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The conjugate of a product of linear relations

J.J. Jaftha

Abstract. Let X, Y and Z be normed linear spaces with T (X → Y ) and S(Y → Z)
linear relations, i.e. setvalued maps. We seek necessary and sufficient conditions that
would ensure that (ST )′ = T ′S′. First, we cast the concepts of relative boundedness
and co-continuity in the set valued case and establish a duality. This duality turns
out to be similar to the one that exists for densely defined linear operators and is then
used to establish the necessary and sufficient conditions. These conditions are similar
to those for the single valued case. In the process, the well known characterisation of
relativeboundedness for closed linear operators by Sz.-Nagy is extended to the multi-
valued linear maps and we compare our results to other known necessary and sufficient
conditions.
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Introduction

Let X and Y be normed linear spaces. By a linear relation (cf. Cross [Cro98])

we shall mean a setvalued map T : D(T ) ⊂ X → 2Y which is linear in the sense
that Tx + Ty = T (x + y) and for α 6= 0 we have T (αx) = αTx. We use the
convention that the domain of T is D(T ) = {x ∈ X : Tx 6= ∅}. For a linear
relation T ∈ LR(X, Y ), its conjugate (or adjoint) T ′ is defined by its graph (cf.

[Cro98, III.1.1]) G(T ′) = G(−T−1)⊥, so by [Cro98, III.1.2] we have

G(T ′) =
{

(y′, x′) ∈ (Y ′, X ′) : y′y − x′x = 0 for all (x, y) ∈ G(T )
}

.

Note that this definition coincides with the classical one when T is a densely
defined operator and it allows one to define the conjugate of a nondensely defined
operator. In this article we seek necessary and sufficient conditions that would
guarantee that the conjugate of the product of linear relations coincides with the
product of the conjugates.
The equivalent problem for linear operators between Banach spaces received

attention in the literature earlier. In particular, M.A. Kascic in [Kas68] considered
it in the context of polynomials of linear operators. A useful set of necessary and
sufficient conditions were reported by Förster and Liebetrau (cf. [FL77]) in 1977.
In the process of establishing their result, they used the concept of a core of an
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operator which was introduced by T. Kato in [Kat66] and the duality between co-
continuity and relative boundedness for operators. The duality of co-continuity
and relative boundedness rests upon the relative boundedness characterisation of
B. Sz.-Nagy (cf. [SN51]) for closed operators in Banach spaces.
The technical concepts and results used by [FL77] we first recast for linear rela-

tions, i.e. the multivalued context. Note that the core of a linear relation as well as
the concept of relative boundedness of linear relations appeared earlier in [Cro98].
We extend the co-continuity concept to linear relations and establish the dual-
ity with relative boundedness. The validity of the Sz.-Nagy characterisation of
relative boundedness is then also established.

2. Relative boundedness and co-continuity

According to Kato (in [Kat66]), M ⊂ X is a core of T (X → Y ) if G(T ) ⊂

G(TM ), where G(TM ) = {(x, y) ∈ G(T ) : x ∈ M}. TM is called the restriction
of T to M . The following is a useful characterisation of the core of an operator
in terms of its conjugate. It is a well known result for linear operators and was
also recently established for linear relations (cf. [Cro98, IV.4.4]), and we include
a direct proof for completeness, which is independent of the Bipolar theorem.

Theorem 2.1. Let T ∈ LR(X, Y ). Then E ⊂ D(T ) is a core of T if and only if
T ′

E = T ′.

Proof: Suppose E is a core of T . Since G(T ′) ⊂ G(T ′
E) it would suffice to show

that G(T ′
E) ⊂ G(T ′). To this end, let (y′, x′) ∈ G(T ′

E). Then y′y − x′x = 0

for all (x, y) ∈ G(TE). To show that (y
′, x′) ∈ G(T ′) we have to establish that

y′y − x′x = 0 for every (x, y) ∈ G(T ). So let (x, y) ∈ G(T ) ⊂ G(TE). Then there
exists a sequence (xn) ∈ E with (xn, Txn)→ (x, y). So

lim
n→∞

(y′Txn − x′xn) = y′( lim
n→∞

Txn)− x′( lim
n→∞

xn) = y′y − x′x.

But as (y′Txn − x′xn) = 0 for every n ∈ N we have that y′y − x′x = 0 showing
that (y′x′) ∈ G(T ′).
Conversely suppose that T ′

E = T ′. By the definition of conjugate, it is clear

that E is dense in D(T ). Suppose that z′ ∈ Y ′ × X ′ is such that z′(G(TE)) = 0.
Then there are some x′ ∈ X ′ and y′ ∈ Y ′ such that z′(x, Tx) = x′x+y′y for every
x ∈ E. But then (y′,−x′) ∈ G(T ′

E) = G(T ′) and so y′Tx + x′x = 0 for every

x ∈ D(T ). Hence z′(G(T )) = 0 which shows by the Hahn-Banach theorem that

G(T ) ⊂ G(TE). Consequently E is a core of T . �

Let T (X → Y ) and S(X → Y ) be two linear relations. We shall say that S is
an extension of T if D(T ) ⊂ D(S) and Tx = Sx for each x ∈ D(T ). The linear

relation T has the graph G(T ) = G(T ) and is called the closure of T . According
to Cross [Cro98], we shall call a linear relation closable if T is an extension of T ,
that is Tx = Tx for every x ∈ D(T ).
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Corollary 2.2. Let T1, T ∈ LR(X, Y ) be closable linear relations. Then T = T1
if and only if T ′ = T ′

1.

Proof: If T is closable, then T ′ = T
′
. Since we have T = T1, we have that

T ′ = T
′
= T1

′
= T ′

1.

Conversely suppose that T ′ = T ′
1; then T

′
= T1

′
. For the result to follow it

would suffice to show that G(T ) = G(T1). Since G(−T
−1
)⊥ = G(T

′
) = G(T1

′
) =

G(−T1
−1
)⊥, we have G(−T

−1
) = G(−T

−1
)⊥⊤ = G(−T1

−1
)⊥⊤ = G(−T1

−1
)

from which it follows that G(T ) = G(T1). �

We shall denote by BX the closed unit ball in X , i.e. BX = {x ∈ X : ‖x‖ ≤ 1}.

Definition 2.3. In this definition, we extend the concept of co-continuity, as
defined by Förster in [For74], to linear relations. Let T (X → Y ) and S(Z → Y )
be linear relations. Then T is S-co-continuous if there exist constants α, β > 0
such that

TBX ⊂ αSBZ + βBY + T (0).

Remark 2.4. This seems a useful extension since for T single valued we have
T (0) = 0 and then we get the classical definition (see for example [FL77]), namely
there are α, β > 0 with

TBX ⊂ αSBZ + βBY ,

and if T is a continuous linear relation we note that there is an α > 0 with

TBX ⊂ αBY + T (0)

(see for example [Cro98, II.1.10]).

The next two results concern products of linear relations and sufficient condi-
tions for a core of any of the factors to be a core of the product.

Proposition 2.5. Let T (X → Y ) and S(Y → Z) be linear relations. Suppose
that E is a core of T with TE ⊂ D(S). If S is (ST )E-co-continuous then E is a
core of ST .

Proof: By Theorem 2.1 we need only show that (STE)
′ = (ST )′, and since

(ST )E is a restriction of ST it would suffice to show that D((ST )′E) ⊂ D((ST )′).

Suppose that z′ ∈ D((ST )′E). Then z′ST is single-valued and continuous

on E. But then z′S is single valued. Since S is (ST )E-co-continuous, we have
SBY ⊂ αBZ + βSTBE + S(0) for some α and β. So if ‖y‖ ≤ 1,

∣

∣z′Sy
∣

∣ =
∣

∣αz′z + βz′STe+ z′S(0)
∣

∣ ≤
∥

∥αz′
∥

∥ +
∥

∥βz′ST
∥

∥ which are constants independent

of y and so z′ ∈ D(S′). Since z′(ST ) is continuous on E we have S′z′ ⊂ D(T ′
E) =

D(T ′). But then z′(ST ) is continuous on D(T ) from which the result follows.
�
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Proposition 2.6. Let T (X → Y ) and S(Y → Z) be linear relations with R(T ) ⊂
D(S) and suppose that E is a core of S. If T is continuous then M = T−1E is
a core of ST .

Proof: Suppose that M is not a core of ST . Then by Theorem 2.1 there is a
y′ ∈ Y ′ with y′ST continuous on M but not continuous on D(ST ). In that case
y′S is not continuous on D(S) and so y′ /∈ D(S′). Since y′STz = y′S(Tz), we
have that y′S is continuous on E = TM . Since E is a core of S, y′S is continuous
on D(S) and so y′ ∈ D(S′) — a contradiction. Hence M is a core of ST . �

Definition 2.7. Let T (X → Y ) and S(X → Z) be linear relations. Then T is
S bounded if D(S) ⊂ D(T ) and there exist constants α, β > 0 such that for all
x ∈ D(S) we have

‖Tx‖ ≤ α ‖Sx‖ + β ‖x‖ .

Remark 2.8. For a linear relation T ∈ LR(X, Y ) we have ‖Tx‖ = d(Tx, T (0)) =
d(Tx, 0) (cf. [Cro98, II.1.4]).

Proposition 2.9. Suppose y′ ∈ D(T ′). Let x′0 denote the extension of x
′ = y′T

to D(T ) and let
∥

∥x′0
∥

∥ = sup
{∣

∣y′Tx
∣

∣ : ‖x‖ ≤ 1, x ∈ D(T )
}

. Then
∥

∥y′T
∥

∥ =
∥

∥T ′y′
∥

∥.

Proof: Note that
∥

∥T ′y′
∥

∥ = d(x′, T ′(0)) = inf
{
∥

∥x′ − z′
∥

∥ : z′ ∈ T ′(0)
}

where

x′ ∈ T ′y′. Let x′ ∈ T ′y′, then x′ is an extension of y′T , and suppose z′ ∈ T ′(0).
Then

∥

∥x′0
∥

∥ = sup
{∣

∣x′x
∣

∣ : ‖x‖ ≤ 1, x ∈ D(T )
}

= sup
{
∣

∣(x′ − z′)x
∣

∣ : ‖x‖ ≤ 1, x ∈ D(T )
}

≤
∥

∥x′ − z′
∥

∥ .

But then
∥

∥x′0
∥

∥ ≤ inf
{
∥

∥x′ − z′
∥

∥ : z′ ∈ T ′(0)
}

=
∥

∥T ′y′
∥

∥.

On the other hand, let x′ ∈ T ′y′ with x′x = 0 when x /∈ D(T ). Then

∥

∥T ′y′
∥

∥ = d(x′, T ′(0))

= inf
{∥

∥x′ − z′
∥

∥ : z′ ∈ T ′(0)
}

≤
∥

∥x′ − 0
∥

∥

=
∥

∥x′
∥

∥

= sup
{∣

∣x′x
∣

∣ : ‖x‖ ≤ 1, x ∈ D(T )
}

=
∥

∥x′0
∥

∥ .

�
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From the above it follows now that T ′ is S′ bounded if and only if D(S′) ⊂
D(T ′) and there are constants α, β > 0 such that for all y′ ∈ D(S′) we have

∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥+ β
∥

∥y′
∥

∥ .

We are now ready to deal with the duality between relative boundedness and
co-continuity.

Theorem 2.10. Let T ∈ LR(X, Y ) and S ∈ LR(Z, Y ).

(1) If T is S-co-continuous then there are α, β > 0 with

∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥+ β
∥

∥y′
∥

∥ ∀y′ ∈ D(S′).

If furthermore T (0) ⊂ S(0) then T ′ is S′-bounded.

(2) Suppose there are α, β > 0 with

∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥+ β
∥

∥y′
∥

∥ ∀y′ ∈ Y ′.

Then T is S-co-continuous.

In particular, in the case when T and S are single valued we have that T is
S-co-continuous if and only if T ′ is S′-bounded.

Proof: (1) Suppose that T is S-co-continuous. Then there exist nonnegative
constants α, β with TBD(T ) ⊂ αSBD(S) + βBY + T (0). Let y′ ∈ D(S′) and

x ∈ D(T ) ∩ BX . For yx ∈ Tx there are z ∈ BZ , (z, yz) ∈ G(S), yt ∈ T (0),
ys ∈ S(0) and y ∈ BY with

yx = αyz + ys + βy + yt

or
yx − yt = αyz + ys + βy.

As y′ys = 0 for every ys ∈ S(0) we have

∣

∣y′(yx − yt)
∣

∣ =
∣

∣y′(αyz + βy)
∣

∣

≤ α
∣

∣y′yz

∣

∣+ β
∣

∣y′y
∣

∣

= α
∣

∣y′Sz
∣

∣+ β
∣

∣y′y
∣

∣

≤ α
∥

∥y′S
∥

∥+ β
∥

∥y′
∥

∥ .

Thus
∥

∥y′Tx
∥

∥ = inf
{
∣

∣y′(yx − y0)
∣

∣ : y0 ∈ T (0)
}

≤
∣

∣y′(yx − yt)
∣

∣ ≤ α
∥

∥y′S
∥

∥+β
∥

∥y′
∥

∥.

Since this is true for every x ∈ D(T )∩BX , we have that
∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥+β
∥

∥y′
∥

∥.

If, furthermore, T (0) ⊂ S(0), then y′T is single valued and so y′ ∈ D(T ′). From
this it follows that T ′ is S′-bounded.
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(2) Suppose that there are α, β > 0 with

∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥+ β
∥

∥y′
∥

∥∀y′ ∈ Y ′.

Let α0 = α + 1 and β0 = β + 1 and suppose y′ ∈ Y ′, x ∈ BX ∩ D(T ). Then
there exist z ∈ BZ and y ∈ BY with

∥

∥y′Tx
∥

∥ <
∥

∥α0y
′Sz

∥

∥+ β0
∥

∥y′y
∥

∥ .

Now let yx ∈ TBX . Then there are yt ∈ T (0), yz ∈ SBZ , ys ∈ S(0) and y ∈ BY

with
∣

∣y′(yx − yt)
∣

∣ < α0(y
′(yz − ys)) + β0y

′y.

Since this is true for every y′ ∈ Y ′, we have that yx − yt ∈ α0SBZ + β0BY and
as yt ∈ T (0) it follows that yx ∈ α0SBZ + β0BY + T (0). But then TBX ⊂
α0SBZ + β0BY + T (0) and so T is S-co-continuous.
In particular, if T and S are single valued then T (0) = S(0) = 0. Thus, if T is

S-co-continuous then T ′ is S′-bounded by (1) above.
Conversely, suppose now that T ′ is S′-bounded. Then there are α, β > 0 such

that we have for y′ ∈ D(S′),
∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥ + β
∥

∥y′
∥

∥ with D(S′) ⊂ D(T ′).

Note that if y′ /∈ D(S′) then y′S is not a bounded functional and so we trivially
have that

∥

∥y′T
∥

∥ ≤ α
∥

∥y′S
∥

∥ + β
∥

∥y′
∥

∥ for y′ ∈ D(T ′)\D(S′). Thus
∥

∥y′T
∥

∥ ≤

α
∥

∥y′S
∥

∥+ β
∥

∥y′
∥

∥ holds for every y′ ∈ Y ′. From (2) above it now follows that T is
S-co-continuous. �

We now state the B. Sz.-Nagy characterisation of relative boundedness in the
multivalued context. The proof follows similar lines as that one for linear opera-
tors that appeared in [Kaa64] and we use the Closed Graph Theorem for Linear
Relations as appeared in [Cro98].

Lemma 2.11. Suppose T ∈ LR(X, Y ) and S ∈ LR(X, Z) are completely closed
linear relations with D(T ) ⊂ D(S). Then S is T -bounded.

Proof: Let XT = D(T ) be the normed space with norm ‖x‖T = ‖x‖ + ‖Tx‖.
Since T is completely closed we have that XT is a Banach space. Define J : XT →
Z by (x, z) ∈ G(J) if z ∈ Sx. Then J is a linear relation with J(0) = S(0). Since
S is closed, we have that J(0) is closed and so J is closable (see Cross [Cro98,
II.5.5]). But as J is defined on all of XT , J is closed. Since XT is complete, J is
bounded by the Closed Graph Theorem ([Cro98, III.4.2]). So there is an α > 0
with ‖Jx‖ ≤ α ‖x‖T , or equivalently ‖Sx‖ = ‖Jx‖ ≤ α ‖x‖T = α ‖x‖ + α ‖Tx‖,
showing that S is T -bounded. �

3. The conjugate of a product of linear relations

Theorem 3.1. Let T ∈ LR(X, Y ) and S ∈ LR(Z, X) and suppose that D(TS)
is a core of S. Then (TS)′ = S′T ′ if and only if T ′ is (TS)′-bounded.
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Proof: Suppose that (TS)′ = S′T ′, then D((TS)′) ⊂ D(T ′). Since T ′ and (TS)′

are completely closed and T (0) ⊂ TS(0), we have that T ′ is (TS)′-bounded.

Conversely suppose that T ′ is (TS)′-bounded. Then D((TS)′) ⊂ D(T ′). Since
S′T ′ is a restriction of (TS)′, it would suffice to show that D((TS)′) ⊂ D(S′T ′).
To this end let y′ ∈ D((TS)′), then y′ ∈ D(T ′). To show that y′ ∈ D(S′T ′) we
need to establish the existence of an x′ ∈ D(S′) with (y′, x′) ∈ G(T ′). For this to
hold, it would suffice to have x′S bounded on D(TS), which is a core of S. Note
that y′ ∈ D(TS)′ implies that y′TS is single-valued, and y′ ∈ D(T ′) implies that
y′T is single-valued and so x′S is single-valued for each x′ ∈ T ′y′.

Let z ∈ BZ ∩ E then there exists an x ∈ D(T ) with (z, x) ∈ G(S). So for
x ∈ Sz and x′ ∈ T ′y′ we have

∣

∣x′Sz
∣

∣ =
∣

∣x′x
∣

∣ =
∣

∣y′Tx
∣

∣ =
∣

∣y′TSz
∣

∣ ≤
∥

∥y′TS
∥

∥

which shows that x′S is bounded on D(TS). �

In the rest of the section we compare our conditions to other known conditions.

Remark 3.2.

(1) Suppose that T ∈ LR(X, Y ) and S ∈ LR(Z, X) with D(TS) a core of S
and T is S-co-continuous. Then T (0) ⊂ TS(0) and so T ′ is (TS)′-bounded
from which it follows that (TS)′ = S′T ′.

(2) Cross in [Cro98, II.1.6(a)] has concluded that (TS)′ = S′T ′ whenever
(a) D(T ′) = X ′ and R(S) ⊂ D(T ) or
(b) R(S′) = Z ′ and D(T ) ⊂ R(S).

Note that if D(T ′) = X ′ then T is continuous and surely it is TS-co-
continuous. Furthermore R(S) ⊂ D(T ) ensures that D(TS) = D(S) from
which it follows that D(TS) is a core of S. This result is thus a special
case of the above theorem.

If R(S′) = Z ′ then S is bounded below, so there is a c > 0 with ‖Sz‖ ≥
c ‖z‖ for all z ∈ D(S) (see example [Cro98, III.6.2(a)]). So let y ∈ TBX ,
then there is an x ∈ BX with (x, y) ∈ G(T ). As D(T ) ⊂ R(S) and S
is bounded below, there is a z ∈ c−1BZ with (z, x) ∈ G(S). But then
(z, y) ∈ G(TS) showing that y ∈ c−1TSBZ . But then TBX ⊂ c−1TSBZ

from which it follows that T is TS-co-continuous. It does however, not
follow from the hypothesis that D(TS) is a core of S, but in the light of
the next result, it would suffice if D(T ) was dense in R(S).

The minimum modulus of a linear relation T is the quantity ([Cro98])

γ(T ) = sup {‖Tx‖ ≥ λd(x, N(T )) for x ∈ D(T )} .
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Lemma 3.3. Let T ∈ LR(X, Y ) with γ(T ) > 0 and suppose that M ⊂ Y . Then
T−1M is core of T if and only if R(T ) ∩ M is dense in R(T ).

Proof: Suppose that R(T ) ⊂ R(T ) ∩ M and let (x, y) ∈ G(T ). Then there
exists a sequence wn in D(T ), yn ∈ Twn such that yn → y and yn ∈ M . Since
γ(T ) > 0, there is a sequence kn ∈ N(T ) with wn + kn → x. Put xn = wn + kn

then xn ∈ T−1M and (xn, yn)→ (x, y). The converse is immediate. �

The next result extends those of van Casteren and Goldberg [CG70] to the
multivalued case.

Theorem 3.4. Let S ∈ LR(Z, X) have a topologically complemented range with
γ(S) > 0. If T ∈ LR(X, Y ) is densely defined then D(TS) is a core of S. If
furthermore T is continuous on a topological complement N of R(S), then T is
TS-co-continuous.

Proof: Since D(T ) is dense in X = R(S) ⊕ N , D(T ) ∩ R(S) is dense in R(S)
and so D(TS) = S−1(D(T )) is a core of S. Suppose now that T is continuous
on N , where R(S)⊕N = Y and let P be the projection of X onto N along R(S).
We first show that there is a positive constant α such that

BX ⊂ αSBZ + PBX .

Let x ∈ BX , then there is (z, y) ∈ G(S) with x = y + Px for some z ∈ Z.
If y ∈ S(0) then x ∈ αSBZ + PBX trivially. So suppose that y /∈ S(0). Then
d(z, N(S)) > 0 and so there is a zo = z−n for some n ∈ N(S) with d(zo, N(S)) ≥
1
2 ‖zo‖. Now γ(S) ≤ ‖Szo‖

d(zo,N(S))
≤ 2‖Szo‖

‖zo‖
and so

‖zo‖ ≤ 2
‖Szo‖

γ(S)
= 2

‖Sz‖

γ(S)
≤
2

γ(S)
‖I − P‖ ‖x‖ ≤

2

γ(S)
‖I − P‖ .

Thus taking α = 2
γ(S)

‖I − P‖ it follows that Sz = Szo ⊂ αSBZ . Consequently

x = y+Px ∈ αSBZ+PBX . Now, since TP is continuous and TBX ⊂ αTSBZ+
‖TP‖BY it follows that T is TS-co-continuous. �
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