Comment.Math.Univ.Carolin. 47,4 (2006)569-583 569

Supremum properties of Galois—type connections

ARPAD Sziz

Abstract. In a former paper, motivated by a recent theory of relators (families of rela-
tions), we have investigated increasingly regular and normal functions of one preordered
set into another instead of Galois connections and residuated mappings of partially or-
dered sets.

A function f of one preordered set X into another Y has been called

(1) increasingly g-normal, for some function g of Y into X, if for any z € X and
y € Y we have f(z) <y if and only if z < g(y);

(2) increasingly ¢-regular, for some function ¢ of X into itself, if for any x1,z2 € X
we have z1 < p(z2) if and only if f(z1) < f(z2).

In the present paper, we shall prove that if f is an increasingly regular function of X
onto Y, or f is an increasingly normal function of X into Y, then f[sup(A)] C sup(f[A])
for all A C X. Moreover, we shall also prove some more delicate, but less important
supremum properties of such functions.

Keywords: preordered sets, Galois connections (residuated mappings), supremum pro-
perties

Classification: Primary 06A06, 06A15; Secondary 04A05, 54E15

Introduction

In a former paper [14], motivated by a recent theory of relators (see [10] and [7]),
we have investigated increasingly regular and normal functions of one preordered
set into another instead of Galois connections [5, p. 155] and residuated mappings
[2, p. 11] of partially ordered sets.

A function f of one preordered set X into another Y has been called

(1) increasingly g-normal, for some function g of Y into X, if for any x € X
and y € Y we have f(z) <y if and only if z < ¢g(y);

(2) increasingly ¢-regular, for some function ¢ of X into itself, if for any
x1,22 € X we have 21 < p(z2) if and only if f(z1) < f(x2).

In the first part of the present paper, we shall prove that if f is an increasingly
regular function of X onto Y, or f is an increasingly normal function of X into Y,
then

flsup(A)] C sup(f[A])
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for all A C X. Moreover, we shall also show that under some completeness
properties of X the converse statements are also true.

In the second part of present paper, we shall prove that if f is an increasingly
@-regular function of X onto a partially ordered set Y, then

sup(f[A]) - f[min(ub(A) N (p[Xm

for all A C X. Moreover, by using a similar proof, we shall also show that if f is
an increasingly g-normal function of X into Y, then

g[sup(f[A])] C min(ub(4) N g[Y])

forall A C X.

Actually, we shall prove the same inclusions for the relations g, of Y into
X and ¢; of X into itself defined by g,(y) = max{z € X : f(z) < y} and
¢ () = g,(f(z)) for all y € Y and x € X. Moreover, we shall establish some
immediate consequences of these inclusions.

1. A few basic facts on relations

A subset F' of a product set X xY is called a relation on X to Y. If in
particular F' C X2, then we may simply say that F is a relation on X. Thus,
A, ={(z,z):x € X} is a relation on X.

If F is a relation on X to Y, then for any z € X and A C X the sets F(z) =
{y e Y : (2,y) € F} and F[A] = U,c4 F(a) are called the images of z and A
under F', respectively.

Moreover, the sets D, = {z € X : F(z) # 0} and R F[DF] are called the

domain and range of F, respectively. If in partlcular =X (R, =Y), then
we say that F is a relation of X to Y (on X onto Y).

In particular, a relation f on X to Y is called a function if for each z € D,
there exists y € Y such that f(x) = {y}. In this case, by identifying singletons
with their elements, we may usually write f(x) =y in place of f(z) = {y}.

If F'is a relation on X to Y, then a function f of D, to Y is called a selection

of Fif f C F,ie., f(z) € F(z) for all z € D,.. Thus, the Axiom of Choice can
be briefly expressed by saying that every relation has a selection.

If F is a relation on X to Y, then the values F(z), where z € X, uniquely
determine F since we have F' = |, x {2} x F(z). Therefore, the inverse relation
F~! can be defined such that F~Y(y) = {z € X : y € F(z)} forally € Y.

Moreover, if in addition G is a relation on Y to Z, then the composition

relation Go F' can be defined such that (Go F)(z) = G[F(z)] for all x € X. Thus,
we also have (G o F)[A] = G[F[A]] for all A C X.
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A relation R on X is called reflexive, antisymmetric, and transitive if A, C R,
RNRlcA +; and Ro R C R, respectively. Moreover, a reflexive and transitive
relation is called a preorder. And an antisymmetric preorder is called a partial
order.

2. A few basic facts on ordered sets

If < is a relation on a nonvoid set X, then having in mind the terminology of
Birkhoff [1, p.2] the ordered pair X (<) = (X, <) is called a goset (generalized
ordered set). And we usually write X in place of X ().

If X(<) is a goset, then by taking X* = X and <*=<"! we can form a new
goset X*(<*). This is called the dual of X(<). And we usually write > in place
of <*.

The goset X is called reflexive, transitive, and antisymmetric if the inequality

relation < in it has the corresponding property. Moreover, for instance, X is
called preordered if it is reflexive and transitive.

In particular, a preordered set will be called a proset and a partially ordered set
will be called a poset. The usual definitions on posets can be naturally extended
to gosets [12]. (See also [11].)

For instance, for any subset A of a goset X, the members of the families
Ib(A)={zeX:VacA:z<a}
and
ub(A) ={reX:VacA:a<z}

are called the lower and upper bounds of A in X, respectively.

Moreover, the members of the families

min(A4) = AN1b(A), max(A4) = AnNub(A),
inf(A) = max(Ib(4)), sup(A4) = min(ub(A))

are called the minima, maxima, infima and suprema of A in X, respectively.

Thus, for any A,B C X, we have A C Ib(B) if and only if B C ub(A).
Moreover, in [13], we have proved that a reflexive goset X is antisymmetric if and
only if card(max(A)) <1 (resp. card(sup(A4)) < 1) for all A C X.

Now, the goset X may, for instance, be naturally called

(1) sup-complete if sup(A) # 0 for all A C X;

(2) quasi-sup-complete if sup(A) # @) for all A C X with A # 0.

In [3], we have proved that X is quasi-sup-complete if and only if it is pseudo-inf-
complete in the sense that inf(A4) # 0 for all A C X with 1b(A) # 0.
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3. Closure operations and regular structures

Definition 3.1. A function ¢ of a proset X into itself is called an unary operation
on X. More generally, a function f of X into another proset Y is called a structure
on X.

Remark 3.2. The latter terminology has been mainly motivated by the various
structures derived from relators. (See [9] and [11].)
Definition 3.3. An operation ¢ on X is called

(1) expansive if A, < ¢;

(2) quasi-idempotent if @? < (.
Moreover, a structure f on X is called increasing if for any x7,29 € X, with
x1 < xg, we have f(x1) < f(aa).

Remark 3.4. Note that if (1) holds, then we also have ¢ = A, 0p < pop = @2,
Therefore, if both (1) and (2) hold and X is a poset, then ¢ is actually idempotent.

Thus, according to [1, p. 111], we may also naturally have the following

Definition 3.5. An increasing, expansive and quasi-idempotent operation ¢ on
X is called a closure operation on X.

Remark 3.6. Now, an operation ¢ on X may be naturally called an interior
operation if it is a closure operation on X*.

In [14], having in mind the ideas of 7], we have also introduced the following

Definition 3.7. A structure f on X is called increasingly ¢-regular, for some
operation ¢ on X, if for any x1,x2 € X we have

11 < @(rg) <= f(x1) < f(z2).

Remark 3.8. Now, a structure f on X to Y may be naturally called decreasingly
p-regular if it is an increasingly p-regular structure on X to Y™*.

If f is a p-regular structure on X, then according to a recent definition of
Galois connections [5, p. 155] we may also naturally say that the pair (f,¢) is a
Pataki connection on X.

However, even instead of Galois connections, it has been more convenient to
use residuated mappings ([2, p. 11]) in the following modified form.

Definition 3.9. A structure f on X to Y is called increasingly g-normal, for
some structure g on Y to X, if for any x € X and y € Y we have
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Remark 3.10. Now, a structure f on X to Y may be naturally decreasingly
g-normal if it is an increasingly g-normal structure on X to Y™*.

The importance of the latter definition lies mainly in the fact that if X is a goset
and F(A) = ub(A) and G(A) = Ib(A) for all A C X, then F is a decreasingly
G-normal structure on P(X). (See [5, 7.24 and 7.38].)

4. Relationships between closure operations and regular structures
By using the above definitions, in [14], we have proved the following theorems.

Theorem 4.1. If f is an increasingly -regular structure on X, then
(1) ¢ is expansive;
(2) f is increasing;

B) f<fop</.

Corollary 4.2. If f is an increasingly @-regular structure on X to a poset Y,
then f = fo .

Theorem 4.3. If ¢ is an operation on X, then the following assertions are equi-
valent:

(1) ¢ is a closure operation;
(2) @ is increasingly @-regular;
(3) there exists an increasingly ¢-regular structure f on X.

Corollary 4.4. If f is a structure and ¢ is an operation on X, then f is increa-
singly @-regular if and only if ¢ is a closure operation and for any x1,x9 € X we
have p(x1) < p(x2) if and only if f(x1) < f(x2).

Theorem 4.5. If f is an increasingly g-normal structure on X toY and ¢ is an
operation on X such that ¢ < go f < ¢, then f is increasingly -regular.

Hence, by using that now g is an increasingly f-normal structure on Y* to X*,
we can also state

Theorem 4.6. If f is an increasingly g-normal structure on X toY, then f and
g are increasing. Moreover, ¢ = g o f is a closure operation on X and ¢y = fog
is an interior operation on Y .

Moreover, we shall also need the following very particular results of [14].

Theorem 4.7. If f is an increasingly p-regular structure on one poset X to
another Y, then f is injective if and only if ¢ = A .

Theorem 4.8. If f is an increasingly g-normal structure on one poset X to
another Y, then f is injective if and only if R, = X.
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5. Characterizations of increasingly normal structures

Definition 5.1. For a structure f on X to Y, we define two relations I'; and g,
on Y to X such that

T,(y)={reX:f(z)<y} and g,(y) =max(T,(y))
forallyeY.

Remark 5.2. Note that if in particular X is a poset, then g s is already a function
of a subset of Y into X.

Concerning the relation g, in [14], we have, for instance, proved the following

Theorem 5.3. For any structures f on X toY and g onY to X, the following
assertions are equivalent:

(1) f is increasingly g-normal;
(2) f is increasing and g is a selection of g 4

Definition 5.4. For a structure f on X to Y, we define
Q, = {g€ XY . f is increasingly g-normal}.
Moreover, if in particular Q, # (), then we say that f is increasingly normal.

Concerning increasingly normal structures, in [14], we have, for instance,
proved the following theorems.

Theorem 5.5. If f is a structure on X to Y, then the following assertions are
equivalent:

(1) f is increasingly normal;
(2) f is increasing and Y is the domain of g,.

Theorem 5.6. If f is an increasingly normal structure on X to Y, then
9,)={9():9€Q,}
for all y € Y. Therefore, we actually have g, = Ue -

Theorem 5.7. If f is an increasingly normal structure on a poset X to Y, then
g, is an increasing structure on Y to X and Q, = {g,}.

6. Characterizations of increasingly regular structures

Definition 6.1. For a structure f on X, we define two relations Af and ¢, on
X such that

Ay (z) = {ueX: flu) < f(z)} and o (z) = maX(Af(a:))
for all z € X.
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Remark 6.2. Note thus A, is preorder relation on X. Moreover, we have A, =
I'yofand g, =g,0f.
Concerning the relation @, in [14], we have also proved the following

Theorem 6.3. If ¢ is an operation and f is a structure on X, then the following
assertions are equivalent:

(1) f is increasingly p-regular;
(2) f is increasing and ¢ is a selection of ;.

Definition 6.4. For a structure f on X, we define
0, = {(p exX:f is increasingly w—regular}.

Moreover, if in particular O, # (), then we say that f is increasingly regular.

Concerning increasingly regular structures, in [14], we have, for instance,
proved the following theorems.

Theorem 6.5. If f is a structure on X, then the following assertions are equi-
valent:

(1) f is increasingly regular;
(2) f is increasing and X is the domain of ;.

Theorem 6.6. If f is an increasingly regular structure on X, then

¢ (@) = {o(@) : p € O;}

for all z € X. Therefore, we actually have ¢, = J ;.

Theorem 6.7. If f is an increasingly regular structure on X onto Y, then f is
already increasingly normal.

Theorem 6.8. If f is an increasingly regular structure on a poset X, then ¢, is
a closure operation on X and O, = {¢; }.
7. Supremum properties of increasingly normal structures

As an extension of an observation of Pickert [8] and the first part of [5, Propo-
sition 7.31], we can prove the following

Theorem 7.1. If f is an increasingly normal structure on X to Y, then for any
A C X we have

flsup(A)] C sup(f[A]).

ProoF: If y € f[sup(A)], then there exists x € sup(A) such that y = f(z).
Hence, we can see that

x € ub(A) and z € Ib(ub(4)).
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Thus, in particular, for any a € A, we have a < z. Hence, by using Theorem 4.6,
we can infer that f(a) < f(x) = y. Therefore, y € ub(f[A4]).

On the other hand, if v € ub(f[A4]), then for any a € A we have f(a) < v.
Hence, by choosinga g € Q , we can infer that a < g(v). Therefore, g(v) € ub(A).
Hence, by using that « € Ib(ub(A)), we can infer that < g(v). This implies that
y = f(z) <v. Therefore, y € Ib(ub(f[A])), and thus

y € ub(f[A]) Nlb(ub(f[A4])) = sup(f[A])

also holds. This proves the required inclusion. ([
From the above theorem, it is clear that in particular we have

Corollary 7.2. If f is an increasingly normal structure on a sup-complete proset
X to a poset Y, then f[sup(A)] = sup(f[4]) for all A C X.

PrOOF: Note that now, in addition to f[sup(A4)] C sup(f[4]), we also have
flsup(A)] # 0 and card(sup(f[A])) < 1 for all A C X. Therefore, the required
assertion is also true. 0

Moreover, we can also prove the following partial converse to Theorem 7.1.

Theorem 7.3. If f is a structure on a sup-complete proset X to Y such that

flsup(A)] C sup(f[A])

for all A C X, then f is increasingly normal.

PrOOF: By Theorem 5.5, it is enough to show only that now f is increasing and
g,(y) #Dforally e Y.

For this, first note that if 1,29 € X such that z; < w9, then by taking
A = {x1, 22} we have

x2 € ANub(A) = max(A) C sup(A).
Hence, by using the assumed sup-preservingness of f, we can infer that

f(x2) € f[sup(A)] C sup(f[A]) C ub(f[A]) = ub({f(z1), f(z2)}).

Therefore, f(x1) < f(x2), and thus f is increasing.

Next, note that if y € Y, then by the assumed sup-completeness of X there
exists x € X such that z € sup(I‘f (y)) Hence, by using the assumed sup-
preservingness of f, we can infer that

f(x) € fsup(T;(y)] Csup(f[T;(y)]) < Ib(ub(f[T;(y)]))-
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Moreover, by Definition 5.1, we have f(u) < y for all u € I';(y), and thus y €
ub (f[I‘f (y)]). Hence, it is clear that f(z) <y, and thus z € I, (y). Therefore,

z € T, (y) Nsup(T, (y)) = max(T,(y)) = g,(y),

and thus g, (y) # 0 is also true. O

Now, as an immediate consequence of Theorems 7.1 and 7.3, we can also state
the following extension of an observation of Pickert [8] and the first part of [5,
Proposition 7.34].

Corollary 7.4. If f is a structure on a sup-complete proset X to Y, then the
following assertions are equivalent:

(1) f is increasingly normal;
(2) flsup(A)] C sup(f[A4]) for all AC X.

8. Supremum properties of increasingly regular structures
From Theorem 7.1, by using Theorem 6.7, we can immediately derive

Theorem 8.1. If f is an increasingly regular structure on X onto Y, then for
any A C X we have

f[sup(A)] C sup(f[A]).
PROOF: In this case, by Theorem 6.7, the structure f is increasingly normal.
Therefore, Theorem 7.1 can be applied to get the required inclusion. 0
From the above theorem, it is clear that in particular we also have

Corollary 8.2. If f is an increasingly regular structure on a sup-complete proset
X onto a poset Y, then f[sup(A)] = sup(f[A]) for all A C X.

Moreover, analogously to Theorem 7.3, we can also prove the following

Theorem 8.3. If f is a structure on a quasi-sup-complete proset X to Y such
that

flsup(A)] € sup(f[A])
for all A C X with A # (), then f is increasingly regular.

ProoOF: By Theorem 6.5, it is enough to show only that f is increasing and
¢, () #0 for all v € X.

From the proof of Theorem 7.3, it is clear that f is increasing. Moreover,
if # € X, then by Definition 6.1 we have x € A (z), and thus A (z) # 0.
Therefore, by the assumed quasi-sup-completeness of X, there exists o € X such
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that « € sup (A P (a:)) Hence, by using the assumed sup-preservingness of f, we
can infer that

f(a) € flsup(A (z)] Csup(f[A,(z)]) CIb(ub(f[A,(x)])).

Moreover, by Definition 6.1, we also have f(u) < f(z) for all u € A, (x), and thus
f(z) € ub(f[Af (z)]). Hence, it is clear that f(c) < f(z), and thus a € A (z).
Therefore,

a€A ()N sup(Af(x)) = max(Af(a:)) =, (z),
and thus ¢, (z) # 0 is also true. O
Now, as an immediate consequence of Theorems 8.1 and 8.3, we can also state

Corollary 8.4. If f is a structure on a quasi-sup-complete proset X onto Y,
then the following assertions are equivalent:

(1) f is increasingly regular;
(2) flsup(A)] C sup(f[A4]) for all A C X.

Remark 8.5. Note that if f is as an increasingly regular structure on X onto Y,
or f is an increasingly normal structure on X to Y, then by Theorems 8.1 and 7.1
we also have

f[min(X)] = f[sup()] C sup(f[0]) = min(Y).

9. Further supremum properties of increasingly regular structures
In addition to Theorem 8.1, we can also prove the following

Theorem 9.1. If f is a increasingly regular structure on X onto a poset Y, then
for any A C X we have

sup(f[A]) C f[min(ub(A4) N ©f [X1)].

Proor: If y € sup(f[4]), then by the corresponding definitions we have

y € ub(f[A]) and y € 1b(ub(f[A])).
Thus, in particular, for any a € A we have f(a) < y. Moreover, since Y = f[X],
there exists # € X such that y = f(z). Therefore, we also have f(a) < f(z).
Hence, by taking a ¢ € O;, we can infer that a < ©(x). Therefore,

¢(r) € ub(A) N p[X] C ub(A4) N, [X].

Namely, by Theorem 6.3, we have ¢ C ¢,, and thus [X] C ¢, [X].
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On the other hand, if v € ub(A) N ¢, [X], then for any a € A we have a < v,
and moreover there exists u € X such that v € ¢, (u). Hence, by Theorem 6.6,
we can see that there exists ¢ € O, such that v = 1(u). Therefore, we also
have a < ¢(u), and thus f(a) < f(u). Hence, it is clear that f(u) € ub(f[A4]).
Moreover, since

f(w) =y € b(ub(f[A])),
we can also see that f(z) < f(u). Hence, by using Corollary 4.4, we can infer
that ¢ (z) < ¢(u) = v. Moreover, by Theorem 6.3, we also have

o(x),¥(z) € ®; (x) = max(Af(x)) = Af(:zc) N U.b(Af(:E)).

Hence, in particular, we can see that ¢(z) < ¥ (z), and thus p(z) < v also holds.
Consequently, ¢(z) € Ib(ub(A4) N ®; [X]), and thus

o(x) € (ub(A) N, [X]) N lb(ub(A) N, [X]) = min(ub(A) N, [X])
is also true. Now, by Corollary 4.2, it is clear that

y = f(z) = f(p(z)) € f[min(ub(4) Ny, [X])].
Therefore, the required inclusion is true. O

Remark 9.2. From the above proof, we can also see that if f is an increasingly
p-regular structure on X onto a poset Y, then for any A C X we have

sup(f[A]) C f[min(ub(A) N cp[X])]
Moreover, as an immediate consequence of Theorems 8.1 and 9.1, we can also
state

Theorem 9.3. If f is an increasingly regular structure on X onto a poset Y,
then

flsup(A)] = sup(f[A4])
for all A C X with ub(A) C ¢, [X].
PrOOF: Namely, if A C X, then by Theorem 8.1 we have

flsup(A)] C sup(f[A])

even if Y only a proset.
Moreover, if ub(A4) C ¢, [X], then by Theorem 9.1 we also have

sup(f[A]) C f[min(ub(A) Ny, [X])} = f[min(ub(A))] = f[sup(4)].
Therefore, the required equality is also true. (I

From the latter theorem, by Theorems 6.8 and 4.7, it is clear that in particular
we also have
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Theorem 9.4. If f is an injective increasingly regular structure on one poset X
onto another Y, then for any A C X we have

fsup(A)] = sup(f[A]).

PROOF: Namely, by Theorem 6.8, the structure f is increasingly ¢ -regular. Hen-
ce, by Theorem 4.7, we can see that ¢, is the identity function of X. Therefore,
¢;[X] = X. Now, by Theorem 9.3, it is clear that the required assertion is true.

O
10. Further supremum properties of increasingly normal structures

From Theorem 9.1, by using Theorem 4.5 and Remark 6.2, we can also get the
following

Theorem 10.1. If f is a increasingly normal structure on X onto a poset Y,
then for any A C X we have

sup(f[A]) C f[min(ub(A) N g, Y]]

PrOOF: Now, by Theorem 4.5, the structure f is increasingly regular. Moreover,
by Remark 6.2, we have ¢, = g, o f. Thus, in particular
o [X]= (9, 0 NIX] = g, [f[X]] = g,[Y].
Hence, by Theorem 9.1, it is clear that the required inclusion is also true. (I
Now, as an immediate consequence of Theorems 7.1 and 10.1, we can also state

Theorem 10.2. If f is an increasingly normal structure on X onto a poset Y,
then

f[sup(A)] = sup(f[A])
for all A C X with ub(A) C g,[Y].

Hence, by Theorems 5.7 and 4.8, it is clear that in particular we also have the
following

Theorem 10.3. If f is an injective increasingly normal structure on one poset
X onto another Y, then for any A C X we have

flsup(A)] = sup(f[A]).

PrOOF: Now, by Theorem 5.7, the structure f is g,-normal. Hence, by Theo-
rem 4.8, we can see that X = g, [Y]. Therefore, by Theorem 10.2, the required
assertion is true. O

However, it now more interesting that, analogously to Theorem 9.1, we can
also prove the following
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Theorem 10.4. If f is an increasingly normal structure on X to Y, then for
any A C X we have

9; [Sup(f[A])] - min(ub(A) Ny, [Y])

PRrROOF: If y € sup(f[A]), then by the corresponding definitions we have
y € ub(f[A]) and y € 1b(ub(f[A])).

Thus, in particular, for any a € A we have f(a) < y. Hence, by taking any
g € Q;, we can infer that a < g(y). Therefore,

9(y) € ub(A) Ng[Y] Cub(A) Ng,[Y].

Namely, by Theorem 5.3, we have g C g,, and thus g[Y] C g,[Y].

On the other hand, if u € ub(A)Ng, [Y], then for any a € A we have a < u, and
moreover there exists v € Y such that u € g, (v). Hence, by Theorem 5.6, we can
see that there exists h € Q, such that u = h(v). Therefore, a < h(v), and thus
f(a) <w. This shows that v € ub(f[A]). Hence, by using that y € Ib(ub(f[4])),
we can infer that y < v. Now, by Theorem 4.6, it is clear that h(y) < h(v) = u.
Moreover, by Theorem 5.3, we also have

9(y), My) € g,(y) = max(T,(y)) =T, (y) Nub(T,(y)).

Hence, in particular, we can see that ¢g(y) < h(y), and thus ¢g(y) < u also holds.
Consequently, g(y) € Ib(ub(A) N 9, [Y]), and thus

g(y) € ub(A)Ng,[Y]N lb(ub(A) Ny, [Y]) = min(ub(A) Ny, [Y])
is also true. Now, by Theorem 5.6, it is clear that
9,(y) = {9(y) : g € Q,;} C min(ub(4) Ng,[Y]).
Therefore,
g, [sup(f[A])] = {9, W) : y € sup(f[A])} C min(ub(A) N g,[Y])

is also true. O

Remark 10.5. From the above proof, we can also see that if f is an increasingly
g-normal structure on X to Y, then for any A C X we have

g[sup(f[A])] - min(ub(A) N g[Y]).

Moreover, as an immediate consequence of Theorem 10.4, we can also state
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Corollary 10.6. If f is an increasingly normal structure on X toY, then

9, [sup(f[A])] C sup(A)

for all A C X with ub(A) C g,[Y].
Hence, it is clear that in particular we also have

Corollary 10.7. If f is an increasingly normal structure on a poset X to a
sup-complete proset Y, then

sup(A) = g, [sup(f[A])]

for all A C X with ub(A) C g,[Y].

Moreover, from Corollary 10.6, by using Theorems 5.7 and 4.8, we can also
immediately get the following

Theorem 10.8. If f is an injective increasingly normal structure on a poset X
to another Y, then for any A C X we have

gf[sup(f[Am C sup(A).

PrOOF: Now, by Theorem 5.7, the structure f is g,-normal. Hence, by Theo-
rem 4.8, we can see that X = g, [Y]. Therefore, by Corollary 10.6, the required
assertion is true. O

From the above theorem, it is clear that in particular we also have

Corollary 10.9. If f is an injective increasingly normal structure on a poset X
to a sup-complete poset Y, then for any A C X we have

sup(A4) = g, [sup(f[A])].
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