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Isomorphic and isometric copies of ℓ∞(Γ) in

duals of Banach spaces and Banach lattices

Marek Wójtowicz

Abstract. Let X and E be a Banach space and a real Banach lattice, respectively, and
let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual
space X∗ contains an isometric copy of c0 iff X∗ contains an isometric copy of ℓ∞, and
(2) E∗ contains a lattice-isometric copy of c0(Γ) iff E∗ contains a lattice-isometric copy
of ℓ∞(Γ).
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1. Introduction

Let X , E, and Γ have the same meanings as in the Abstract. If Γ′ is an infinite
subset of Γ then c0(Γ′) denotes the subspace of c0(Γ) consisting of all the elements
with supports included in Γ′; a similar meaning has the symbol ℓ∞(Γ′). By N we
denote the set of positive integers; then the spaces c0(N) and ℓ∞(N) are simply
denoted by c0 and ℓ∞, respectively. All operators are assumed to be linear and
continuous.

The main goal of this paper is to provide concise and short proofs of the
statements (1) and (2) given in the Abstract. These equivalences are immediate
consequences of more general facts, presented in the Theorem below, concerning
the possibility of extensions of isomorphisms T : c0(Γ) → X∗ to isomorphisms

T̃ : ℓ∞(Γ) → X∗ with the norms ‖T̃‖ and ‖T̃−1‖ controlled by ‖T ‖ and ‖T−1‖,
respectively.

Theorem. (a) Let ℓ∞ be a real or complex space, let c0 denote its respective

subspace, and let T : c0 → X∗ be an isomorphism. Then there is an infinite

subset A of N such that the restricted operator TA := T|c0(A) extends to an

isomorphism S : ℓ∞(A) → X∗ with ‖S‖ = ‖TA‖ and ‖T−1
A ‖ ≤ ‖S−1‖ ≤ ‖T−1‖.

(b) Let c0(Γ) and ℓ∞(Γ) denote real spaces, and let T : c0(Γ) → E∗ be a lattice

isomorphism. Then T extends to a lattice isomorphism T̃ : ℓ∞(Γ) → E∗ with

‖T̃‖ = ‖T ‖ and ‖T̃−1‖ = ‖T−1‖.



468 M. Wójtowicz

Thus, the extended operator S in item (a) acts on a subspace of ℓ∞, while the

isomorphism T̃ in item (b) acts on the whole space ℓ∞(Γ). Part (a) of the Theorem
is obtained by an appeal to a result by Rosenthal included in [8, Remark 2,
p. 17]; cf. Lemma 2 below. Another Rosenthal’s result, for Γ uncountable [8,
Proposition 1.2], gives a somewhat weaker conclusion than in item (b) (here the
space ℓ∞(Γ) is real or complex, and c0(Γ) is its respective subspace):

(aε) Let Γ be an uncountable set, and let T : c0(Γ) → X∗ be an isomorphism.

Then, for every ε ∈ (0, 1) there exists a subset Γε of Γ with card(Γε) =
card(Γ) such that the restricted operator Tε := T|c0(Γε) extends to an

isomorphism Sε : ℓ∞(Γε) → X∗ with ‖Sε‖ = ‖Tε‖ and ‖Tε‖ ≤ ‖S−1
ε ‖ ≤

‖T−1‖/(1 − ε).

The equivalence, which follows immediately from our item (a), that X∗ contains

an isometric copy of c0 iff X∗ contains an isometric copy of ℓ∞ was obtained
in 2000 by Dowling [4, Theorem 1] as a result of six equivalent conditions in an
isometric version of the classical Bessaga and Pe lczyński theorem [3]; [5, Proposi-
tion 2.e.8] on copies of c0 in X∗. The properties included in the above items (aε),
(b), and (2) are new.

A comment concerning part (b) of the Theorem is necessary. For Γ = N there
is a lattice version of the above-mentioned theorem of Bessaga and Pe lczyński
asserting (via eleven equivalent conditions; see [2, Theorem 14.21]) that E∗ con-

tains a lattice copy of c0 iff E contains a lattice copy of ℓ1 iff E∗ contains a

lattice copy of ℓ∞, but there are no connections between the norms of operators in
question (here “lattice copy” means “both lattice and homeomorphic copy”). The
proof of this equivalence uses essentially the so-called property (u) of Pe lczyński
which is, however, of the countable nature and therefore cannot be extended to
the case when the lattices c0, ℓ1, and ℓ∞ are replaced by c0(Γ), ℓ1(Γ), and ℓ∞(Γ),
respectively, with Γ uncountable. On the other hand, in 1970 Rosenthal proved
that, for X a Banach space and Γ uncountable, if X∗ contains a copy of c0(Γ)
then X∗ contains a copy of ℓ∞(Γ) ([7, Corollary 1.2]; [8, Theorem 1.3]). In the
context of our item (b) and Rosenthal’s result, it seems to be an open question
if the containment of an isomorphic copy of ℓ∞(Γ) by the dual E∗ of a Banach
lattice E (or, more generally, by E whenever E is Dedekind complete) implies the
containment of the lattice copy of ℓ∞(Γ) (the case Γ = N has a positive answer:
see [2, Theorem 14.9]; cf. [9, Theorem]).

It should be stressed that our proof of item (b) is completely independent on
the above-cited results of Bessaga and Pe lczyński, and Rosenthal, and it follows
only from the Fatou property and monotone completeness of the dual norm of E∗.

2. Notations and terminology

We follow standard notations and terminology (for Banach spaces see [5]). For
the basic results concerning Banach lattices we refer to the monographs [2], [6].
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For the convenience of the reader we recall some definitions.
Let G, H be two linear lattices. An injective operator T : G → H is a

lattice isomorphism provided that both T and T−1 are positive; equivalently,
|Tx| = T (|x|) for all x ∈ G. The lattice G is Dedekind complete if every nonempty
subset V of G bounded from above has a supremum in G. If E = (E, ‖ ‖) is a
Banach lattice then the dual space E∗, endowed with the dual norm ‖ ‖∗, is
a Dedekind complete Banach lattice with respect to the ordering x∗ ≤ y∗ iff
x∗(x) ≤ y∗(x) for all x ∈ E+. The norm ‖ ‖ is said to be monotone complete
([6, p. 96]) if every norm-bounded and upward directed set (xi)i∈I in E+ has a
supremum (this property appears in the literature under many different names,
e.g. to be a Levi norm; see [1, p. 282]). The lattice E has the Fatou property if
for every upward directed set (xi)i∈I in E+ with supi∈I xi = x it follows that
supi∈I ‖xi‖ = ‖x‖. In the proof of part (b) of the Theorem we shall apply the
following result (see [6, Theorems 2.4.19 and 2.4.21]):

Lemma 1. For every Banach lattice E, the dual E∗ has the Fatou property and

the dual norm ‖ ‖∗ is monotone complete.

The symbol ◦ will denote composition of operators.

3. Proof of the Theorem

We start with the cited in Section 1 results by Rosenthal. Part (i) of the lemma
below is included in [8, Remark 2 on p. 17], while part (ii) is a quantitative version
of [8, Proposition 1.2] obtained from the following modification of its proof: on
page 17 of [8], lines 14–19 from above, one should apply [8, Lemma 1.1] with
ε ∈ (0, 1) arbitrary instead of (as in the original proof) fixed ε = 1/2. Here the
space ℓ∞(Γ) is real or complex.

Lemma 2. Let B be a Banach space, and let R : ℓ∞(Γ) → B be an operator
such that R0 := R|c0(Γ) is an isomorphism.

(i) If Γ = N, there is an infinite subset A of N such that the restricted

operator RA := R|ℓ∞(A) is an isomorphism with ‖R−1
A ‖ ≤ ‖R−1

0 ‖.

(ii) If Γ is uncountable, for every ε ∈ (0, 1) there is a subset Γε of Γ with
card(Γε) = card(Γ) such that the restricted operator Sε := R|ℓ∞(Γε) is an

isomorphism with ‖S−1
ε ‖ ≤ ‖R−1

0 ‖/(1 − ε).

In proofs of items (a) and (aε) we follow an idea of the proof of [8, Theorem 1.3],
and we identify ℓ∞(Γ) with c0(Γ)∗∗. By π and π1, respectively, we denote the
canonical embeddings of X into X∗∗ and X∗ into X∗∗∗, respectively, and P
denotes the well-known projection, with ‖P‖ = 1, from X∗∗∗ onto π1(X∗) of the

form P (x∗∗∗) = π1(x∗∗∗ ◦ π). Then the operator R := π−1
1 ◦P ◦ T ∗∗ maps ℓ∞(Γ)

into X∗, and its the restriction R0 := R|c0(Γ) is an isomorphism because

(1) R0 = T.
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Let Γ = N (i.e., we consider now item (a)), and let RA be the isomorphism
obtained from Lemma 2(i). From the identification of ℓ∞ with c∗∗0 we obtain

that RA = π−1
1 ◦ P ◦ T ∗∗

A , where TA := T|c0(A). Hence RA|c0(A) = TA, i.e.,

RA is an extension of TA; thus ‖RA‖ ≥ ‖TA‖, but the form of RA implies that
‖RA‖ ≤ ‖TA‖. Finally

(2) ‖RA‖ = ‖TA‖.

From (1) and Lemma 2 (i) we also have

(3) ‖R−1
A ‖ ≤ ‖R−1

0 ‖ = ‖T−1‖.

On the other hand, since the isomorphism RA is an extension of TA, the inversed

operator R−1
A is an extension of T−1

A ; hence

(4) ‖T−1
A ‖ ≤ ‖R−1

A ‖.

If we put now S = RA, then from (2), (3) and (4) we obtain the conclusion in
part (a).

The result in item (aε) can be proven in a similar way (applying part (ii) of
Lemma 2).

For the proof of part (b) of the Theorem, let T be a lattice isomorphism from
c0(Γ) into E∗, and let fγ = Teγ, where eγ denotes the standard γth unit vector
of c0(Γ). Let G be the class of all finite subsets of Γ. For every positive element
x = (tγ)γ∈Γ ∈ ℓ∞(Γ) and every G ∈ G, we define the element xG = supγ∈G tγeγ .

Then for the element fG := supγ∈G tγfγ we have fG = T (xG), and hence

(5) ‖fG‖ = ‖T (xG)‖ ≤ ‖T ‖ · ‖xG‖∞ ≤ ‖T ‖ · ‖x‖∞ .

Moreover, since T is positive and xG1 ≤ xG2 for G1 ⊂ G2, we have fG1 ≤ fG2
for G1 ⊂ G2. It follows that the set (fG)G∈G is both upward directed and norm-
bounded (see (5)). By Lemma 1, the supremum supG∈G fG = supγ∈Γ tγfγ exists
in E∗, and hence the formula

(6) R1(x) = sup
G∈G

T (xG)

defines an additive (positive) injective operator R1 from the positive cone ℓ∞(Γ)+

into E∗. By [2, Theorem 1.7], the operator T̃ (x) := R1(x+) − R1(x−) is a
linear positive mapping from ℓ∞(Γ) into E∗. Since the elements R1(x+) and

R1(x−) are disjoint, we have |T̃ (x)| = T̃ (|x|) = R1(|x|); it follows that T̃ is

a lattice isomorphism. In order to calculate the norm of T̃ we apply the fact
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that, for every x ∈ ℓ∞(Γ), the net (T (|xG|))G∈G is directed upward with, by (6),

supG∈G T (|xG|) = T̃ (|x|). Now we apply (5) and the Fatou property of E∗ which

imply that ‖T̃ (x)‖ = ‖ |T̃ (x)| ‖ = ‖T̃ (|x|)‖ ≤ ‖T ‖ · ‖x‖∞, and hence ‖T̃‖ ≤ ‖T ‖.

The reversed inequality is obvious (because T̃ extends T ), and so ‖T̃‖ = ‖T ‖, as
claimed.

The second equality, ‖T̃−1‖ = ‖T−1‖, is obtained in a similar way: we notice

that T̃−1 extends T−1, and we apply Lemma 1 to ℓ∞(Γ) instead of E∗ to show

that, for every f ≥ 0 in the norm-closed sublattice T̃ (ℓ∞(Γ)), we have ‖T̃−1(f)‖ =
supG∈G ‖T−1(fG)‖, where fG is defined as above.
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