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On the boundary of 2-dimensional ideal polyhedra

Emmanuel Vrontakis

Abstract. It is proved that for every two points in the visual boundary of the universal
covering of a 2-dimensional ideal polyhedron, there is an infinity of paths joining them.
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1. Introduction and definitions

The study of the homeomorphic type of the visual boundary of a CAT(−1)
space is an interesting problem, see for example [1], [12], [13]. The goal of the
present work is to investigate some properties of the visual boundary of an ideal
polyhedron of dimension 2.
Firstly, we recall some standard definitions (for more details see for exam-

ple [14]).
A path in a topological space X is a continuous map f : I → X , where I is

an interval in R. If the interval is compact, i.e. I = [a, b] and if x = f(a) and
y = f(b), then we say that f joins x and y; in this case the path is also called
an arc. We denote the distance between two points x, y in a metric space X by
dX (x, y). Let X and X ′ be two metric spaces. A map f : X → X ′ is called an
isometry if dX(x, y) = d

X
′ (f(x), f(y)) for every x, y ∈ X . A geodesic in X is a

path g : I → X which is an isometry. If I = [0,+∞) we say that g is a geodesic
ray, if I = [a, b] we say that g is a geodesic segment and if I = (−∞,+∞), we
say that g is a geodesic line. A local geodesic in X is a path g : I → X such
that for each t ∈ I, there exists an interval I(t) ⊂ I, which is a neighbourhood
of t in I, such that the restriction of g to I(t) is a geodesic. A closed geodesic
in X is a periodic map g : (−∞,+∞) → X which is a local geodesic. A metric
space X is said to be geodesic if for all x and y in X , there is a geodesic segment
g : [a, b]→ X with g(a) = x and g(b) = y.

Now, we consider a family T of ideal triangles of the hyperbolic plane H2 glued
by isometries along their sides. We denote by X the resulting space. An edge e
of X (i.e. a 1-dimensional (open) simplex of X) is the image in X of a side of an
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ideal triangle T ∈ T . An ideal vertex of X is the image in X of an ideal vertex
of some T ∈ T . An edge e of X is said to have index k, k > 1, if e is obtained
by the identification of k sides of the ideal triangles of T . If an edge e is of index
k > 2, then e is called singular .
We assume that X satisfies the following:

(a) It is locally finite, i.e. every point belongs to a finite number of triangles.

(b) Every edge is adjacent to, at least, two triangles.

X becomes a metric space; its metric dX(·, ·) is induced from the ideal triangles
as follows: the length lX(f) of a path f : [a, b]→ X is defined as the sum of the
lengths of the components of the intersection of f with the triangles of X . For
x, y in X , we define dX (x, y) to be the infimum of the set of lengths of all paths
joining these points. Actually, dX(x, y) is a pseudo-metric but the local finiteness
property implies that dX (x, y) is a metric (see Proposition 1.2 of [4]).
We impose further in the assumptions of X that:

(c) The metric dX (·, ·) is complete.

Therefore, we deduce thatX is geodesic since it is locally compact and complete
(Cohn-Vossen, see p. 4 of [10]).
We remark here that the completeness of dX(·, ·) puts some restrictions on the

gluing isometries between the sides of the ideal triangles of T . If X consists of a
finite number of ideal triangles then we can describe the completeness in terms
of a geometrical property at the ideal vertices of X . With each ideal vertex v of
X we can associate a natural foliation of a subset of X (a “neighborhood” of the
ideal vertex), which is well defined up to restriction to a smaller neighborhood.
The definition is as follows. Consider an ideal triangle in X , having v as one of
its ideal vertices. Consider a foliation of a horoball neighborhood of v in the ideal
triangle, whose leaves are pieces of horocycles which are centered at the ideal
vertex. Considering now the various ideal triangles in X abutting on v, we can
glue together these foliations and define a foliation of a “horoball neighborhood”
of the ideal vertex v in X . (Note that the foliation is singular, with singular
locus contained in the singular edges of X). Then, X is complete as a metric
space if and only if, for each ideal vertex v of X and for each foliation of a
horoball neighborhood of v, which is obtained in this manner, the restriction of
the foliation to a smaller neighborhood of v is a product foliation on a space
of the form L × [0,∞), the leaves of which are the fibers L × {x}, where L is
homeomorphic to a closed graph (which in fact is the link of v). Proposition 3.4.18
of [15] concerns the case where X is a hyperbolic cusped surface, but the case of
an ideal polyhedron follows with the same discussion.

Now, for each x ∈ X , there is a neighborhood U of x such that either U is
isometric to an open ball in H2 or to a finite number of half-discs inH2 with equal
diameters, which are glued along their diameters. It follows, from Corollary 5 of
[9], p. 192, that X is of curvature less than or equal to −1 i.e. X satisfies locally
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the CAT(−1)-inequality (for more details on spaces of curvature less than or equal
to −1 as well as on CAT(−1)-inequality, see for example [2], [9], [14]).

The spaceX defined above, equipped with a triangulation T of hyperbolic ideal
triangles, will be called an ideal polyhedron of dimension 2. Such a triangulation

T will be referred to as ideal triangulation. The universal covering X̃ obviously
inherits the structure of an ideal polyhedron because the triangulation T is lifted
to an ideal triangulation T̃ of X̃ .

The geodesic metric space X̃ is locally compact, complete and CAT(−1).

Therefore the visual boundary ∂X̃ of X̃ is defined by means of the geodesic rays

emanating from a fixed point of X̃ (see for example [2], [13]).

Several properties of ideal polyhedra have been studied in [4], [5], [7], [8].

Throughout this paper, we assume that the triangulation T of X contains a
finite number of ideal triangles, i.e. X is a finite ideal polyhedron, and that X
contains at least one singular edge. The main result of this work is the following:

For every η, ξ ∈ ∂X̃, there exists an infinite (uncountable) number of distinct

subspaces Ci of ∂X̃, which are homeomorphic to S1 and which contain η and ξ.

2. Proof of the main theorem

Let X be a finite ideal polyhedron and let X̃ be its universal covering. We

assume thatX and X̃ are equipped with ideal triangulations T and T̃ respectively,
which are considered fixed in the sequel.

A subpolyhedron of X̃ is, by definition, a connected subset P of X̃ equipped

with an ideal triangulation T̃P such that each triangle of T̃P belongs to T̃ . The
metric of P is induced from the metric of X̃. Denote by H+ = {(x, y) ∈ H2 : x ≥
0}.

Lemma 1. Let P be an ideal polyhedron and let h : P → X̃ be a local isometry.
Then h is an isometry and P is simply connected.

Proof: In order to prove that h is an isometry we proceed as follows: If P is not

simply connected, we consider the universal covering space P̃ of P . If p1 : P̃ → P

is the covering projection, we will firstly show that the mapping h◦p1 : P̃ → X̃ is

an isometry, i.e. d eP (x̃, ỹ) = d eX(h◦p1(x̃), h◦p1(ỹ)). Every two points in P̃ and X̃

can be joined by a unique geodesic segment in P̃ and X̃ , respectively. Therefore,
in order to prove that h ◦ p1 is an isometry it suffices to show that the geodesics

of P̃ are mapped to geodesics of X̃ . But this last assertion is true because h and

p1 are local isometries and since every local geodesic of X̃ is a geodesic of X̃ (see
for example Proposition 1.4. of [6]). As a result, h ◦ p1 is an isometry and hence
p1 must be an isometry. Therefore P is simply connected and h is an isometry
too. �
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When P is a subpolyhedron of X̃ then Lemma 1 shows that the natural em-

bedding h : P → X̃ is an isometry. Hence, due to the Theorem of Gromov [11],

the space ∂P , is embedded in ∂X̃.

Now, let η, ξ ∈ ∂X̃ and g̃ : (−∞,+∞) → X̃ be a geodesic, with g̃(−∞) = η
and g̃(+∞) = ξ, and denote by Im g̃ the image of g̃. We have the following
elementary lemma:

Lemma 2. (a) If e is an edge of X̃ and if e 6= Im g̃, then e ∩ Im g̃ is a singleton,
provided that e ∩ Im g̃ 6= ∅.
(b) There are no t1, t2, t3 ∈ (−∞,+∞), with t1 < t2 < t3, such that:

g̃(t1), g̃(t3) ∈ Tj and g̃(t2) ∈ Ti, where Ti, Tj ∈ T ′ and Ti 6= Tj .

Proof: The proof of (a) and (b) follows immediately from the fact that e and

Tj , are convex subsets of X̃ and X̃ is a CAT(−1) space. Therefore two points
either in e or in Tj can be joined by a unique geodesic segment which belongs to
e or to Tj , respectively. �

Let g̃ : (−∞,+∞) → X̃ be a geodesic such that Im g̃ does not coincide with

an edge e of X̃. Let S = {T ∈ T ′ : T ∩ Im g̃ 6= ∅}, be the collection of triangles
intersected by Im g̃. We order the elements of S as follows: consider a partition of
(−∞,+∞), as a union of closed intervals

⋃
Ii, i ∈ I, such that: for every i ∈ I,

g̃(Ii) belongs to a single T which we label by Ti, and the intersection Ii ∩ Ii+1

contains a single point ti, while the triangles Ti, Ti+1 have only one side adjacent
that contains g̃(ti). We call {Ti}i∈I an ordered sequence of triangles which are

intersected by g̃. Therefore Im g̃ can intersect two successive triangles Ti, Ti+1,
i ∈ I, in the following way: Ti, Ti+1 have a common side, which coincides with

an edge e of X̃ and g̃ intersects e transversely, passing from the interior of Ti to
the interior of Ti+1.
The number of triangles {Ti}i∈I , may be infinite or finite and by the previous

lemma we deduce that Ti 6= Tj if i 6= j.
We need the following lemmata:

Lemma 3. If e is an edge of X̃ of index k, k > 1, there are exactly k ideal
triangles of T ′ which have e as a common side.

Proof: If the lemma is not true, then there is a triangle Ti ∈ T ′ which has two

different sides identified to the edge e of X̃. Therefore we can find a simple closed

loop α in Ti which intersects e once. But α must be null-homotopic in X̃ . By
Corollary 2.4 of [8], αmust belong in the interior of Ti, which gives a contradiction.

�

Lemma 4. Let R be a subpolyhedron of X̃ which is isometric to H2 and which

contains at least one singular edge ẽ of X̃. Let p|R(R) = Y , where p|R denotes

the restriction of the covering map p : X̃ → X to R. If z, w ∈ ∂R and arc[zw]
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denotes an arc if ∂R joining z and w, then there exists a countable number of
disjoint subarcs arc[ziwi] of arc[zw] such that: p|R((zi, wi)) = p(ẽ) for every i,

where by (zi, wi) we denote the geodesic of R which joins zi and wi.

Proof: It is well known that X = X̃/ Isom(X̃), where Isom(X̃) denotes the

discrete group of isometries of X̃ . Let G be the subgroup of Isom(X̃) whose
elements leave R invariant, hence for every φ ∈ G we have φ(R) = R. Therefore,
Y = R/G. The mapping p|R is a local isometry, therefore every local geodesic

g of Y has a lifting g̃ in R which is a local geodesic in R and hence in X̃ . By

Proposition 1.4 of [6] g̃ is a geodesic of X̃. We consider an edge ẽ of R such
that p(ẽ) = e is a singular edge of X . Let arc[zw] be an arc of ∂R ≈ S1 and let
y ∈ Int(arc[zw]). Let g̃ : (−∞,+∞) → R be a geodesic with g̃(+∞) = y and
which intersects ẽ. Y is a finite ideal polyhedron. Therefore, from Theorem 2
of [7], the set of closed geodesics of Y is dense in the set of local geodesics of
Y with the compact-open topology. So, we deduce that there exists a geodesic

h̃ : (−∞,+∞) → R which is arbitrarily close to g̃ and whose image by p|R is a

closed geodesic in Y . Therefore, there exists an isometry σ ∈ G which leaves h̃

invariant. Obviously, σ is a hyperbolic isometry of X̃ which has the geodesic h̃
as an axis. Therefore σ translates ẽ till its end-points in ∂R are arbitrary close

to h̃(+∞). So, there exists n ∈ N such that the end-points of σn(ẽ) lie in the
interior of arc[zw] (see for example Proposition 7.2 in [3]).
By repeating the same procedure with an arc arc[z′w′] ⊂ ∂R\ arc[zw] instead

of arc[zw], we may easily accomplish the proof of lemma. �

Now, we are able to prove the following:

Theorem 5. Let X be an ideal polyhedron of dimension 2 and we assume that
X contains at least one singular edge. Then we have:

For every η, ξ ∈ ∂X̃, there exists an uncountable number of distinct subspaces Ci

of ∂X̃, which are homeomorphic to S1 and which contain η and ξ. Furthermore,

every Ci is the visual boundary of a subpolyhedron Pi of X̃ which is isometric
to H2.

Proof: Let η, ξ ∈ ∂X̃ and g̃ : (−∞,+∞) → X̃ be a geodesic, with g̃(−∞) = η
and g̃(+∞) = ξ. Firstly, we assume that Im g̃ does not coincide with an edge of

X̃ and let {Ti}i∈I be the ordered sequence of ideal triangles, intersected by Im g̃.

We will construct a subpolyhedron P of X̃ such that:

(1) P contains the geodesic g̃,
(2) P is isometric to H2.

The whole construction will be based upon the geodesic and its way through
the triangles {Ti}i∈I . We will use a procedure of cutting along all singular edges

in X̃ and re-gluing, in order to eliminate all singular edges of X̃. In this way we
find a surface P with the above mentioned properties.
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We consider all singular edges ej of X̃ of index k with k > 3, and we cut X̃
along such ej . The resulting space, say Z, has ideal triangles with free sides i.e.
sides that belong only to one ideal triangle. We glue back these ideal triangles of
Z by isometries, along their free sides, as follows:
Let the index of ej be kj . The cutting operation along ej creates the free sides
{ej,i}i, i ∈ {1, . . . , kj}. Let Tj,i be the ideal triangle which contains ej,i. From
Lemma 3, all these triangles Tj,i are distinct for all i ∈ {1, . . . , kj}. If Im g̃∩ej 6= ∅,
then from Lemma 2, there are exactly two triangles of {Tj,i}, i ∈ {1, . . . , kj},
which are transversed by g̃ and, without loss of generality, we may assume that
Tj,1, Tj,2 are these triangles. We distinguish two cases:

(1) if the order of singularity is an even number, then we glue Tj,1, Tj,2 via
an isometry which identifies ej,1 with ej,2 and then, we pair-wise glue the other
triangles Tj,i, by isometries along their free sides.
(2) if the order of singularity is an odd number, then we glue Tj,1, Tj,2, Tj,3,

via an isometry which identifies ej,1, ej,2, ej,3 and then, we pair-wise glue the
other triangles Tj,i, by isometries along their free sides.

Notice that the isometries above (as well as the isometries in the sequel) which

glue two ideal triangles, are exactly the same isometries which glue them in X̃.
In this way, we construct a connected ideal polyhedron, say R, which contains

g̃ and all its singular edges are of index 3. Obviously R is equipped with an ideal

triangulation T̃R, induced by T̃ . Denote the singular edges of R by dj .
Label the three ideal triangles incident with the edge dj , by Tj,1, Tj,2, Tj,3.

We may assume, after relabeling if necessary, that g̃ passes, as time increases,

from Tj,1 to Tj,2. Consider four copies of R, say R(a), R(b), R(c) and R(d), with

triangles T
(a)
j,i , T

(b)
j,i , T

(c)
j,i , T

(d)
j,i , i ∈ {1, 2, 3}, respectively. Cut along all singular

edges in all copies of R. Then, for each singular edge dj in R we have a total of
twelve triangles, each having one free side. We glue these triangles by isometries
along their free sides, as follows:

T
(a)
j,1 with T

(b)
j,2

T
(b)
j,1 with T

(a)
j,2

T
(c)
j,1 with T

(a)
j,3

T
(b)
j,3 with T

(c)
j,2

T
(d)
j,1 with T

(c)
j,3

T
(d)
j,3 with T

(d)
j,2

The resulting space is a surface S (not necessarily connected) since the index
of every edge of S is 2. In the above construction, we take care so that there
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exists a component P of S which contains the geodesic g̃. Indeed, since we have

assumed that g̃ passes from Tj,1 to Tj,2 in R, by gluing T
(a)
j,1 with T

(b)
j,2 and T

(b)
j,1

with T
(a)
j,2 , such a component P exists.

In the case when Im g̃ coincides with an edge e of X̃ , we may proceed with the
same method for the construction of P . In this special case, we do no need to pay
any attention when we pair-wise glue the triangles along their free sides.
The surface P is of curvature less than or equal to −1, which means in this

case that P has Riemannian curvature equal to −1. From the construction of P ,
we have a local isometry f : P → X̃. By Lemma 1, we have that P is simply
connected and hence, f an isometry. By identifying P with its image, via f ,

we may consider P as a subpolyhedron of X̃. By means of the Uniformization
Theorem, we conclude also that P is isometric to the hyperbolic planeH2. Also, as
we have remarked after Lemma 1, the visual boundary ∂P , which is homeomorphic

to the circle S1, is embedded in ∂X̃. So, we have found one circle C = ∂P which
satisfies the requirements of the theorem.

Let now Y = p(P ), where p : X̃ → X is the covering projection. Y is a finite
ideal polyhedron contained in X , which contains necessarily a singular edge e1
of X . This follows because P contains, by construction, a singular edge ẽ1 of X̃.
From Lemma 4, we have that there is countable number of disjoint arcs arc[zkwk]
in ∂P , k ∈ N, such that:

(i) (zk, wk) are singular edges of X̃ ,

(ii) the points z1, w1, z2, w2, . . . , zk, wk, . . . are consecutive in ∂P ≈ S1.

Now, let ẽi = (zi, wi) be such a singular edge of X̃. Obviously, there is an

ideal triangle Ti ∈ T̃ such that Ti ∩ P = ẽi and there exists also a geodesic

h̃ : (−∞,∞) → X̃ which intersects ẽ once and passes through Ti. Using the

gluing construction above, we may construct a subpolyhedron Pi of X̃ such that:

Im h̃ ⊂ Pi, Ti ⊂ Pi and Pi is isometric to H2. Denote by P+i the subpolyhedron

of Pi (and hence of X̃) which contains Ti and such that bd(P
+
i ) = ẽi, where

bd(P+i ) denotes the topological boundary of P+i . Obviously P+i is isometric to

H+ and since P+i is a convex subset of X̃ , from Lemma 1, the visual boundary

∂P+i of P
+
i is a subspace of ∂X̃ homeomorphic to [0, 1]. The boundary points of

∂P+i in ∂X̃ are zi and wi, so we denote ∂P+i by arc[ziwi].

By applying Lemma 4 once again, we may find disjoint arcs arc[zi,kwi,k] in
arc[ziwi], k ∈ N, which satisfy properties (i), (ii) above. For each i, k ∈ N, we
continue the same procedure, with arc[zi,kwi,k] in the place of arc[ziwi] and we
construct disjoint arcs arc[zk,i,jwk,i,j ] in arc[zk,iwk,i], j ∈ N, and so on.

By combining the arcs arc[zi1,i2,...,ikwi1,i2,...,ik ], i1, i2, . . . , ik ∈ N and k → ∞,

we may find an uncountable number of simple paths in ∂X̃ which join η and ξ.
Therefore, the proof of theorem may easily be accomplished. �
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Finally, we remark that if we remove from ∂X̃ two points z, w with the property

that the geodesic line (z, w) in X̃ is an edge of X̃, then ∂X̃ − {z, w} is not
connected. However, as an immediate application of Theorem 5 we have the
following

Corollary 6. There exists an infinite subset A of ∂X̃ with Int(A) = ∅ such that

∂X̃ − A is arc connected.

Proof: With the notation at the end of Theorem 5, we may construct the set A
by picking up a point from the interior of each arc[ziwi] in ∂P , i ∈ N. Obviously

∂X̃ − A is arc connected. �
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