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On weighted spaces of functions harmonic in R"

A.I. PETROSYAN

Abstract. The paper establishes integral representation formulas in arbitrarily wide Ba-
nach spaces b%, (R™) of functions harmonic in the whole R™.
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1. Introduction

1.1. This paper extends the results of [1] related to arbitrarily wide spaces of
functions harmonic in the unit ball B of R™ to similar spaces of functions harmonic
in the whole R™. Namely, the integral representation formulas in spaces b%,(R™),
which have natural definition, are obtained by exhausting R™ by enlarging balls.
Also, a representation connected with the natural isometry between b2 (R™) and
the space L2(S ) is obtained, which is of an explicit form of integral operator along
with its inversion.

The results of this paper are faregoing multidimensional similarities of the early
results of M.M. Djrbashian [3], [4] (1945-1948) which in essence gave rise to the
theory of HP(«) spaces in the unit disc: the applied analytic apparatus allows
to extend the results of [5] related to the one-dimensional case and holomorphic
functions to functions harmonic in R™.

Note that in [2], the case of weighted spaces of functions analytical in the unit
ball of C" is investigated.

1.2. We start with some notation which we use all over the paper.

B = {z € R™ |z| < 1} is the open unit ball in R™ and S = {x € R™: |z| =1} is
its boundary, i.e. S is the unit sphere in R";

o is the normalized surface-area measure over S, i.e. o(S) = 1;

Hj,(R™) is the set of all complex-valued homogeneous harmonic polynomials of
degree k in R";

H;,(S) is the set of all spherical harmonics of degree k, i.e. all restrictions of
functions from H(R™) to the sphere S;

Z(n,¢) is the zonal harmonic of degree k, i.e. Zi(-,{) € Hi(S) and p(¢) =
Js () Z(n,¢) do(n) for all p € Hy(S);
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P[f] is used for the Poisson integral of f:

1z

S e—am

(1) P[f](x):/SP(%C)J“(C)dU(C% where P(z,¢)

2. The case of the ball

We shall use the following definitions and statements from [1] related to the
weighted spaces b, (B) in the unit ball.

As in [5], by © we denote the class of all functions w(t) defined on [0, 1] and such
that w(1) = w(1 —0) and

(i) 0 < V}w < oo for any § € 0,1);

1
(ii) Aszk(w):—/ R dw(t) # 0,00, k=0,1,...;
0

(iii) lim inf VIAR > 1.
—00

Further, for a given w € {2, we denote

dps () = —dw(r?) do(C),

where z = r( is the polar form of x, (i.e. r = |z|, ¢ € S) and define L%,(B) as the
set of all dyu,-measurable functions in B for which

1/p
|u|p,w—{ /B IU(I)Iplduw(x)l} <40, 1<p<oo.

By b%,(B) we denote the subset of harmonic functions from L%, (B).
Further, for a given w € Q we use the w-kernel of the form

o0
Rule,y) = Y A Zi(ay),
k=0

where Zp(z,y) is the harmonic extension of the zonal harmonic Z;, by its both
arguments. As it is proved in [1], for any function u € b, (B) the following integral
representation is true:

2) uw) = [ ) Role.n)dnoty). @ € B.
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3. The integral representation in R"

3.1. Let Q°° denote the set of parameter-functions w(t), which strictly decrease
on the whole half-axis [0, +00) and are such that w(0) =1 and

+oo
Azo(w):—/o t* dw(t) < 400 for any k=0,1,... .

For a given w € Q% we introduce the space b.,(R™) as the set of all functions
which are harmonic in R” and such that

1/p
fullo ={ [ WP aot} " < o0, 155 <40,

where dp,(r¢) = —dw(r?)do(¢). Let LE,(R™) be the corresponding Lebesgue
spaces. We shall deal with the following w-kernel in R™:
o
Zk((E, y)
3 Ry = —.
(3) Fen =3 my
k=0

Lemma 1. The right-hand side series in (3) is absolutely and uniformly conver-
gent on any compact subset of R™ x R", and hence RZ°(x,y) is harmonic in each
of its variables in R™.

PROOF: Let z = r(, y = pn, where {,n € S. As the function Z(x,y) is homoge-

neous in its both variables, we get

(4) |Z1(2,9)| = M| 25 (¢ )| < 7 iy,
where hy, is the dimension of H(S). Now observe that under the above conditions
2

T
(5) lim /A (w) = 2 for Af(w) = _/0 t* dw(t) and Vr € (0, +o0].

k—o0

Indeed, it is obvious that A} (w) < rzk(l —w(r?)) and hence
(6) limsup {/A (w) < 2.
k—o0

On the other hand,

2

M) = - | "R () > 0 (w(r?) - ()
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for any 0 € (0,72). Therefore

.. k r . k 2y o
l}grr_l)géf {/AL(w) > 61@1220 {/ (w(r?) —w(8)) =4,

and hence by (6) the passage § — 72 gives (5). Further, note that A (w) Tr

Therefore by (5)
s i f k) A0 > 2
l}ﬁmlnf {/AR (w)y>r

for any r > 0, and consequently

(7) lim /AR (w) = +oo.

k—o0
The desired convergence follows from (4) and (7) in view of the estimate
(8) hy, < CE2
(see, e.g. [7]). O

3.2. The following statement is the main theorem of this section.

Theorem 1. Let u € b2 (R"), where w € Q. Then

) uw) = [ a@EX @) dis), e R

PrOOF: The idea of the proof is the following. For any r > 0 we introduce a
kernel

o0
def x—~ Zx(z,y)
Rl (x,y) = ,

k=0

where A} (w) is defined in (5). This kernel plays for a ball |z| < 7 the same role, as
Ry, (z,y) for a unit ball, after dilation we obtain the integral representation (10)
from (2). And passing to limits as r — oo we get (9) from (10), which is expected,
because the coefficients A7 (w) of the expansion of the kernel R[,(x,y) tend to the
coefficients AP (w) of R°(x,y).

Consider the function wy,(t) = w(r?t), 0 < t < 1. Then obviously Ay (w,) =
r_zkAZ(w). Therefore by (5)

klirn VAL (wr) =1,
— 00
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and hence w, € Q. On the other hand, u(rz) € bo%r (B™). Thus, the representation
(2) is valid for u(rz). Now observe that for |x| <7, |y| <7

oo

h (B oS A S A s
"\l k:OrzAk(w) = A7 (w) wiT e

and dp, (£) = dpw(y). Consequently, (2) can be written in the form
(10) uw = [ u@R @ i), o<

lyl<r
and to prove (9) it suffices to show that for any fixed z € R"

) in [ @R d) = [ a)RS o) (o)

e yl<r

To prove this relation, observe that by Lemma 1 the function RSP (z, -) is harmonic
in R™. Therefore, by Holder’s inequality

1/2
[ oz ane) < lulow { [ R ) duoto) |

oo ) 1/2
= [Jull2,w {Z 3z /Rn Zj(w, pC) duw(pé)l}

k=0

. - 1/2
—||u||2,w{2w%)2 /J o ()| /S Z,%<x,<>da<<>} .

k=0

Further, it is evident that

@ [ B0 = b [ 2(50)do(0) = e

B
Consequently,
= fo g |
) [ )R] ) < Il § S EEE
k=0

According to (7) and (8), the right-hand side a series of this estimate is convergent.
Hence we conclude that the relation (11) is equivalent to

lim u(y)[R(z, y) — R (. y)] dpw (y) = 0.

o0 Jlyl<r
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In order to prove the latter relation, assume that |z| = rg, ro+1 < r1 < r < +o0,
and observe that

I(r) = / u(y) (R (2, y) — R (2, 1)) dpio(y)
ly|<r

< / () (RE (2, y) — B (2, 9))] dpte ()
ly|<r1
+ / SO AT

t [ )RS @) de(s) = R + 1) + B0
ri<|y|<r

To estimate the summand I2(r) we once again apply Holder’s inequality:

w)s{ [ P | |Rz;<:c,y>|2duw<y>}1/2

(14) ri<l|y|<r ri<lyl<r
© 1/2
{ [ mlPawY am [ Zevdun)}
r1<lyl<r k=0 TR yl<r

Further, according to (12)

| Zenimi= [ 2o [ )

T1
(15) rm<|yl<r

T
= el [ P o)
T1
Therefore

o0

1 / )
Y o3 Zi(x, pn) dp (pn)
- O(AZ)Q r1<|y\<r k “
o0

2k 2k
% |2|* hy hk o I
—Z g [ 160 [ 22 (o) aoto Z L ar

The last series converges in virtue of (5) and (8), therefore 12( ) < ¢/3 for a
given € > 0 and r; large enough. On the other hand, from (13) it follows that
I3(r) < e/3 for r; large enough. Besides, for any fixed r1

1/2
I(r) < |lull2,w {/ - IR (z,y) — Rio(x,y)l2duw(y)}
Yy|<ri

X /1 1\? ) 12
= |lull2w { <—r - To) / Zi(2,y) duw(y)} :
kZ:% A A% lyl<r1 g

(16)
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Therefore, by (15)

> 1 12 2k ok 2 2
Z AT A® |2 |** g, P~ [dw(p”)| )
k=0 Nk k 0
and the latter series has a convergent majorant independent of r. Indeed,

i 1 1 2| |2kh /T,1 2k|d ()|
——— |z w

k=0
[e%S) 2 2k
2 T hk
k=0 k k=0 "k

where the right-hand side series converges due to (5) and (8), as 19 < r1. There-
fore, the right-hand side of (16) vanishes as r — 400 and hence I1(r) < ¢/3 for
r large enough. Thus, we conclude that I(r) — 0 as r — 400, which implies the
desired representation (9). (]

Ii(r) < IU||2,W{

3.3. As b2 (R™) is a closed subspace of the Hilbert space L2 (R™), there is a unique
orthogonal projection @ of L2(R™) onto b2 (R™), which is described by

Theorem 2. The operator
Qulule) = [ w)RS @) di(y) @ €R” e E,

is the orthogonal projection of L?(R™) onto b2 (R™).

The proof of this theorem as well as of the statements below follows the same
lines as the corresponding one in [1] and is thus omitted.

Proposition 1. Let a function @ € Q°° be continuously differentiable in [0, +00)
and such that @(+o0) = 0, @'(t) < 0 and is bounded on [0, +o0) and

0+°O t—1d&(t) > —oo. Further, let w be the Volterra square of &, i.e.

(17) w(z) = —/O o(D)as),  0<z<1
Then w € Q% and
(18) AR (W) = [AR (@), m=>0.

By hP(B) we denote the ordinary harmonic Hardy space in B. Besides, we
consider the operator

Loful(z) = — /O (i) dat).

The following two theorems establish an isometry along with its inversion between
b2 (R™) and L%(S).
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Theorem 3. The mapping f — Rg|f], where

Rslf)(x) = /S FORE(2,¢) do(C)

is a linear isometry from L?(S) to b2 (R™).

Theorem 4. Let f € L?(S) and u = Rg[f]. Then

(a) Lglu] = P[f], where P[f] is the Poisson integral (1);
(b) the mapping u — Lg[u] is a linear isometry of b%(R") onto h*(B).

Remark 1. Tt is well known that for f € L?(S) the function P[f] has a nontan-
gential limit f({) at almost every point ¢ € S. Thus, it is natural to identify f
and P[f] and to say that the operators L, and R, are mutually inverse.
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