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A new class of weakly K-analytic Banach spaces

S. Mercourakis, E. Stamati

Abstract. In this paper we define and investigate a new subclass of those Banach spaces
which are K-analytic in their weak topology; we call them strongly weakly K-analytic
(SWKA) Banach spaces. The class of SWKA Banach spaces extends the known class
of strongly weakly compactly generated (SWCG) Banach spaces (and their subspaces)
and it is related to that in the same way as the familiar classes of weakly K-analytic
(WKA) and weakly compactly generated (WCG) Banach spaces are related.
We show that: (i) not every separable Banach space is SWKA; (ii) every separable

SWKA Banach space not containing ℓ1 is Polish; (iii) we answer in the negative a
question posed in [S-W] by constructing a subspace X of the SWCG space L1[0, 1]
which is not SWCG.
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Introduction

The purpose of the present paper is to introduce and study a new class of
Banach spaces which areK-analytic in their weak topology ([T], [N]), that extends
the class of strongly weakly compactly generated (SWCG) Banach spaces (and
their subspaces) introduced by Schlüchtermann and Wheeler in [S-W]. We call
them strongly weakly K-analytic-SWKA Banach spaces (see Definition 1.4).
Our results show that the classes of SWCG and SWKA Banach spaces are

related in the same way as the known classes of weakly compactly generated
(WCG) and weakly K-analytic (WKA) Banach spaces.
In Section 1, we study the general properties of SWKA Banach spaces. We

show in particular, that every subspace of a SWCG Banach space is SWKA
(Proposition 1.5) and also, that a Banach space with separable dual is SWKA iff
it is Polish (Proposition 1.9). So we get as an easy consequence that not every
separable Banach space is SWKA (Corollary 1.10). We also give a useful charac-
terization of SWKA Banach spaces by using the pointwise order of the Baire space
Σ = NN (Proposition 1.7), which is similar to a corresponding characterization of
WKA Banach spaces due to Talagrand ([T, Proposition 6.13]).
In the same section we strengthen the classicalK-analytic property for topolog-

ical spaces by introducing the notion of a strongly K-analytic topological space
(Definition 1.11), so that a Banach space X is SWKA iff X is a strongly K-
analytic topological space in its weak topology. Then we characterize strongly
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K-analytic topological spaces as those topological spaces X for which the space
K(X) of non empty compact subspaces of X endowed with Vietoris topology is a
(strongly) K-analytic topological space (Theorem 1.12).

In Section 2, we show, by using results of Stegall (Theorem 2.3) and Stern (The-
orem 2.2), that every separable SWKA Banach space not containing ℓ1 is Polish
(Theorem 2.6). This result generalizes a result from [S-W, Proposition 2.10]: Ev-
ery (subspace of a) SWCG space not containing ℓ1 is reflexive. We also give an
example of a separable dual space X0 with an unconditional basis (hence X0 is
weakly sequentially complete) which is not SWKA (Example 2.9); we mention, in
contrast, that every (subspace of a) SWCG space is weakly sequentially complete
([S-W, Theorem 2.5]).

The third section of the paper is devoted to the construction of a closed lin-
ear subspace X of the SWCG space L1[0, 1] (thus X is SWKA) which is not a
SWCG space. This construction is closely related to the classical construction of
Rosenthal [R1] of a non WCG subspace of the space L1[0, 1]c (c = the cardinality
of the continuum). The present example of the space X answers a question posed
in [S-W].

We would like to thank S. Argyros for suggesting us a result of J. Stern (Theo-
rem 2.2) that allowed us to avoid the previous use of Martin’s axiom in the proof
of Theorem 2.6 and to give a ZFC proof of that.

Preliminaries and notation

We denote by Σ the set NN of infinite sequences of positive integers, endowed
with the cartesian product topology, which makes Σ (usually called the “Baire
space”) a Polish space (i.e., homeomorphic to a complete separable metric space).

We denote by S the set
⋃∞

n=0Nn (N0 = {∅}) of finite sequences of positive
integers. We give the following partial order in S: for s = (s1, . . . , sn), t =
(t1, . . . , tm) members of S we define s ≤ t iff n ≤ m and si = ti for i = 1, . . . , n.
If s = (s1, . . . , sk) ∈ S, σ = (n1, n2, . . . , ni, . . . ) ∈ Σ and m ∈ N then we write,

(i) s < σ iff si = ni for i = 1, . . . , k and
(ii) σ |m for the finite sequence (n1, n2, . . . , nm).

For every s ∈ S, we set Vs = {σ ∈ Σ : s < σ}; it is easy to see that the
countable family {Vs : s ∈ S} is a base for the topology of Σ consisting of open
and closed sets.

For a (Hausdorff) topological space X , K(X) is the set of non empty compact
subsets of X . A map F : Σ → K(X) is said to be upper semicontinuous iff for
every σ ∈ Σ and every open subset U of X with F (σ) ⊆ U there exists s ∈ S
with s < σ so that F (Vs) ⊆ U .

LetX be a (real) Banach space andX∗ its dual. Then BX , BX∗ will denote the
closed unit balls of X and X∗ respectively. The Mackey topology τ = τ(X∗, X)
is the finest locally convex topology on X∗ whose dual space is X . The Mackey-



A new class of weakly K-analytic Banach spaces 293

Arens theorem characterizes τ as the topology on X∗ of uniform convergence on
weakly compact (absolutely convex) subsets of X (see [H-H-Z, pp. 163–165]).

1

Definition 1.1. Let X be a Banach space and K ⊆ X . We shall say that K
strongly generates X if for every weakly compact subset L of X and every ε > 0
there exists λ > 0 such that

(1) L ⊆ λK + εBX .

Remark 1.2. If a set K strongly generates a Banach space X then clearly K is
total in X . In the converse direction we observe that, if the convex symmetric
set K is total in X then condition (1) of the previous definition holds for every
norm-compact subset of X . Indeed, if L ⊆ X is norm-compact and ε > 0, pick
x1, . . . , xn ∈ L such that L ⊆

⋃n
i=1B(xi, ε/2). Let now λ > 0 and w1, . . . , wn ∈

K with ‖xi − λwi‖ < ε/2 for i = 1, 2, . . . , n, then it is easy to see that L ⊆
λK + εBX .

A Banach space X is said to be strongly weakly compactly generated (SWCG)
if it is strongly generated by a weakly compact set K ([S-W]). We recall that
a Banach space X is called weakly compactly generated (WCG), if it contains
a weakly compact set K which is total in X since we may assume by Krein’s
theorem that K in addition is convex and symmetric, it follows from Remark 1.2
that every SWCG Banach space is WCG. The two notions are distinct. Indeed,
every separable Banach space is WCG (let {xn : n ∈ N} be a bounded total subset
of X , then the set {xn

n : n ∈ N} ∪ {0} is a norm-compact total subset of X). On
the other hand, every SWCG Banach space is both WCG and weakly sequentially
complete, so the space c0 is not SWCG (see [S-W, Theorem 2.5]). It follows in
particular that not every separable Banach space is SWCG.

Example 1.3 (Examples of SWCG spaces [S-W]).

(i) Reflexive spaces (obvious).
(ii) Separable Schur spaces (let K be a norm compact convex symmetric set
which is total in X , since by definition weakly compact subsets of X are
norm compact, the conclusion follows from Remark 1.2).

(iii) The space L1(µ), for a σ-finite measure µ. If µ is finite then it is proved,
using Dunfford-Pettis’ criterion for weakly compact subsets of L1(µ), that
the closed unit ball K of L∞(µ) considered as a subset of L1(µ), is a
weakly compact set that strongly generates L1(µ). It then follows from
standard results that L1(µ) is SWCG for any σ-finite measure µ.

For further examples and results about SWCG property we refer the reader
to [S-W].



294 S.Mercourakis, E. Stamati

We shall introduce now a new class of Banach spaces; we call it the class of
strongly weakly K-analytic (SWKA) Banach spaces, which is related to the class
of SWCG as WCG spaces are related to weakly K-analytic (WKA) spaces ([T],
[N], [M-N], [D-G-Z]). We recall that a Banach space X is said to be WKA if

there exists an upper semicontinuous map F : Σ = NN → K(X), where K(X)
is the set of weakly compact non empty subsets of X , so that F (Σ) = X (i.e.,⋃

σ∈Σ F (σ) = X).

Definition 1.4. A Banach space will be called strongly weakly K-analytic
(SWKA) if there exists an upper semicontinuous map F : Σ → K(X) so that
(F (Σ) = X and with the further property), for every weakly compact subset L of
X there exists σ ∈ Σ with L ⊆ F (σ).

It clearly follows from the above that every SWKA space is WKA and also
that every closed linear subspace of a SWKA space is SWKA itself. It is well
known from a result of Preiss and Talagrand that every (subspace of a) WCG
space is WKA ([T], [H-H-Z, Proposition 288]). The method of the proof of this
result gives the similar result for the relation of SWCG and SWKA properties.

Proposition 1.5. Every closed linear subspace of a SWCG space X is SWKA.

Proof: It follows from the above remarks that it suffices to prove the assertion
for a SWCG space X . Let K be a weakly compact (convex and symmetric) set
that strongly generates X . We consider the map F : Σ → K(X) defined by the
rule

F (σ) =

∞⋂

n=1

(
σ(n)K +

1

n
BX∗∗

)
,

where σ ∈ Σ and BX∗∗ is the closed unit ball of X∗∗ endowed with weak* topol-
ogy. It is easy to verify that F is upper semicontinuous and that F (Σ) = X , in
particular X is WKA (see the proof of the result of Preiss-Talagrand). Let now
L ⊆ X be a weakly compact set; since K strongly generates X , there exists for
every n ∈ N, mn ∈ N so that L ⊆ mnK + 1nBX . Set σ = (m1, m2, . . . , mn, . . . ),
then it is obvious that L ⊆ F (σ). �

Note. In fact the method of the proof gives the further property

X =
∞⋂

n=1

( ∞⋃

m=1

(mK +
1

n
BX∗∗)

)
,

that is, X is a Kσδ subset of (X
∗∗, ω∗) (see [Ta, Theorem 3.2]).

Remark 1.6. (1) H. Rosenthal has constructed a non WCG subspace X of
the space (L1[0, 1]c, µ), where µ the Lebesgue product measure ([R1]).
Therefore the SWCG property is not preserved by closed linear subspaces;
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this space X is obviously SWKA from Proposition 1.5 above. We shall
present later (in Section 3) a refinement of the construction of Rosenthal
which yields a non SWCG subspace of L1[0, 1]; this example answers in
the negative a question posed in [S-W].

(2) If, for a Banach space X , there exists an upper semicontinuous map F :
Σ → K(BX ) such that (i) F (Σ) = BX and (ii) for every L ⊆ BX weakly
compact there is σ ∈ Σ with L ⊆ F (σ), then X is SWKA. In order to make
this clear, define a map Φ : Σ× N → K(X) by the rule Φ(σ, n) = nF (σ).
It is easy to check that Φ makes X a SWKA space.

The following proposition gives a simple criterion to check the SWKA property;
its analogue for WKA has been proved by Talagrand ([T, Proposition 6.13]). In
the statement of our proposition we need the following partial order of the Baire
space Σ: For σ, τ ∈ Σ we let σ ≤ τ iff σ(n) ≤ τ(n) for all n ∈ N. We notice that
every set of the form Σ(σ) = {τ ∈ Σ : τ ≤ σ} is compact in Σ and also that the
family {Σ(σ) : σ ∈ Σ} dominates the compact sets in Σ.

Proposition 1.7. Let X be a Banach space. Then the following are equivalent.

(i) The space X is SWKA.
(ii) There exists a family (Wσ)σ∈Σ of weakly compact subsets of X (resp. of

BX ) such that:
(a) X =

⋃
σ∈ΣWσ (resp. BX =

⋃
σ∈ΣWσ);

(b) for every σ, τ ∈ Σ, if σ ≤ τ then Wσ ⊆ Wτ ;
(c) for every L ⊆ X (resp. L ⊆ BX) weakly compact there is σ ∈ Σ
with L ⊆ Wσ.

Proof: (i) ⇒ (ii). Let F : Σ → K(X) be an upper semicontinuous map which
makes X SWKA. We set Wσ = F (Σ(σ)) for σ ∈ Σ (recall that Σ(σ) = {τ ∈ Σ :
τ ≤ σ}). It is easy to see that the family (Wσ)σ∈Σ satisfies assertion (ii) for X .
It is obvious that the family (Wσ ∩ BX ) is the proper family for BX .

(ii) ⇒ (i). Let (Wσ)σ∈Σ be a family of weakly subsets of BX that satisfies (a),

(b) and (c) of assertion (ii). We set Ws =
⋃

s<τ Wτ
w
, for s ∈ S and then

F (σ) =
⋂∞

n=1Wσ |n. It is then easy to prove that F satisfies the requirements

of Remark 1.6(2) and hence X is SWKA (cf. also the proof of Proposition 6.13
in [T]). �

At this point we state (for comparison with the above proposition but also
because we shall use it) a nice characterization of Polish metric spaces due to
Christensen ([Ch, Theorem 3.3, p. 58]).

Theorem 1.8 (Christensen). Let M be a metric space. Then M is Polish if and

only if there exists a family {Mσ : σ ∈ Σ} of compact subsets of M such that:
(a) if σ, τ ∈ Σ, σ ≤ τ then Mσ ⊆ Mτ and (b) for every L ⊆ M compact there

exists σ ∈ Σ with L ⊆ Mσ.
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Now we recall the concept of a Polish Banach space. A Banach space X is said
to be Polish if its closed unit ball BX endowed with the weak topology is a Polish
space. Since (BX , w) is then metrizable it follows in particular that a Polish
Banach space has separable dual. Obvious examples of Polish Banach spaces are
separable reflexive spaces. The predual JT∗ of the James tree space JT is Polish
(without being of course a reflexive space); the space c0 is not Polish although it
has separable dual ([E-W], [R2]).

Proposition 1.9. Let X be a Banach space with separable dual. Then X is

SWKA if and only if it is Polish.

Proof: Since X has separable dual its closed unit ball (BX , w) is a separable
metric space, therefore the result is an immediate consequence both of Proposi-
tion 1.7 and Theorem 1.8. �

It follows in particular from this proposition and previous remarks, that the
space c0 is not SWKA. This observation can be generalized as follows:

Corollary 1.10. Let Ω be an infinite compact Hausdorff space. Then the Banach
space C(Ω) is not SWKA.

Proof: Since Ω is infinite the space C(Ω) contains an isomorphic copy of c0
which is not SWKA, but as we have noticed every subspace of a SWKA space is
again SWKA, therefore C(Ω) is not SWKA. �

Remark 1.10.1. As it is proved in [S-W, Theorem 2.5] every SWCG Banach
space is weakly sequentially complete, hence every subspace of a SWCG has the
same property. So we get, from Rosenthal’s ℓ1-theorem [R0], that a subspace of
a SWCG Banach space not containing ℓ1 is reflexive. It follows in particular that
a non reflexive Polish Banach space is not a subspace of a SWCG space.

The SWKA property for a Banach space is by definition a topological property
of the weak topology of the space. There is no reason to restrict this concept only
for the weak topology of Banach spaces; so we define the strong K-analyticity for
every Hausdorff topological space.

Definition 1.11. A Hausdorff topological space X will be called strongly K-
analytic, if there exists an upper semicontinuous map F : Σ→ K(X) such that

(a) F (Σ) = X and
(b) for every L ⊆ X compact there is σ ∈ Σ with L ⊆ F (σ).

Remark 1.11.1. (1) It is clear that every strongly K-analytic topological space
is K-analytic in the classical sense; we shall see later that the converse is not true
(see [J-R] and [T] for more information about K-analytic topological spaces). It
is also obvious that SWKA Banach spaces are those Banach spaces which are
strongly K-analytic in their weak topology according to the above definition.
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(2) Every Polish metric space (M, d) is strongly K-analytic; indeed, it is known
that the space K(M) of the compact non empty subsets of M with the Hausdorff
metric is also Polish, (see [E, 4.5.22, p. 370]); so let f : Σ → K(M) be a continu-
ous onto map; then the map F : Σ→ K(M) defined by the rule F (σ) = f(Σ(σ))
has the desired properties. In the converse direction, we note that Theorem 1.8
easily implies that every strongly K-analytic metric space is Polish (see also The-
orem 1.12). It is easily verified that every Čech-complete and Lindelöf topological
space X (equivalently, X is homeomorphic to a closed subset of some product
M × Ω where M is a Polish metric space and Ω a compact Hausdorff space) is
strongly K-analytic.

The following result says in particular that the class of strongly K-analytic
topological spaces is natural and not “artificial”. Before we state this result it is
necessary to recall the definition of the Vietoris topology (otherwise, exponential
or Hausdorff topology) on the space K(X) of compact non empty subsets of a
Hausdorff topological space X . The Vietoris topology τν on K(X) has as a basis
consisting of subsets of K(X) of the form:

β(V1, . . . , Vn) =
{

K ∈ K(X) : K ⊆
n⋃

i=1

Vi and K ∩ Vi 6= ∅ for i = 1, . . . , n
}

where n ∈ N and V1, . . . , Vn are open non empty subsets of X (see [E, 2.7.20,
p. 162]).
In the proof of our result we shall make use of the following simple property

of K-analytic topological spaces: If X is a Hausdorff and completely regular K-
analytic topological space then there exists an upper semicontinuous map F :
Σ→ K(X) such that

(i) F (Σ) = X and
(ii) if σ, τ ∈ Σ and σ ≤ τ then F (σ) ⊆ F (τ) (see [T, pp. 409–410]).

Theorem 1.12. Let X be a Hausdorff and completely regular topological space.
Then the following are equivalent:

(i) X is strongly K-analytic;
(ii) (K(X), τν) is strongly K-analytic;
(iii) (K(X), τν) is K-analytic.

Proof: (i) ⇒ (ii) Let F : Σ → K(X) be an upper semicontinuous map with
the further property that for every compact subset K of X there is σ ∈ Σ with
K ⊆ F (σ). We define a set valued map Φ : Σ→ K(K(X)) by the rule

(1) Φ(σ) = K(F (σ)), σ ∈ Σ.

It then follows from standard properties of Vietoris topology that the set Φ(σ)
is compact in (K(X), τν) for all σ ∈ Σ and hence Φ is well defined (see [E], [K]
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or [Ch]). Let Ω ⊆ (K(X), τν) be compact. Set XΩ =
⋃
{K : K ∈ Ω}, then

XΩ (from the properties of τν) is a compact subset of X and since X is strongly
K-analytic (via F ) there is σ ∈ Σ such that XΩ ⊆ F (σ). It follows immediately
that

(2) Ω ⊆ Φ(σ).

It is clear that it remains to show that Φ is an upper semicontinuous map. So let
σ ∈ Σ and V be an open subset of (K(X), τν) with

(3) Φ(σ) ⊆ V.

Since Φ(σ) is compact in (K(X), τν) we may assume that V is equal to a finite
union of basic open sets. Assume for simplicity that V is the union of two basic
open sets, that is, V = V1 ∪ V2 where Vk = βk(V1,k . . . , Vnk,k), k = 1, 2 and
V1,1, . . . , Vn1,1 and V1,2, . . . , Vn2,2 are open non empty subsets of X . It then
follows from (3) and the definition of basic open sets of Vietoris topology that for
every K ∈ Φ(σ) we have that

(4) either
(
K ∩ Vi,1 6= ∅ for i = 1, 2, . . . , n1 and K ⊆

n1⋃

i=1

Vi,1

)

(5) or
(
K ∩ Vi,2 6= ∅ for i = 1, 2, . . . , n2 and K ⊆

n2⋃

i=1

Vi,2

)
.

We also have that for every t ∈ F (σ)

(6)
(
either t ∈

n1⋃

i=1

Vi,1 or t ∈
n2⋃

i=1

Vi,2

)
.

It follows from (6) that if K ∈ Φ(σ) then

(7) K ⊆
( n1⋂

i=1

Vi,1

)
∪

( n2⋂

i=1

Vi,2

)
.

Assume without loss of generality that (4) holds. Set

V0 =
{
K ∈ K(X) : K ⊆

[( n1⋂

i=1

Vi,1

)
∪

( n2⋂

i=1

Vi,2

)]
∩

( n1⋃

i=1

Vi,1

)}
.
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Then V0 is a basic open set in (K(X), τν) so that Φ(σ) ⊆ V0 ⊆ V1 ∪ V2. Indeed,
if K ∈ Φ(σ) then K ⊆

⋂n1
i=1 Vi,1 and K ⊆

(⋂n1
i=1 Vi,1

)
∪

(⋂n2
i=1 Vi,2

)
from (4) and

(7) respectively, hence K ∈ V0. Let now K ∈ V0; if K ∩
(⋂n1

i=1 Vi,1
)
6= ∅ then

since K ⊆
⋃n1

i=1 Vi,1 we find that K ∈ V1; if K ∩
(⋂n1

i=1 Vi,1
)
= ∅ then obviously

K ⊆
⋂n2

i=1 Vi,2 ⊆
⋃n2

i=1 Vi,2 hence K ∈ V2.
Since F is upper semicontinuous there is n0 ∈ N so that

F (Vσ |n0) ⊆
[( n1⋂

i=1

Vi,1

)
∪

( n2⋂

i=1

Vi,2

)]
∩

( n1⋃

i=1

Vi,1

)
,

(where Vσ |n0 = {τ ∈ Σ : τ |n0 = σ |n0}). It follows easily that Φ(Vσ |n0) ⊆ V0,

hence Φ is upper semicontinuous.

(ii) ⇒ (iii). It is obvious.

(iii) ⇒ (ii). Let Φ : Σ → K(K(X)) be an upper semicontinuous map which
makes (K(X), τν) a K-analytic topological space. Assume without loss of gene-
rality that Φ has the further property

if σ, τ ∈ Σ, σ ≤ τ then Φ(σ) ⊆ Φ(τ).

Set Xσ =
⋃
{K : K ∈ Φ(σ)}, for σ ∈ Σ, then it is clear that we have the following:

(a) Xσ is compact in X for all σ ∈ Σ,
(b) if σ, τ ∈ Σ, σ ≤ τ then Xσ ⊆ Xτ and
(c) if K ∈ K(X) then there is σ ∈ Σ with K ⊆ Xσ (indeed, K ∈ Φ(σ) for
some σ ∈ Σ, thus K ⊆ Xσ).

We shall show that the map F : Σ → K(X) : F (σ) = Xσ, σ ∈ Σ is upper
semicontinuous. Let σ ∈ Σ and V be an open subset of X with Xσ ⊆ V , then the
set β(V ) = {K ∈ K(X) : K ⊆ V } is open in (K(X), τν) and it is easily seen that
Φ(σ) ⊆ β(V ). Let now n0 ∈ N be such that Φ(Vσ |n0) ⊆ β(V ); then it is easy to

show that F (Vσ |n0) ⊆ V .

The proof of the theorem is complete. �

The following result gives some elementary stability properties of strongly K-
analytic topological spaces.

Proposition 1.13. (i) If X is any strongly K-analytic topological space and
Y is a closed subset of X then Y is also strongly K-analytic.

(ii) If (Xn) is any sequence of strongly K-analytic topological spaces then
their cartesian product X =

∏∞
n=1Xn is strongly K-analytic.

Proof: (i) Let F : Σ → K(X) be an upper semicontinuous map such that for
every compact subset K of X there exists σ ∈ Σ with K ⊆ F (σ). Set U = X\Y
and V = {σ ∈ Σ : F (σ) ⊆ U}, then clearly V is an open subset of Σ. We define
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a map Φ : Σ\V → K(Y ) by the rule Φ(σ) = F (σ) ∩ Y , σ ∈ Σ\V ; since the set
Σ\V is closed in Σ it is a Polish space, hence there exists a continuous onto map
f : Σ → Σ\Y . Now it is easy to verify that the map σ ∈ Σ → Φ(f(σ)) ∈ K(Y )
makes Y a strongly K-analytic space.

(ii) Let Fi : Σ → K(Xi), i ∈ N be an upper semicontinuous map that makes

Xi a strongly K-analytic space. Set for every (σ1, . . . , σn, . . . ) ∈ ΣN

F (σ1, . . . , σn, . . . ) =

∞∏

i=1

Fi(σi).

The space ΣN is (obviously) homeomorphic to the space Σ and the map F : ΣN →
K(X) defined above compact valued. The map F is also upper semicontinuous;
for a proof of this fact we refer the reader to [J-R, Theorem 2.5.4, p. 23]. Let
K be a compact subset of X ; it is clear that K ⊆

∏∞
i=1Ki, where Ki = πi(K),

i ∈ N and πi : X → Xi is the projection at coordinate i. Since K is compact
Ki is compact for all i ∈ N; hence there is for every i ∈ N (using the strong
K-analyticity of Xi) σi ∈ Σ such that Ki ⊆ Fi(σi). It then clearly follows that
K ⊆

∏∞
i=1Ki ⊆ F (σ1, . . . , σn, . . . ), therefore F makes X a strongly K-analytic

space. �

Now we give some easy consequences of the above results concerning strong
K-analyticity.

Corollary 1.14. Let X be a separable Banach space which is not SWKA (for
instance X = c0). Then the space K(X) (resp. K(BX )) of weakly compact subset
of X (resp. of BX) with Vietoris topology (induced by its weak topology) is not
K-analytic, in particular it is not analytic.

Proof: It is an immediate consequence of Theorem 1.12. �

Note. We notice that every separable Banach space with the weak topology
is an analytic space. Indeed, (X, ‖ · ‖) is a Polish space and the identity map
id : (X, ‖ · ‖)→ (X, w) is obviously continuous.

The following result says that a countable metric space is not necessarily
strongly K-analytic. Since clearly a countable metric space is analytic, we get
in particular that the class of strongly K-analytic (metric) spaces is not stable
under continuous images.

Proposition 1.15. The space of rational numbers Q (with the usual topology
from R) is not strongly K-analytic.

Proof: Since (as it is well known) Q is not a Polish space, the result follows
immediately from Remark 1.11.1(2). �
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Remark 1.16. (1) It follows immediately from Proposition 1.13 that the class
of SWKA Banach spaces is stable under closed subspaces and finite products. On
the other hand it is not stable under continuous linear maps (c0 is a quotient
of ℓ1).

(2) If a Banach space X has a Čech-complete unit ball in its weak topology
(that is, BX is a Gδ subset of (BX∗∗ , ω∗)) then X is SWKA. This is so, because
then X is isomorphic to Y ⊕ Z, where Y is a Polish and Z a reflexive Banach
space (see [E-W] and [H-H-Z, Theorem 315]).
(3) It follows immediately from Theorem 1.12 that a Banach space X is SWKA

iff the space K(X) with Vietoris topology (induced by the weak topology of X)
is K-analytic.

2

In this section we are concerned with separable SWKA Banach spaces which do
not contain ℓ1. We shall show that such Banach spaces have separable duals and
thus they are Polish according to Proposition 1.9. We shall need for this purpose
a nice generalization of Rosenthal’s ℓ1-theorem due to Stern ([S, Theorem 2.1],
see also [To, Theorem 12]); we also need a deep result of Stegall, that Stegall
used in his study of dual Banach spaces with Radon-Nikodym property (RNP)
(see [St, Theorem 2.3]). It should be recalled that in the special case when the
separable space X (which does not contain ℓ1) is a subspace of a SWCG space
then X is reflexive (see Remark 1.10.1).
The following result from [M, Remark 1.4.1] will be used in the sequel; we

prove it for completeness (the proof given in [M] is different).

Lemma 2.1. Let Γ be a non empty set and (Γσ)σ∈Σ a family of subsets of Γ
such that

(i) Γ =
⋃

σ∈Σ Γσ,

(ii) if σ, τ ∈ Σ and σ ≤ τ then Γσ ⊆ Γτ and

(iii) each Γσ is a finite set.

Then Γ is at most countable.

Proof: We set Γ∅ = Γ and Γs =
⋃

s<σ Γσ for s ∈ S. Assume that Γ is un-

countable. Since Γ = Γ∅ =
⋃∞

n=1 Γn there is n1 ∈ N such that |Γn1 | ≥ ω+;

since Γn1 =
⋃∞

n=1 Γn1n there is n2 ∈ N with |Γn1n2 | ≥ ω+. We proceed by
induction and find a sequence n1, n2, . . . , nk, . . . of natural numbers such that
Γn1 ⊇ Γn1n2 ⊇ . . . ⊇ Γn1n2...nk

⊇ . . . , and |Γn1n2...nk
| ≥ ω+ for k ∈ N. Set

σ = (n1, n2, . . . , nk, . . . ) ∈ Σ, then the sequence of sets (Γσ | k)k∈N is decreasing

and consists of uncountable sets. Pick a sequence (γk) of distinct points of Γ and
(σk) ⊆ Σ such that σ | k < σk and γk ∈ Γσk

for k ∈ N. It is clear that the sequence
(σk) is convergent in the space Σ and σk → σ, thus the set {σk : k ∈ N} ∪ {σ}
is compact in Σ. Let τ ∈ Σ with σk ≤ τ for all k ∈ N, therefore Γσk

⊆ Γτ for
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all k ∈ N. It clearly follows that {γk : k ∈ N} ⊆ Γτ ; but this is a contradiction
because the set {γk : k ∈ N} is infinite and the set Γτ is finite. �

Throughout this paper T stands for the dyadic tree; i.e., T =
⋃∞

n=0{0, 1}
n

ordered (as the tree S =
⋃∞

n=0Nn) by the relation “s is an initial segment of t”,
denoted by s ≤ t. By a subtree T ′ of T we mean any subset of T having a unique
minimal element and such that any its element has exactly two immediate succes-
sors; thus in particular T ′ is isomorphic to T . By the term chain (resp. antichain)
of T we mean a set of pairwise comparable (resp. incomparable) elements of T ;
a branch of T is any maximal chain of T . Note that if T ′ is any subtree of T
then the chains and antichains of T ′ are chains and antichains of T .

Theorem 2.2 (Stern). Let X be a Banach space and (xs)s∈T a bounded family

of elements of X ; then there exists a subtree T ′ of T such that one of the following
alternatives holds:

(i) for any branch δ′ of T ′, the sequence (xδ′ |n) is weak-Cauchy;

(ii) for any branch δ′ of T ′ the sequence (xδ′ |n) is equivalent to the usual

ℓ1-basis.

Denote by ∆ the Cantor set, i.e., ∆ = {0, 1}N. A family (hs)s∈T ⊆ C(∆) is
said to be a Haar system on ∆ if the following hold:

(i) for every s ∈ T , hs = XAs
where As is a non empty open and closed

subset of ∆;
(ii) A∅ = ∆ and for every s ∈ T , As = As0 ∪ As1 and As0 ∩ As1 = ∅;
(iii) for every δ ∈ ∆ the intersection

⋂∞
n=1Aδ |n is one point set (see [St,

p. 215]).

Theorem 2.3 (Stegall). Let X be a separable Banach space with non separable
dual. Then for any ε > 0 there exist a subset ∆ε of the unit sphere of X∗ which

is weak* homeomorphic to the Cantor set ∆, a Haar system (hs)s∈T on ∆ and a
family (es)s∈T ⊆ X with ‖es‖ ≤ 1 + ε for all s ∈ T such that if Φ : X → C(∆ε)
is the canonical evaluation operator (i.e., Φ(x)(x∗) = x∗(x), for x ∈ X and
x∗ ∈ ∆ε), then

(1)

∞∑

n=0

( ∑

s∈{0,1}n

‖Φ(es)− hs‖
)

< ε.

Note. In the following lemmas until to the proof of our main result (Theo-
rem 2.6), X stands for a separable Banach space with non separable dual not
containing ℓ1 and (es)s∈T , (hs)s∈T , Φ, for the families and the operator of Ste-
gall’s theorem.
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Lemma 2.4. Let (tn) be a chain and (sn) an antichain of T . Then the sequence
(esn

− etn) of X has no weakly convergent subsequence.

Proof: Assume without loss of generality that the given sequence is itself weakly
convergent in X , say w − lim(esn

− etn) = x, hence w − limΦ(esn
− etn) = Φ(x).

Then we have:

‖Φ(esn
− etn)− (hsn

− htn)‖ = ‖(Φ(esn
)− hsn

)− (Φ(etn)− htn)‖

≤ ‖Φ(esn
)− hsn

‖+ ‖Φ(etn)− htn‖ → 0,

for n → ∞

(the fact that this limit is zero is a consequence of inequality (1) of Stegall’s
theorem). It then follows that w− lim(hsn

−htn) = Φ(x) which is a contradiction
because clearly the sequence (hsn

) is weakly null and the sequence (htn) is weakly
Cauchy but not weakly convergent. �

Lemma 2.5. Let T ′ be a subtree of T such that for every branch δ of T ′ the
sequence (eδ |n) is weakly Cauchy. Then the Banach space X is not SWKA.

Proof: Assume for the purpose of contradiction that X is SWKA and let
(Wσ)σ∈Σ be a family of weakly compact sets in X satisfying assertion (ii) of
Proposition 1.7. It is clear that the set of branches ∆′ of T ′ can be identified with
the (Cantor) set {0, 1}N; we associate with every branch δ of T ′ the weakly null
sequence

ϕ(δ) = {eδ |n−1 − eδ |n : n ∈ N}.

It is obvious that for every δ ∈ ∆′ there exists σδ ∈ Σ such that

ϕ(δ) ⊆ Wσδ
.

Set for σ ∈ Σ, Xσ = {δ ∈ ∆′ : ϕ(δ) ⊆ Wσδ
}; it follows then from the properties

of the family (Wσ)σ∈Σ that

(i) ∆′ =
⋃

σ∈ΣXσ,
(ii) if σ, τ ∈ Σ and σ ≤ τ then Xσ ⊆ Xτ .

Since the set ∆′ is uncountable, Lemma 2.1 implies that there is σ0 ∈ Σ so that
the set Xσ0 is infinite. Let (δk) be a sequence of distinct points of Xσ0 which is

convergent in the Cantor set ∆′, say δk → δ. Set d(δk, δ) = 1
mk

, k ∈ N (where d

is the usual metric in the Cantor set ∆′ = {0, 1}N) and assume without loss of
generality that 2 ≤ m1 < m2 < . . . < mk < . . . , for k ∈ N. It is clear that

δ |mk−1 = δk |mk−1 and δk(mk) 6= δ(mk), for k ∈ N.

So we get that the sequence εk = δk |mk, k ∈ N consists of pairwise incomparable
elements of T ′ (and thus of T ) and also that, eεk

−eδ |mk−1
= eδk |mk

−eδk |mk−1
,
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for every k ∈ N. But this is a contradiction because on one hand the sequence
eδk |mk

−eδk |mk−1, k ∈ N, is contained in the weakly compact setWσ0 and on the
other hand the sequence eεk

− eδ |mk−1
, k ∈ N, cannot have a weakly convergent

subsequence by Lemma 2.4. �

Theorem 2.6. Let X be a separable Banach space not containing ℓ1. If X is
SWKA then X has separable dual and thus is a Polish Banach space.

Proof: Assume that X has non separable dual and let (es)s∈T be the family
given in Stegall’s theorem. We apply Stern’s theorem for (es)s∈T ; since X does
not contain ℓ1 the first alternative of this result must hold, but this contradicts
our assumption according to Lemma 2.5. So the space X has separable dual and
thus is Polish by Proposition 1.9. �

Corollary 2.7. Every SWKA Banach space X not containing ℓ1 is Asplund and
(hence) WCG.

Proof: Every separable subspace of X is Polish by Theorem 2.6 and thus it has
separable dual, so X is Asplund. As X is Asplund and WKA it is WCG (see
Corollary 4.4, Chapter VI of [D-G-Z]). �

By using Stern’s theorem and the techniques used before we can also prove the
following

Theorem 2.8. Let X be a Banach space and (es)s∈T be a bounded family of X .
Assume that

(i) for no chain (tn) of T the sequence (etn) is weakly convergent and
(ii) for every antichain (sn) of T there is a subsequence (s′n) of (sn) so that
the sequence (es′n

) is weakly convergent.

Then X is not SWKA.

Proof: We first remark that as it follows from (i) and (ii), for every pair (tn),
(sn) where (tn) is a chain and (sn) an antichain of T the sequence (esn

− etn) of
X has no weakly convergent subsequence.
Let T ′ be a subtree of T given by Stern’s result so that one of the following

alternatives holds.

(1) For every chain (tn) of T
′, (etn) is a weak Cauchy sequence in X .

(2) For every chain (tn) of T
′, (etn) is equivalent to the usual ℓ

1-basis.

Assume without loss of generality that T ′ = T .
If alternative (1) holds, then we proceed in exactly the same way as in the

proof of Lemma 2.5 and (by using the above mentioned remark) show that X is
not SWKA.
Now assume that (2) holds for T . We notice that a dyadic tree contains un-

countable many antichains. We give a proof of this (simple) argument which has
been taken from [S-W, Example 2.6, p. 391]. Let θ(0) = 1 and θ(1) = 0; we define
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for δ = (δn) ∈ {0, 1}N a sequence ε1(δ) = (δ1), ε2(δ) = (θ(δ1), δ2), . . . , εn(δ) =
(θ(δ1), . . . , θ(δn−1), δn), . . . in T . Then (εn(δ)) is (obviously) an antichain of T

and the map δ ∈ ∆→ (εn(δ)) ∈ T N is 1− 1.
Now we assume for the purpose of contradiction that X is SWKA and proceed

in a similar way as in the proof of Lemma 2.5. So let (Wσ)σ∈Σ be a family of
weakly compact subsets of X that satisfies assertion (ii) of Proposition 1.7. It
follows clearly from our hypothesis that for every antichain (sn) of T the set
{esn

: n ∈ N} is weakly relatively compact in X , hence it is contained in some

Wσ. So it follows in particular that for every δ ∈ {0, 1}N there is σδ ∈ Σ such
that {eεn(δ) : n ∈ N} ⊆ Wσδ

. Set for σ ∈ Σ, Xσ = {δ ∈ {0, 1}N : {eεn(δ) : n ∈

N} ⊆ Wσ}; it is then clear that

(a) {0, 1}N =
⋃

σ∈ΣXσ and
(b) if σ, τ ∈ Σ and σ ≤ τ then Xσ ⊆ Xτ .

So it follows from Lemma 2.1 that there is σ0 ∈ Σ with Xσ0 an infinite set. Let
(δn) be a non trivial sequence in Xσ0 which is convergent in the Cantor space,
say δn → δ. It is now easy to choose inductively an infinite chain {εk : k ∈ N} ⊆⋃∞

n=1{εm(δn) : m ∈ N}, thus {eεk
: k ∈ N} ⊆ Wσ0 . But this is a contradiction

because the set Wσ0 is weakly compact and the sequence {eεk
: k ∈ N} equivalent

to the usual ℓ1-basis. �

As an application of Theorem 2.8 we show that a weakly sequentially complete,
(even separable) space need not be SWKA; the example X0 which we are going
to consider is due to Batt and Hiermeyer. It is proved in [S-W] that X0 is not
SWCG. We show here that X0 is not even SWKA, in particular X0 is not a
subspace of a SWCG space.

Example 2.9. Let α be the set of finite chains of the dyadic tree T ; it is clear
that if A ⊆ B ∈ α then A ∈ α.

Let

X0 = {f : T → R, ‖f‖ < +∞},

where

‖f‖ = sup
{[∑

i∈I

(
∑

s∈Ai

|f(s)|)2
]1/2

: I finite, Ai ∩ Aj = ∅, i 6= j

and Ai ∈ α for i ∈ I
}

(see [A-M, Definition 3.13]).
It is easy to verify that (X0, ‖·‖) is a Banach space, having the set {es : s ∈ T }

as an unconditional boundedly complete (normalized) basis. Therefore X0 is a
weakly sequentially complete separable dual space (it has the Radon-Nikodym
property) and it does not contain c0 (see [L-T, Theorem 1.c.10]).
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Let A ⊆ T . Then it easily follows from the definition of the space X0 that:

(i) if A is a chain of T then the family {es : s ∈ A} is equivalent to the usual
ℓ1-basis;

(ii) if A is an antichain of T then {es : s ∈ A} is equivalent to the usual
ℓ2-basis, hence in particular it is a weakly relatively compact subset of
X0.

So we get immediately from (i), (ii) and Theorem 2.8 that X0 cannot be a SWKA
space.

3

Our aim in this last section is to give an example X of a subspace of L1[0, 1]

(more exactly of the space L1[0, 1]N) which is not SWCG. It should be noticed
that since X is a subspace of a SWCG space, it is itself a SWKA space (see
Proposition 1.5). This example answers in the negative a question posed in
[S-W, Question (A), p. 397]: “Must a WCG subspace of an SWCG space again
be SWCG? Specifically, must every subspace of a separable SWCG space again
be SWCG? This is of particular interest for the space L1[0, 1].”

Our construction of the space X is similar and it is based on the classical
construction of Rosenthal of a subspace Y of L1[0, 1]c which is not WCG. This
example answered (in the negative) the “heredity” problem in the class of WCG
spaces (see [R1]). It is clear that our example has the similar property for the
class of separable SWCG spaces.
The following result is crucial for our purposes.

Proposition 3.1. Let X be a Banach space with a normalized unconditional
basis Γ. If X is SWCG then there exists a countable family (Γn)n of subsets of
Γ such that:

(i) Γn is a weakly relatively compact subset of Γ for all n ∈ N (hence each
Γn ∪ {0} is weakly compact);

(ii) if A is any weakly relatively compact subset of Γ then there is n ∈ N with

A ⊆ Γn.

Proof: Let K be a weakly compact convex symmetric subset of X that strongly
generatesX (see Definition 1.1). Assume without loss of generality that K ⊆ BX .
We consider the operator T : X∗ → C(K) defined by the rule T (x∗) = x∗ |K ,
x∗ ∈ X∗. It is easy to see that T is a bounded linear one-to-one operator (‖T ‖ ≤ 1)
with the further property that its restriction on BX∗ is a weak* to pointwise con-
tinuous map. Therefore the compact space (BX∗ , w∗) is affinely homeomorphic
to the compact space (T (BX∗), τp), where τp is the topology of pointwise con-
vergence on C(K). Since the set T (BX∗) is bounded in C(K) it follows from
Grothendieck’s theorem (see [R1, p. 102]) that the topologies of pointwise conver-
gence τp and the weak topology coincide on T (BX∗); it follows in particular that
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T is weakly compact (cf. the proof of Corollary 3.4 of [R1]). As it is proved in
[S-W, Theorem 2.1], a Banach space X is SWCG if and only if the space (BX∗ , τ),
where τ is the Mackey topology of X∗ is metrizable. It follows from the method of
the proof of implication (c) ⇒ (a) of Theorem 2.1 that the norm-metric of C(K)
metrizes the Mackey topology of BX∗ , that is, (BX∗ , τ) ≈ (T (BX∗), ‖ ·‖1), where
‖ · ‖1 denotes the supremum norm of C(K).

We set for every n ∈ N, Γn = {γ ∈ Γ : ‖T (γ∗)‖1 ≥
1
n}, where γ∗ denotes the

biorthogonal functional of γ ∈ Γ.
Now, by using the fact that T is a weakly compact operator and following

the method of the proof of implication (4) ⇒ (1) of a result of Johnson (see
Remark 3.2 below) we can prove that every set Γn, n ∈ N, is weakly relatively
compact in X and also that Γ =

⋃∞
n=1 Γn. We shall show that this is the desired

family.

Claim. Let A ⊆ Γ. Then A is a weakly relatively compact subset of X if and
only if there is δ > 0 with ‖T (γ∗)‖1 ≥ δ for all γ ∈ A.

Proof of the Claim: Assume that A is a weakly relatively compact subset
of X and also assume for the purpose of contradiction that there is a sequence
γ1, . . . , γn, . . . of distinct points of A so that limn→∞ ‖T (γ∗n)‖1 = 0, equivalently
τ− limn→∞ γ∗n = 0. Since the Mackey topology ofX

∗ coincides with the topology
of uniform convergence on weakly compact subsets of X we conclude that,

an = sup{|γ
∗
n(x)| : x ∈ A} → 0, for n → ∞,

because A is a weakly relatively compact subset of X . On the other hand, since
γn ∈ A for n ∈ N, we get that γ∗n(γn) = 1 for all n ∈ N, hence an ≥ 1 for all
n ∈ N, which is a contradiction.
For the “if” assertion of the Claim consider a positive δ so that ‖T (γ∗)‖1 ≥ δ,

for every γ ∈ A. Pick n0 ∈ N with 1
n0

≤ δ, then it is obvious that A ⊆ Γn0 and

thus A is also a weakly relatively compact set.
It is clear that this Claim finishes the proof of the proposition. �

Remark 3.2. The result of Johnson mentioned in the proof of Proposition 3.1
states that: For a Banach space X with an unconditional basis Γ, X is WCG if
and only if there exists a sequence (Γn) of subsets of Γ such that, Γ =

⋃∞
n=1 Γn

and each Γn is a weakly relatively compact subset of X (see [R1, Proposition 1.3]).
This result was used for the proof of some properties of Rosenthal’s example.

Let (X,M, µ) be a probability measure space. Following Rosenthal [R1], we
define for every f ∈ L1(µ) the modulus of absolute continuity ω(f, δ) of f by the
rule

ω(f, δ) = sup{

∫

E
|f | dµ : E ∈ M, µ(E) ≤ δ}, δ ∈ (0, 1].
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So a function ω(f, ·) : (0, 1]→ R is defined which has the following properties:

(i) ω(f, ·) is increasing on (0, 1] and
(ii) limδ→0 ω(f, δ) = 0 (see [R1, p. 89]).

Using the function ω(f, ·) the classical characterization of relatively weakly com-
pact subsets of L1(µ) may be reformulated as

Lemma 3.3. Let S be a non empty bounded subset of L1(µ). Then S is rela-
tively weakly compact if and only if limδ→0[supf∈S ω(f, δ)] = 0 (see Lemma 1.4
of [R1]).

Now we let,

R =
{

r : [0, 1]→ R, r ∈ L1[0, 1],

∫ 1

0
r dx = 0 and

∫ 1

0
|r| dx = 1

}

(see [R1, p. 86]).
The following result is well known (see [R1, p. 90]). We give a (different) proof

of this for completeness.

Lemma 3.4. The set R is not a σ-relatively weakly compact subset of L1[0, 1]
(that is, R is not a countable union of relatively weakly compact sets in L1[0, 1]).

Proof: We define a map Λ : L1[0, 1] → R by the rule Λ(f) =
∫ 1
0 f dx, f ∈

L1[0, 1]. It is clear that Λ is a non trivial continuous linear functional on L1[0, 1],
therefore the set Z = {f ∈ L1[0, 1] : Λ(f) = 0} is a closed hyperplane of L1[0, 1].
The set R is obviously the unit sphere SZ of Z. Since Z is not reflexive (Z
is isomorphic to L1[0, 1]) the conclusion follows immediately from the following
simple result: A Banach space X is reflexive if and only if its unit sphere SX is
a σ-relatively weakly compact set. �

Remark 3.5. It is clear that the set R endowed with the norm-metric is a
complete separable metric space.

Let µ denote the product Lebesgue measure on the compact space Ω = [0, 1]R.

We associate with each function r ∈ R the µ-integrable function fr : [0, 1]
R → R

defined by fr = r ◦ πr, where πr is the projection to the rth coordinate (see [R1,
p. 86]).
It is easy to verify that for every r ∈ R we have

(1) (i)

∫

Ω
fr dµ = 0 and (ii)

∫

Ω
|fr| dµ = 1.

The following two lemmas are due to Rosenthal (see [R1, pp. 89–90] and the
references given there).
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Lemma 3.6. The family R̃ = {fr : r ∈ R} is an unconditional basis for its
closed linear span Y in the space L1(µ) (with unconditional constant ≤ 2).

Lemma 3.7. (i) If r ∈ R then ω(r, δ) = ω(fr, δ) for all δ ∈ (0, 1], thus
(ii) if S ⊆ R then S is a relatively weakly compact subset of L1[0, 1] if and

only if S̃ = {fr : r ∈ S} is a relatively weakly compact subset of L1(µ).

We notice that it is easy to prove assertion (i). Assertion (ii) is a consequence
of (i) and Lemma 3.3.

Remark 3.8. It follows from Lemmas 3.4 and 3.7 that the set R̃ is not a σ-
relatively weakly compact subset of L1(µ).

Let now ∆ be a norm-dense subset of the complete separable metric space

R endowed with the norm metric (see Remark 3.5). Set ∆̃ = {fr : r ∈ ∆} and

denote by Y∆ the closed linear span of ∆̃ in L1(µ); also denote by Y the space YR.
Then the following result is proved.

Theorem 3.9. (i) (Rosenthal [R1]). The space Y is not WCG.
(ii) The space Y∆ is not SWCG.

Proof: We are interested in assertion (ii) of course but for completeness we

also give the easy proof (due to Rosenthal) of assertion (i). The set R̃ is from
Lemma 3.6 an unconditional basis of Y and, by Remark 3.8, it is not a σ-relatively
weakly compact subset of L1(µ). Now the result of Johnson (see Remark 3.2)
proves immediately (i).
In order to prove (ii) assume for the purpose of contradiction that the space

Y∆ is SWCG. Since the family ∆̃ is an unconditional basis of Y∆ there exists by
Proposition 3.1 a sequence (∆n) of subsets of ∆ such that:

(a) each ∆̃n is a relatively weakly compact subset of Y∆ (hence, ∆n is a
relatively weakly compact subset of L1[0, 1]);

(b) if K ⊆ ∆ and K̃ is a relatively weakly compact subset of Y∆ then there

is n0 ∈ N so that K̃ ⊆ ∆̃n0 (hence, K ⊆ ∆n0).

Denote by En the weak closure of ∆n in L1[0, 1] for n ∈ N, hence each En

is weakly compact. We shall show that R =
⋃∞

n=1(R ∩ En); since each of the

sets R∩En is a relatively weakly compact subset of L
1[0, 1], this equality clearly

contradicts Lemma 3.4. So let r ∈ R; since ∆ is norm-dense in R there is a
sequence (rn) ⊆ ∆ with limn→∞ ‖rn − r‖1 = 0. Therefore the set {rn : n ∈
N}∪{r} is norm and thus weakly compact subset of L1[0, 1]. It follows then from
Lemma 3.7(ii) that the set {frn

: n ∈ N} is a relatively weakly compact subset of

L1(µ) and thus of Y∆. So there exists (from (b)) n0 ∈ N with {frn
: n ∈ N} ⊆ ∆̃n0

which implies that {rn : n ∈ N} ⊆ ∆n0 and hence w − lim rn = r ∈ En0 . The
obvious inclusion

⋃∞
n=1(R∩ En) ⊆ R, finishes the proof of assertion (ii). �
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Corollary 3.10. Let ∆ be a countable norm dense subset of R. Then the space
Y∆ is a non SWCG subspace of the space L1[0, 1]N (∼= L1[0, 1]).

Proof: It is an obvious consequence of the construction of Y∆ and of Theo-
rem 3.9(ii). �

Note. The space Y∆ (where ∆ is a norm-dense subset ofR) is weakly sequentially
complete as a subspace of L1[0, 1]∆ and it has an unconditional basis. Therefore
its basis is boundedly complete and Y∆ is isomorphic to a dual Banach space (see
[L-T, Theorem 1.c.10]).

H. Rosenthal has proved, assuming Martin’s axiom plus the negation of contin-
uum hypothesis (MA + ⌉CH), the following result: If µ is a probability measure
on some measurable space and Y is a closed linear subspace of L1(µ) of density
character dim Y < c, then Y is WCG (see Theorem 2.7 of [R1]). The first named
author has proved several years ago (it was about 1993) a generalization of this
result, which still remains unpublished. We decided to include this result in this
note because it improves considerably the result of Rosenthal and also because
its proof is short and sweet.
We shall need a definition and also the main result of [M] (see also [M-N]

and [D-G-Z]).

Definition 3.11 ([M, Definition 1.1]). For a topological space X we denote by
c1(X) the closed linear subspace of ℓ

∞(X) which consists of all bounded functions
f : X → R such that for every ε > 0 the set σε(f) = {t ∈ X : |f(t)| ≥ ε} is a
closed and discrete subset of X .

Theorem 3.12 ([M, Theorem 4.1]). A Banach space Y is WKA if and only if
there exists a bounded linear one-to-one operator T : Y ∗ → c1(Σ×{0, 1}a), where
dimY ≤ 2a, which is weak* to pointwise continuous.

Note. It is obvious that the space Σ × {0, 1}ω is homeomorphic to the Baire
space Σ, hence if dimY ≤ 2ω = c, then the operator T of Theorem 3.12 takes
values in the space c1(Σ).

Now we state the above mentioned generalization of Rosenthal’s result.

Theorem 3.13 (MA + ⌉CH). Let Y be a WKA Banach space with dim Y < c.
Then Y is WCG.

Proof: Since Y is a WKA Banach space with dimY < c there exists according
to Theorem 3.12 a bounded linear one-to-one operator T : Y ∗ → c1(Σ) which is
weak* to pointwise continuous. Therefore the space Ω = T (BY ∗) endowed with
the topology of pointwise convergence is homeomorphic to the compact space
(BY ∗ , w∗). Set Σ′ =

⋃
{supp f : f ∈ Ω} (where for f ∈ c1(Σ), supp f = {σ ∈ Σ :

f(σ) 6= 0}); then it is easy to see that the cardinality |Σ′| of Σ′ is equal to the
topological weight of Ω and thus of (BY ∗ , w∗); hence

|Σ′| = dim Y < c.
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Now we recall a consequence of Martin’s axiom: Every subset Σ′ of the Baire
space Σ of cardinality smaller than c is a σ-relatively compact subset of Σ (see
[J-R, pp. 118–119]). So let (Kn) be a sequence of compact subsets of Σ with
Σ′ ⊆

⋃∞
n=1Kn. We set Γ =

⋃∞
n=1Kn and define a map Φ : Y

∗ → c0(Γ) in the
following way:

Φ(y∗) =

(
T (y∗) |Kn

n

)

n∈N

.

It is easy to verify that Φ is a well defined bounded linear one-to-one operator
which is weak* to pointwise continuous. Since the range of Φ is the Banach space
c0(Γ) we conclude immediately from the classical theorem of Amir-Lindenstrauss
that Y is a WCG Banach space (see [N], [M-N] and [D-G-Z]). �

The following open questions concern a(non separable)SWKABanach spaceX.

(a) Is X a subspace of a WCG Banach space, or at least a Kσδ subset of
(X∗∗, w∗)? What happens if we assume furthermore that X is a dual
Banach space?

(b) Assume that X does not contain ℓ1. Does then X have a Čech-complete
unit ball? (see Remark 1.16(2) and Corollary 2.7).
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Math. 23 (1993), 395–446.

[Ch] Christensen J.P.R., Topology and Borel Structure, North-Holland, Amsterdam, 1974.

[D-G-Z] Deville R., Godefroy G., Zizler V., Smoothness and renorming in Banach spaces, Long-
man, Harlow, 1993.

[E] Engelking R., General Topology, PWN, Warszawa, 1977.

[E-W] Edgar G.A., Wheller R.F., Topological properties of Banach spaces, Pacific J. Math.
115 (1984), no. 2, 317–350.
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