supp(x)〉n = {λx,0, λx,1, λx,2, . . . , λx,n}.
Let D be a discrete collection of closed subsets in Σ. A subset F of Σ is said

to satisfy (*) if there are a finite collection {B(i) : i ≤ n} of cylindrically open

subsets in Σ such that F ⊂
⋃

i≤n B(i) and for each i ≤ n, B(i) meets at most
one member of D.
To construct sequences of σ-locally finite collections of cylindrically open sub-

sets in Σ, define the following: (H, CH , (A(H)j), xH ) ∈ B if

(1) (a) H is a topped, RH -cylindrically open subset in Σ and CH = Top(H),
(b) (A(H)j) is a complete sequence of topped, open (in CH) rectangle covers
of CH ,

(c) xH ∈ XRH
.

Inductively, for each n ∈ ω, we obtain collections Gn, Hn of topped, cylindri-
cally open subsets of Σ and an index set Θn = Θ

+
n ∪ Θ

−
n of n-th level of a tree

with the height ω and index sets Γθ = Γ
+
θ
⊕ Γ−

θ
such that θ ∈ Θ−

n , γ ∈ Γθ assign

finite subsets Rγ , Rθ, Pθ ∈ [Λ]
<ω and an index set Ξγ = Ξ

+
γ ⊕Ξ

−
γ , Čech-complete

sets Cγ , Cθ , a point xθ, a countable subset Yθ ⊂ Σ (if possible), satisfying the
following conditions (2)–(5): for each n ∈ ω,

(2) Gn = {Gθ : θ ∈ Θ
+
n } is σ-locally finite in Σ such that G meets at most one

member of D for each G ∈ Gn,
(3) Hn = {Hθ : θ ∈ Θ

−
n } is σ-locally finite in Σ,

(4) for n ≥ 1,
(a) for each θ− ∈ Θn−1, {Cγ : γ ∈ Γθ−} is a σ-locally finite collection of Čech-

complete closed subsets of Hθ− , induced by A(θ−)0 and Γ
+
θ−
= {γ ∈ Γθ− :

Cγ ∩Cθ− 6= ∅ and Cγ×
∏

λ∈Λ−Rγ
{x∗λ} satisfies (*)} and Γ

−
θ−
= Γθ−−Γ

+
θ−
,
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(b) for each γ ∈ Γθ− , Ξγ = Ξ
+
γ ⊕ Ξ

−
γ is defined and Θ

+
n = {θ = (γ, ξ) : γ ∈

Γ+
θ−

, ξ ∈ Ξ+γ , θ− ∈ Θ
−
n−1}, Θ

−
n = {θ = (γ, ξ) : γ ∈ Γθ− , ξ ∈ Ξ−γ , θ− ∈

Θ−
n−1} and Θn = Θ

+
n ⊕Θ

−
n ,

(c) θ− < θ,

(d) Rθ− ⊂ Rγ .

(5) for θ ∈ Θ−
n and θ− ∈ Θ

−
n−1, n ≥ 1,

(a) Hθ− is a topped, Rγ− -cylindrically open subset in Σ such that

(Hθ− , Cθ− , (A(θ−)j), xθ−) ∈ B, where Hθ− =
∏

λ∈Rγ
−

Hθ−,λ × ΣΛ−γ− ,

(b) Hθ− −
⋃
Gn ⊂

⋃
{Hµ : µ ∈ Θn with θ− < µ} ⊂ Hθ− ,

(c) Pθ = {λ ∈ Rθ− : α(Hθ,λ) < α(Hθ−,λ)},

(d) if γ ∈ Γ+
θ−
, then

(d-1) xθ = (xθ,λ) ∈ Hθ− ,

(d-2) Yθ = {yθ,i : i ∈ ω} is a countable subset of
⋃
D such that pγ(D |Yθ)

is not discrete at xθ in Xγ ,

(d-3) if λ ∈ Rθ− and xθ,λ /∈ pλ(Cθ−), then λ ∈ Pθ,

(d-4) Rθ =
⋃
{〈Supp(yµ,j)〉k : µ ≤ θ and j, k ≤ n} ∪ Rγ ,

and if γ ∈ Γ−
θ−
, then

(d-5) Rθ = Rγ = Rθ− ,

(d-6) xθ = xθ− ,

(e) Cθ = Top(Hθ) and (A(θ)j) is a complete sequence of topped, open (in Cθ)

rectangle covers of Cθ such that for R ⊂ Rθ− with R∩Pθ = ∅, p
γ
R(A(θ)j)

refines p
γ−
R (A(θ−)j+1) for each j ∈ ω,

(f) (Hθ, Cθ , (A(θ)j), xθ) ∈ B.

Let G0 = Θ
+
0 = {∅}. Take an arbitrary λ0 ∈ Λ and a σ-locally finite open

cover H′ = {H ′
θ : θ ∈ Θ

−
0 } of Xλ0 such that for each θ ∈ Θ−

0 , H ′
θ
is topped. Let

Hθ = p−1
λ0
(H ′

θ) for each θ ∈ Θ−
0 and H0 = {Hθ : θ ∈ Θ

−
0 }. Then H0 is a σ-locally

finite collection of topped, cylindrically open subsets in Σ. For each θ ∈ Θ−
0 , let

Cθ = Top(Hθ) and take a complete sequence (A(θ)j) of open (in Cθ) covers of

Cθ and a xθ ∈ Cθ. Then, for each θ ∈ Θ−
0 , (Hθ, Cθ , (A(θ)j), xθ) ∈ B.

Let n ∈ ω and assume that for each k ≤ n, we have already obtained collections
Gn,Hn and other collections, satisfying the conditions (2)–(5). Take a θ− ∈ Θ−

n .
Let (Hθ− , Cθ− , (A(θ−)j), xθ−) ∈ B and Hθ− =

∏
λ∈γ−

Hλ × ΣΛ−γ− . For each

A ∈ A(θ−)0, take an open subset BA of
∏

λ∈Rγ
−

Hλ =
∏

λ∈Rγ
−

Hλ such that

BA ∩ Cθ− = A. By Lemma 2(1), there is a σ-locally finite collection W ′(θ−) =
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{W ′
γ : γ ∈ Γθ−} of topped, open rectangles of Xγ− such that

∏
λ∈Rγ

−

Hλ =
⋃
W ′(θ−) and for each element W ′ ∈ W ′(θ−), W ′ is contained in some member
of {BA : A ∈ A(θ−)0} ∪ {

∏
λ∈Rγ

−

Hλ − Cθ−}.

For each γ ∈ Γθ− , let Cγ = Top(W
′
γ × ΣΛ−γ−) and Γ

+
θ−
= {γ ∈ Γθ− : Cγ ∩

Cθ− 6= ∅ and Cγ ×
∏

λ∈Λ−Rγ
−

{x∗λ} satisfies (*)} and Γ
−
θ−
= Γθ− − Γ

+
θ−
.

Let γ ∈ Γ+
θ−
. Then there are a finite collection {B(i) : i ≤ n} of R(i)-

cylindrically open subsets in Σ, i ≤ n, such that Cγ×
∏

λ∈Λ−γ−
{x∗λ} ⊂

⋃
i≤n B(i)

and for each i ≤ n, B(i) meets at most one member of D. Put Rγ = Rγ− ∪
(
⋃

i≤n R(i)) and Wγ =W ′
γ ×Xγ−θ− . Put

Φ = {x ∈ Wγ : pγ(D) is not discrete at x in Xγ}.

Then Φ is a closed subset of Wγ and pγ(Cγ ×
∏

λ∈Λ−Rγ
−

{x∗λ}) ∩ Φ = ∅. For

each x ∈ Wγ − Φ −
⋃n

i=0 pγ(B(i)), take an open rectangle neighborhood U(x)

of x in Xγ such that U(x) meets at most one member of D and for each x =
(xλ) ∈ Φ, take an open rectangle neighborhood U(x) =

∏
λ∈Rγ

U(xλ) of x in

Xγ , such that if xλ /∈ pλ(Cγ ×
∏

λ∈Λ−Rθ
−

{x∗λ}), λ ∈ Rγ , then U(xλ) ∩ pλ(Cγ ×∏
λ∈Λ−Rθ

−

{x∗λ}) = ∅. By Lemma 2(1), there is a σ-locally finite (inXγ) collection

Vγ = {Vξ : ξ ∈ Ξγ}, Vξ =
∏

λ∈Rγ
Vξ,λ for each ξ ∈ Ξγ , of topped, open rectangles

in Wγ such that Wγ =
⋃
Vγ =

⋃
{Vξ : ξ ∈ Ξγ} and {Vξ : ξ ∈ Ξγ} refines

{U(x) : x ∈ Wγ −
⋃n

i=0 pγ(B(i))} ∪ {pγ(B(0)), · · · , pγ(B(n))}. Put

Ξ+γ = {ξ ∈ Ξγ : Vξ meets at most one member of pγ(D)}

and Ξ−γ = Ξγ − Ξ+γ . Let

Θ+γ = {(γ, ξ) : ξ ∈ Ξ+γ } and Θ
−
γ = {(γ, ξ) : ξ ∈ Ξ−γ }.

For each θ = (γ, ξ) ∈ Θ+γ , let Gθ = p−1γ (Vξ). For each θ = (γ, ξ) ∈ Θ−
γ ,

Hθ = p−1γ (Vξ) =
∏

λ∈Rγ
Hθ,λ × ΣΛ−γ is a topped, Rγ -cylindrically open subset

of Σ. Take an xθ = (xθ,λ) ∈ Φ such that Vξ ⊂ U(xθ). Since Xγ has countable
tightness, it follows from Lemma 3 that there is a countable subset Yθ = {yθ,i :
i ∈ ω} of

⋃
D such that pγ(D |Yθ) is not discrete at xθ in Xγ . Let Pθ = {λ ∈

Rθ− : pλ(Hθ) ∩ pλ(Cθ−) = Hθ,λ ∩ pλ(Cθ−) = ∅}. Then it is easy to prove the
following.
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Claim 1. Let θ ∈ Θ−
γ and λ ∈ Rθ− . Then

(1) α(Hθ,λ) ≤ α(Hθ−,λ) and λ ∈ Pθ if and only if α(Hθ,λ) < α(Hθ−,λ),

(2) if xθ,λ /∈ pλ(Cθ−), then λ ∈ Pθ.

Let Cθ = Top(Hθ). If λ ∈ Rθ− − Pθ, then pλ(Cθ) = pλ(Hθ) ∩ pλ(Cθ−). Take

a complete sequence (A(θ)j) of topped, open (in Cθ) rectangle covers of Cθ such

that if R ⊂ Rθ− with R ∩ Pθ = ∅, pγ
R(A(θ)j) refines p

θ−
R (A(θ−)j+1) for each

j ∈ ω. Then (Hθ, Cθ , (A(θ)j), xθ) ∈ B.

Assume that γ ∈ Γ−
θ−
. Let Rγ = Rθ− , Wγ = W ′

γ , Ξ
+
γ = Θ

+
γ = Gγ = {∅},

Ξ−γ = {ξγ}, Vξγ
= Wγ , Θ

−
γ = {(γ, ξγ)}. For θ = (γ, ξγ), Hθ = p−1γ (Wγ) and

Cθ = Top(Hθ). Define Pθ as before and let xθ = xθ− . Take a complete sequence

(A(θ)j) of open (in Cθ) rectangle covers of Cθ, satisfying the same condition for

each R ⊂ Rθ− with R ∩ Pθ = ∅. For θ ∈ Θ−
γ , γ ∈ Γθ− , (Hθ, Cθ, (A(θ)j), xθ) ∈ B.

Let Θ+n+1 =
⋃
{Θ+γ : γ ∈ Γ

+
θ−

, θ− ∈ Θ−
n }, Θ

−
n+1 =

⋃
{Θ−

γ : γ ∈ Γθ− , θ− ∈ Θ−
n }

and Θn+1 = Θ
+
n+1 ⊕ Θ

−
n+1. For θ ∈ Θ−

n+1 and µ ∈ Θ−
n , µ < θ if θ− = µ and

there are γ ∈ Γθ− and ξ ∈ Θ−
γ such that θ = (γ, ξ). Let Gn+1 = {Gθ : θ ∈ Θ

+
n+1}

and Hn+1 = {Hθ : θ ∈ Θ
−
n+1}. Then Gn+1 and Hn+1 satisfy (2) and (3). Other

properties are satisfied by the above construction.
Let G =

⋃
n∈ω Gn. By (2), it suffices to prove that G covers Σ. Assume

that G does not cover Σ. Take an x = (xλ) ∈ Σ −
⋃
G. Then, by (5)(b), we

can inductively choose a sequence {θn: n ∈ ω} such that θn = (γn, ξn) ∈ Θ−
n ,

γn ∈ Γθn−1
, ξn ∈ Ξ−γn

, θn−1 < θn, n ≥ 1 and x ∈ Hθn
for each n ∈ ω.

Claim 2. {n ≥ 1 : γn ∈ Γ
+
θn−1
} is infinite.

Proof: Assume that {n ≥ 1 : γn ∈ Γ
+
θn−1
} is finite. Then there is an n0 ≥ 1

such that if n ≥ n0, then γn /∈ Γ+
θn−1
, that is, γn ∈ Γ

−
θn−1
. Then for each

n ≥ n0, Rγn = Rθn
= Rγn0

= Rθn0
. Let λ ∈ Rθn0

and n > n0. If λ ∈ Pθn
,

then by (5)(c), we have α(pλ(Cθn+1
)) < α(pλ(Cθn

)). So, there is an nλ ≥ n0
such that if n > nλ, then λ /∈ Pθn

and hence, α(pλ(Cθn
)) = α(pλ(Cθnλ

)) and

pλ(Cθn
) ⊂ pλ(Cθnλ

). Take an ñ ∈ ω such that ñ > nλ for λ ∈ Rθn0
. Thus,

if n > ñ, then Rθn0
∩ Pθn

= ∅ and hence, Pθn
= ∅. Then {Cθn

: n > ñ} is a

decreasing sequence of nonempty closed subsets of Cθñ
. For each n > ñ, there

is an An ∈ A(θn)0 such that Cθn
⊂ An. By (5)(e), there is an A′

n ∈ A(θñ)n−ñ

such that An ⊂ A′
n. Then C′ =

⋂
n≥ñ Cθn

is nonempty and compact. Let

C = C′ ×
∏

λ∈Λ−Rθñ
{x∗λ}. Then C is compact. There is a finite collection

{B(i) : i ≤ k} of cylindrically open subsets in Σ such that C ⊂
⋃

i≤k B(i) and

for each i ≤ k, B(i) meets at most one member of D. Then, by Lemma 1, there
is an m > ñ such that Cγm ×

∏
λ∈Λ−Rγm

{x∗λ} ⊂
⋃

i≤k B(i). Thus γm ∈ Γ
+
θm−1

,

which is a contradiction. �
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By Claim 2, {n ≥ 1 : γn ∈ Γ
+
θn−1
} is infinite. So there is a mapping φ : ω → ω

such that 1 ≤ φ(0) and for each n ∈ ω, φ(n) < φ(n + 1), γφ(n) ∈ Γ
+
θφ(n)−1

,

pγφ(n)
(D |Yθφ(n)

) is not discrete at xθφ(n)
and for each k (φ(n) < k < φ(n + 1)),

γk ∈ Γ
−
θk−1
. Let Q =

⋃
n∈ω Rθn

=
⋃

n∈ω Rθφ(n)
. Then

Claim 3. (1) Rθφ(n)
⊂ Rγφ(n+1)

⊂ Rθφ(n+1)
for each n ∈ ω and hence, for each

finite subset F ⊂ Q, there is an n ≥ 1 such that F ⊂ Rγφ(n)
,

(2)
⋃
{Supp(y) : y ∈ Yθφ(n)

, n ∈ ω} ⊂ Q.

After this in proof, we omit the index letter θ, γ and φ for simplicity. That is,

xθφ(n)
, Hθφ(n)

, Rγφ(n)
, p

γφ(n)
γφ(k)

, pγφ(k)
, Pθφ(n)

, Cθφ(n)
and A(θφ(n))j are abbreviated

by xn, Hn, Rn, p
n
k , pk, Pn, Cn and A(n)j respectively.

Claim 4. For each λ ∈ Q, there is an mλ ∈ ω such that for n > mλ, λ ∈
Rn−1 − Pn and xn,λ ∈ pλ(Cn) ⊂ pλ(Cn−1).

Proof: For each λ ∈ Q, by Claim 3(1), take an m ∈ ω such that if n > m, then
λ ∈ Rn−1. By the similar proof of Claim 2, there is an mλ ∈ ω with mλ ≥ m
such that if n > mλ, then λ /∈ Pn. If there is an n > mλ such that xn,λ /∈ pλ(Cn),
then by (5)(d-3), λ ∈ Pn, which is a contradiction. Thus for each n > mλ,
xn,λ ∈ pλ(Cn) ⊂ pλ(Cn−1). �

For m, k ≥ 1 with m > k, let Em
k = {p

n
k(xn) : n ≥ m}. Then, for each m > k,

Em+1
k ⊂ Em

k . Notice that for each n ≥ m, pn
k : Xγφ(n)

→ Xγφ(k)
. Choose an

mk > k with mk > max{mλ : λ ∈ Rk}. It follows from Claim 4 that for each
n > mk, Rk ∩ Pn = ∅. Thus pn

k(xn)λ = xn,λ ∈ pλ(Cmk
) for λ ∈ Rk and n ≥ mk.

Thus {Em
k : m ≥ mk} is a decreasing sequence of closed subsets of p

mk

k (Cmk
). Let

m > mk. Then we obtain Am ∈ A(Hm)0 and A′
m ∈ pmk

k (A(Hmk
)m−mk

) such

that Em
k
⊂ pm

k (Cm) ⊂ pm
k (Am) ⊂ A′

m. Thus Kk =
⋂

m≥k Em
k
(=

⋂
m≥mk

Em
k
)

is nonempty and compact. Since pk+1
k
(Kk+1) ⊂ Kk for each k ∈ ω, {Kk, pk+1

k
}

is an inverse sequence of nonempty compact spaces. Hence there is a point (zk) ∈

lim←−{Kk, pk+1
k
}. Define a point z = (zλ) ∈ Σ such that pk(z) = zk for each k ≥ 1

and zλ = x∗λ otherwise.
We can show that D is not discrete at z. However, by Claim 4 and (5)(d-2),

this is verified in the same manner as the proof of [K1, Theorem 1]. �

4. Shrinking property of Σ-products

A space X is said to be shrinking if for every open cover {Uλ : λ ∈ Λ} of X ,
there is a closed cover {Fλ : λ ∈ Λ} of X such that Fλ ⊂ Uλ for each λ ∈ Λ.
A space X is said to be subshrinking if for every open cover {Uλ : λ ∈ Λ} of X ,
there is a closed cover {Fλ,n : λ ∈ Λ and n ∈ ω} of X such that Fλ,n ⊂ Uλ for
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each λ ∈ Λ and n ∈ ω. It is well known that a space X is shrinking if and only if
it is normal and subshrinking.
Let {Xλ : λ ∈ Λ} be a collection of spaces and Σ be a Σ-product of them.

We may take a point yλ ∈ Xλ different from x∗λ for each λ ∈ Λ. For each
s ∈ [Λ− R]<ω, an open neighborhood Ws of x∗ | (Λ − R) in ΣΛ−R is said to be
s-basic if Ws =

∏
λ∈s Wλ × ΣΛ−(R∪s), where Wλ is an open neighborhood of x

∗
λ

in Xλ with yλ /∈Wλ for each λ ∈ s.
Let G = {Gυ : υ ∈ Υ} be an open cover of Σ. For R ∈ [Λ]<ω and a subset F

in XR, let

M(F ) = {s ∈ [Λ−R]<ω : there is an s-basic open neighborhood

Ws of x∗ | (Λ−R) such that F ×Ws ⊂ Gυ for some υ ∈ Υ}.

Lemma 4 (Tanaka and Yajima [TY]). Let Σ be a Σ-product of spacesXλ, λ ∈ Λ,
and let G = {Gυ : υ ∈ Υ} be an open cover of Σ. If there is a σ-locally finite
closed cover {Eθ : θ ∈ Θ

+} of Σ such that each Eθ, θ = (γ, ξ) ∈ Θ+, γ ∈ Γθ− ,

ξ ∈ Ξ−γ , θ− ∈ Θ, is an Rγ-cylindrically closed set in Σ, satisfying

Eθ ⊂
⋃
{p−1Λ−γ

(Ws) : s ∈M(pγ(Eθ))},

where Rγ ∈ [Λ]<ω and pΛ−γ denotes the projection of Σ onto ΣΛ−γ , then there

is a closed cover {Fυ,n : υ ∈ Υ and n ∈ ω} of Σ such that Fυ,n ⊂ Gυ for each

υ ∈ Υ and n ∈ ω.

Theorem 2. If Σ is a Σ-product of first countable, subparacompact Čech-
scattered spaces, then it is subshrinking.

Proof: Let Σ be a Σ-product of first countable, subparacompact DC-like spaces
Xλ, λ ∈ Λ, with a base point x∗ = (x∗λ) ∈ Σ. Let G = {Gυ : υ ∈ Υ} be an open
cover of Σ. A subset A of Σ is said to satisfy (**) if there is a finite collection B
of cylindrically open subsets in Σ such that A ⊂

⋃
B and for each B ∈ B, there

is a G ∈ G such that B ⊂ G.
Define a collection B similarly: (E, CE , (A(E)j), xE) ∈ B if

(1) (a) E =
∏

λ∈RE
Eλ × ΣΛ−RE

is a topped, RE-cylindrically closed subset in

Σ and CE = Top(E),
(b) (A(E)j) is a sequence of open (in CE) covers of CE such that for each

R ⊂ RE , (p
RE

R (A(E)j)) is a complete sequence of open covers of p
RE

R (CE),
(c) xE ∈ XRE

.

Inductively, for each n ∈ ω, we shall obtain an index set Θn = Θ
+
n ⊕Θ

−
n of n-th

level of a tree with height ω such that θ ∈ Θn and γ ∈ Γθ assign cylindrically closed
subset Eθ, index sets Γθ and Ξγ = Ξ

+
γ ⊕ Ξ

−
γ , finite subsets Rγ , Rθ, Pθ ∈ [Λ]

<ω,
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Čech-complete subsets Cγ , Cθ, points xθ ∈ Xγ , yγ,k ∈ Σ, basic open subsets
Uγ(·), Uγ(·, k) ⊂ Xγ , satisfying the following conditions (2)–(5): for n ∈ ω,

(2) {Eθ : θ ∈ Θn} is σ-locally finite in Σ,

(3) for n ≥ 1,

(a) for each θ− ∈ Θn−1, {Cγ : γ ∈ Γθ−} is a σ-locally finite collection of Čech-

complete closed subsets of Eθ− , induced by A(θ−)0 and Γ
+
θ−
= {γ ∈ Γθ− :

Cγ ∩Cθ− 6= ∅ and Cγ×
∏

λ∈Λ−Rγ
{x∗λ} satisfy (**)} and Γ

−
θ−
= Γθ−−Γ

+
θ−
,

(b) for each γ ∈ Γθ− , Ξγ = Ξ
+
γ ⊕ Ξ

−
γ is defined and Θ

+
n = {θ = (γ, ξ) : γ ∈

Γ+θ− , ξ ∈ Ξ+γ , θ− ∈ Θ
−
n−1}, Θ

−
n = {θ = (γ, ξ) : γ ∈ Γθ− , ξ ∈ Ξ−γ , θ− ∈

Θ−
n−1}, Θn = Θ

+
n ⊕Θ

−
n

and for each θ = (γ, ξ) ∈ Θn,

(c) θ− < θ,

(d) Rθ− ⊂ Rγ ,

(4) for each θ ∈ Θ+n , Eθ ⊂
⋃
{p−1Λ−γ

(Ws) : s ∈M(pγ(Eθ))},

(5) for each θ = (γ, ξ) ∈ Θ−
n , γ ∈ Γθ− , ξ ∈ Ξ

−
γ , θ− ∈ Θ

−
n−1,

(a) Eθ− is a topped, Rγ−-cylindrically closed set in Σ, where

Eθ− =
∏

λ∈Rγ
−

Eθ,λ × ΣΛ−γ− such that (Eθ− , Cθ− , (A(θ−)j), xθ−) ∈ B,

(b) Eθ− =
⋃
{Eµ : µ ∈ Θn with θ− < µ},

(c) for each x ∈ Xγ , {Uγ(x, k) : k ∈ ω} is a neighborhood base at x, consisting
of basic open subsets in Xγ , such that Uγ(x) = Uγ(x, 0) and Uγ(x, k+1) ⊂
Uγ(x, k) for each k ∈ ω,

(d) Pθ = {λ ∈ Rθ− : α(Eθ,λ) < α(Eθ−,λ)},

(e) if γ ∈ Γ+
θ−
, then

(e-1) xθ = (xθ,λ) ∈ pγ(Eθ−),

(e-2) pγ(Eθ) ⊂ Uγ(xθ),

(e-3) pγ
γ−(Uγ(xθ)) ⊂ Uγ−(xθ−), where n ≥ 2 and θ = (γ, ξ) and θ− =

(γ−, ξ′) for γ− ∈ Γµ, ξ ∈ Ξ
−
γ , µ ∈ Θ

−
n−2 and ξ′ ∈ Ξ−µ ,

(e-4) yθ,k ∈ p−1γ (Uγ(xθ , k)) −
⋃
{p−1Λ−γ

(Ws) : s ∈ M(Uγ(xθ , k))} for each

k ∈ ω,

(e-5) if λ ∈ Rθ− with xθ,λ /∈ pλ(Cθ−), then λ ∈ Pθ,

(e-6) Rθ =
⋃
{〈Supp(yµ,j)〉k : µ ≤ θ and j, k ≤ n} ∪Rγ

and if γ ∈ Γ−
θ−
, then

(e-6) Rθ = Rγ = Rθ− ,

(e-7) xθ = xθ− ,
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(f) Cθ = Top(Eθ) and (A(θ)j) is a sequence of open (in Cθ) covers of Cθ such
that for R ⊂ Rγ ,

(f-1) p
γ
R(A(θ)j) is a complete sequence of open (in p

γ
R(Cθ)) covers of

pγ
R(Cθ),

(f-2) if R ⊂ Rθ− with R ∩ Pθ = ∅, then pγ
R
(A(θ)j) refines p

θ−
R
(A(θ−)j+1)

for each j ∈ ω,

(g) (Eθ, Cθ , (A(θ)j), xθ) ∈ B.

Take an arbitrary λ0 ∈ Λ and a σ-locally finite closed cover E ′ = {E′
θ : θ ∈

Θ−
0 } of Xλ0 such that for each θ ∈ Θ−

0 , E′
θ is topped. Put Θ

+
0 = {∅} and

Θ0 = Θ
+
0 ⊕ Θ

−
0 = Θ

−
0 . For each θ ∈ Θ−

0 , let Eθ = p−1
λ0
(E′

θ) and let Cθ =

Top(Eθ). Take a complete sequence (A(θ)j) of open (in Cθ) covers of Cθ and a
xθ ∈ Cθ . Let (Uλ0(xθ , k)) be a countable, open neighborhood base at xθ in Xλ0

such that Uλ0(xθ, k + 1) ⊂ Uλ0(xθ, k) for each k ∈ ω. Then, for each θ ∈ Θ−
0 ,

(Eθ , Cθ, (A(θ)j), xθ) ∈ B.
Let n ∈ ω and assume that for each k ≤ n, we have already obtained a

collection {Eθ : θ ∈ Θk} and other collections, satisfying (2)–(5). Take a θ− ∈ Θ−
n .

Let (Eθ− , Cθ− ,A(θ−)j , xθ−) ∈ B, where E =
∏

λ∈Rγ
−

Eλ × ΣΛ−Rγ
−

. For each

A ∈ A(θ−)0, take an open subset BA in
∏

λ∈Rγ
−

Eλ such that BA ∩ CE = A.

By Lemma 2(2), there is a σ-locally finite collection H(E) = {H ′
γ : γ ∈ Γθ−} of

topped, closed rectangle subsets of
∏

λ∈Rγ
−

Eλ such that
∏

λ∈Rγ
−

Eλ =
⋃
H(E)

and for each γ ∈ Γθ− , H
′
γ is contained in some member of {BA : A ∈ A(θ−)0} ∪

{
∏

λ∈Rγ
−

Eλ − Cθ−}.

For each γ ∈ Γθ− , let Cγ = Top(H
′
γ × ΣΛ−γ−) and Γ

+
θ−
= {γ ∈ Γθ− : Cγ ∩

Cθ− 6= ∅ and Cγ ×
∏
Λ−Rγ

−

{x∗λ} satisfy (**)} and Γ
−
θ−
= Γθ− − Γ

+
θ−
.

Let γ ∈ Γ+
θ−
. Then there is a finite collection B of cylindrically open subsets

in Σ such that Cγ ×
∏

λ∈Λ−γ−
{x∗λ} ⊂

⋃
B and for each B ∈ B, there is a G ∈ G

such that B ⊂ G. Define Rγ as before and Hγ = H ′
γ ×Xγ−γ− . Let

Ω = {V : V is an open subset in Xγ meeting Hγ such that

p−1γ (V ) ⊂
⋃
{p−1Λ−γ(Ws) : s ∈M(V )}} and

Φγ = Hγ −
⋃
Ω.

It is clear that pγ(Cγ×
∏

λ∈Λ−Rγ
−

{x∗λ})∩Φγ = ∅. By Lemma 2(2), every open

cover of Hγ has a σ-locally finite refinement, consisting of topped, closed rectan-
gles. The rest of the construction is similar to that in the proofs of Theorem 1,
[TY, Theorem 4.2] and [Y2, Theorem 4].
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Let Θ =
⋃

n∈ω Θn, Θ+ =
⋃

n≥1Θ
+
n and E = {Eθ : θ ∈ Θ

+}. It follows from

(2) and (5) that E is a σ-locally finite collection of cylindrically closed sets in Σ

and for each θ ∈ Θ+, Eθ ⊂
⋃
{p−1Λ−γ

(Ws) : s ∈ M(pγ(Eθ))}. By Lemma 4, it

suffices to prove that E is a cover of Σ. Assume that there is a point x = (xλ) ∈
Σ−

⋃
E . By (5)(b), we can inductively choose a sequence {θn : n ∈ ω} such that

θn = (γn, ξn) ∈ Θn, γn ∈ Γθn−1
, ξn ∈ Ξ−γn

, θn−1 < θn, n ≥ 1 and x ∈ Eθn
for

each n ∈ ω. By the same proof of Claim 2 in Theorem 1, {n ∈ ω : γn ∈ Γ
+
θn−1
}

is infinite. Then there is also a mapping φ : ω → ω such that for each n ∈ ω,
φ(n) < φ(n + 1), γφ(n) ∈ Γ

+
θφ(n)−1

and for each k (φ(n) < k < φ(n + 1)),

γk ∈ Γ
−
k−1.

As the proof of Theorem 1, we also omit the index letter θ, γ and φ for
simplicity. Let Q =

⋃
n∈ω Rn. As the same way as Claim 4 in Theorem 1, for

each λ ∈ Q, there is an mλ ≥ 1 such that for each n > mλ, λ ∈ Rn−1 − Pn,
xn,λ ∈ pλ(Cn) ⊂ pλ(Cn−1). (We similarly use Cn.) Let us define Fm

k (we use Em
k

in the proof of Theorem 1) and Kk for each k, m ≥ 1 with m > k as before. Then

there is a point (zk) ∈ lim←−{Kk, pk+1
k
}. Define a point z = (zλ) ∈ Σ such that

pk(z) = zk for each k ∈ ω and zλ = x∗λ otherwise. Then we have a contradiction
in the same argument as [Y2, Lemma 7]. �

By Theorem 1, 2, we have

Theorem 3. If Σ is a Σ-product of first countable, paracompact Čech-scattered
spaces, then it is shrinking.
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