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A p-Laplacian system with resonance and nonlinear

boundary conditions on an unbounded domain

D.A. Kandilakis, M. Magiropoulos

Abstract. We study a nonlinear elliptic system with resonance part and nonlinear bound-
ary conditions on an unbounded domain. Our approach is variational and is based on
the well known Landesman-Laser type conditions.
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1. Introduction and statement of results

Let Ω be an unbounded domain in R
N , N ≥ 3, with a noncompact and smooth

boundary ∂Ω. In this paper we consider the following quasilinear elliptic system

(1)

{
−∆pu = λ1a(x)|u|

p−2u+ λ1b(x)|u|
α|v|βv + g1(x, u)− h1(x), x ∈ Ω

−∆pv = λ1d(x)|v|
p−2v + λ1b(x)|u|

α|v|βu+ g2(x, u)− h2(x), x ∈ Ω

subject to the nonlinear boundary conditions

(2)

{
|∇u|p−2∇u · η + c1(x)|u|

p−2u = 0, x ∈ ∂Ω

|∇v|p−2∇v · η + c2(x)|v|
p−2v = 0, x ∈ ∂Ω

where ∆pu = div(|∇u|
p−2∇u) and η is the unit outward normal vector on ∂Ω.

On a single equation level with Ω bounded and Dirichlet boundary conditions,
the problem has been studied by Arcoya and Orsina [1] taking into consideration
the well known Landesman-Laser type conditions for the resonance part. The
extension to the case of a system, again with Ω bounded and Dirichlet boundary
conditions, was first considered by Zographopoulos in [7].
In order to confront with our problem we need a suitable space setting which

we describe next.
For ξ ∈ R, we set wξ(x) :=

1
(1+|x|)ξ

, and assume that the space Lr(wξ ,Ω) :=

{u :
∫
Ω wξ(x)|u|

r < +∞}, r ≥ 1, is supplied with the norm

‖u‖wξ,r =

(∫

Ω
wξ(x)|u|

r
)1/r

.
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Let C∞
δ (Ω) be the space of C

∞
0 (R

N )-functions restricted on Ω. For p ∈ (1,+∞),
the weighted Sobolev space Ep is the completion of C

∞
δ (Ω) in the norm

|||u|||p =

(∫

Ω
|∇u|p +

∫

Ω
wp(x) |u|

p
)1/p

.

By Lemma 2 in [5], we see that if c(·) is a positive continuous function defined on

R
N such that

kwp−1(x) ≤ c(x) ≤ Kwp−1(x),

for some positive constants k and K,
then the norm

‖u‖1,p =

(∫

Ω
|∇u|p +

∫

∂Ω
c(x) |u|m

)1/p

is equivalent to ||| · |||p.
We will consider our system on the space E = Ep×Ep, supplied with the norm

‖(u, v)‖ = ‖u‖1,p + ‖v‖1,p.

The following lemma is useful for our compactness arguments.

Lemma 1. (i) If

p ≤ r ≤
pN

N − p
and N > α ≥ N − r

N − p

p
,

then the embedding E ⊆ Lr(wα,Ω) is continuous. If the upper bound for r in
the first inequality and the upper bound for α in the second are strict, then the

embedding is compact.

(ii) If

p ≤ m ≤
p(N − 1)

N − p
and N > β ≥ N − 1−m

N − p

p
,

then the trace operator T : E → Lm(wβ , ∂Ω) is continuous. If the upper bound
for m in the first inequality and the lower bound for β are strict, then the trace

operator is compact.

(iii) If

1 ≤ q < p and
α1 −N

α2 −N
>
p

q
,

then the embedding Lp(wα1 ,Ω) ⊆ Lq(wα2 ,Ω) is continuous.

Proof: The first and second part of the lemma is Theorem 1 in [5], while the
third is a consequence of the following inequality

∫

Ω

1

(1 + |x|)α2
|u|q dx ≤

(∫

Ω

1

(1 + |x|)d
dx

) p−q
p
(∫

Ω

1

(1 + |x|)α1
|u|p dx

) q
p

,
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where d = α2p−α1q
p−q . Note that the integral

∫
Ω

1
(1+|x|)d

dx converges since d > N .

�

We study (1)–(2) in connection with the eigenvalue problem

(3)

{
−∆pu = λ1a(x)|u|

p−2u+ λ1b(x)|u|
α|v|βv,

−∆pv = λ1d(x)|v|
p−2v + λ1b(x)|u|

α|v|βu,

subject to the boundary conditions (2), which was considered in [4] under the
following set of assumptions, also needed for the present problem:

(H1) 2 < p < N , α, β ≥ 0 with α+ β = p− 2 and α+ 1, β + 1 ≤ pp∗

N , where

p∗ = Np
N−p .

(H2) (i) There exist positive constants α1, A with α1 ∈
(
p+

(β+1)(N−p)
p∗ , N

)

such that 0 < a(x) ≤ Awα1(x) a.e. in Ω.

(ii) There exist positive constants α2, D with α2 ∈
(
p+

(α+1)(N−p)
p∗ , N

)

such that

0 < d(x) ≤ Dwα2(x) a.e. in Ω.

(iii) m{x ∈ Ω : b(x) > 0} > 0 and

0 ≤ b(x) ≤ Bws(x) a.e. in Ω,

where B > 0 and s ∈ (p, N).

(H3) c1(·) and c2(·) are positive continuous functions defined on R
N with

kwp−1(x) ≤ c1(x), c2(x) ≤ Kwp−1(x),

for some positive constants k and K.

Let

I(u, v) = α+1
p

∫

Ω
|∇u|p + α+1

p

∫

∂Ω
c1(x)|u|

p + β+1
p

∫

Ω
|∇v|p + β+1

p

∫

∂Ω
c2(x)|v|

p

and

J(u, v) = α+1
p

∫

Ω
a(x)|u|p + β+1

p

∫

Ω
d(x)|v|p +

∫

Ω
b(x)|u|α|v|βuv.
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Theorem 2 ([4]). Let Ω be an unbounded domain in RN , N ≥ 2, with a non-
compact and smooth boundary ∂Ω. Assume that hypotheses (H1), (H2) and (H3)
hold. Then

(a) the system (3) admits a positive principal eigenvalue λ1 given by

λ1 = inf{I(u, v) : J(u, v) = 1}.

Each component of the associated normalized eigenfunction (u1, v1) is

positive on Ω̄ and of class C
1,δ
loc (Ω) for some δ ∈ (0, 1).

(b) the set of eigenfunctions corresponding to λ1 forms a one dimensional
manifold X ⊆ E defined by

X = {c(u1, v1) ; c ∈ R\{0}}.

(c) λ1 is isolated, in the sense that there exists η > 0 such that the interval
(0, λ1 + η) does not contain any other eigenvalue than λ1.

We make the following assumptions concerning the resonance part:

(H4) (i) g1(·, ·), g2(·, ·) are Caratheodory functions such that

|g1(x, s)| ≤
C1

(1 + |x|)α3
and |g2(x, s)| ≤

C2

(1 + |x|)α4
, where

α3 > N − N−α1
p , α4 > N − N−α2

p , C1, C2 are positive constants, and

the limits

lim
s→±∞

gi(x, s) = g
±
i (x), i = 1, 2,

exist for almost every x ∈ Ω.

(ii) |h1(x)| ≤
H1

(1 + |x|)α3
and |h2(x)| ≤

H2

(1 + |x|)α4
for some positive

constants H1, H2.

Furthermore, we will need the following inequalities

L+ < (α+ 1)

∫

Ω
h1(x)u1 + (β + 1)

∫

Ω
h2(x)v1 < L−,(4)

L− < (α+ 1)

∫

Ω
h1(x)u1 + (β + 1)

∫

Ω
h2(x)v1 < L+,(5)

where (u1, v1) is the normalized eigenfunction of (3)–(2) with positive components
and

L+ = (α+ 1)

∫

Ω
g+1 (x)u1 + (β + 1)

∫

Ω
g+2 (x)v1,

L− = (α+ 1)

∫

Ω
g−1 (x)u1 + (β + 1)

∫

Ω
g−2 (x)v1.
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Inequalities (4) and (5) are the adaptation to the case of systems of the Landes-
man-Laser type conditions for scalar equations.
The energy functional of the problem (1)–(2) is

Φ(u, v) =
α+ 1

p

∫

Ω
|∇u|p +

α+ 1

p

∫

∂Ω
c1(x)|u|

p − λ1
α+ 1

p

∫

Ω
a(x)|u|p

− (α+ 1)

∫

Ω
G1(x, u) + (α+ 1)

∫

Ω
h1(x)u

+
β + 1

p

∫

Ω
|∇v|p +

β + 1

p

∫

∂Ω
c2(x)|v|

p − λ1
β + 1

p

∫

Ω
d(x)|v|p

− (β + 1)

∫

Ω
G2(x, v) + (β + 1)

∫

Ω
h2(x)v − λ1

∫

Ω
b(x)|u|α|v|βuv,

where

Gi(x, s) =

∫ s

0
gi(x, t) dt, i = 1, 2.

In view of (H1)–(H3), the functional Φ is well defined and continuously differ-
entiable on E. By a weak solution of (1)–(2) we mean an element of E which is
a critical point of Φ.
The main result of this work is the following theorem:

Theorem 3. (i) Assume that hypotheses (H1)–(H3) and inequality (4) or (5)
hold. Then the system (1)–(2) admits a weak solution.

2. The main result

In view of Theorem 2(a), it is clear that λ1 ≤ min{λu, λv}, where λu, λv

are the first eigenvalues of the problems −∆pu = λa(x)|u|p−2u and −∆pv =

λd(x)|v|p−2v, with the boundary conditions (2), respectively. The following
lemma shows that this inequality is actually strict.

Lemma 4. λ1 < min{λu, λv}.

Proof: Let u0 > 0 be an eigenfunction corresponding to λu and v0 > 0 an
eigenfunction corresponding to λv. If λu = λv , then

λ1 ≤
I(u0, v0)

J(u0, v0)
< λu,

so without loss of generality we may assume that λu < λv . Let t > 0 be such that

(6) β+1
p

∫

Ω
d(x)|v0|

p <
λu

λv − λu

∫

Ω
b(x)|tu0|

α|v0|
βtu0v0.
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Then, in view of (6),

λ1 ≤
I(tu0, v0)

J(tu0, v0)
< λu = min{λu, λv}.

�

Note that due to assumptions H(1)–H(4), the operators A, N , B, C : E → E∗

given by

〈A(u, v), (ϕ, ψ)〉 :=

∫

Ω
|∇u|p−2u∇ϕ+

∫

Ω
|∇v|p−2∇v∇ψ,

〈N(u, v), (ϕ, ψ)〉 :=

∫

Ω
a(x)|u|p−2uϕ−

∫

∂Ω
c1(x)|u|

p−2uϕ

+

∫

Ω
d(x)|v|p−2vψ −

∫

∂Ω
c2(x)|v|

p−2vψ,

〈B(u, v), (ϕ, ψ)〉 :=

∫

Ω
b(x)|u|α|v|βvϕ+

∫

Ω
b(x)|u|α|v|βuψ,

〈C(u, v), (ϕ, ψ)〉 :=

∫

Ω
(g1(x, u)− h1(x))ϕ+

∫

Ω
(g2(x, v) − h2(x))ψ,

are well defined. Following standard arguments based on the embeddings given
in Lemma 1, we have:

Lemma 5. The operators A, N , B and C are continuous. Moreover, N , B and

C are compact.

We can now proceed with the proof of the main result:

Proof of Theorem 3: We assume first that (4) holds. We claim that Φ satisfies
the PS-condition. Indeed, let {(un, vn)}n∈N be a PS-sequence in E. Then

(7) −c ≤ Φ(un, vn) ≤ c,

for some c > 0, and there exists a sequence {εn}n∈N converging to 0
+, such that

(8) −εn‖(u, v)‖ ≤ Φ′(un, vn)(u, v) ≤ εn‖(u, v)‖ for every (u, v) ∈ E.

We will show that the sequence {(un, vn)}n∈N is bounded in E. Assume the
contrary, that is ‖(un, vn)‖ → +∞. Let

(9) ûn :=
un

‖(un, vn)‖
, v̂n :=

vn

‖(un, vn)‖
.
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Since ‖ûn‖Ep
≤ 1 and ‖v̂n‖Ep

≤ 1, by passing to subsequences if necessary, we
may assume that ûn → û and v̂n → v̂ weakly in Ep. Due to our hypotheses on
h1 and g1 we obtain

(10) lim
n→+∞

∫

Ω

G1(x, un)

‖(un, vn)‖p = lim
n→+∞

∫

Ω

h1un

‖(un, vn)‖p = 0

and similarly for G2(·, ·) and h2(·). Dividing (7) by ‖(un, vn)‖
p and using (10),

we arrive at

lim sup
n→+∞

[
α+1

p

{∫

Ω
|∇ûn|

p +

∫

∂Ω
c1(x)|ûn|

p − λ1

∫

Ω
a(x)|ûn|

p
}

+ β+1
p

{∫

Ω
|∇v̂n|

p +

∫

∂Ω
c2(x)|v̂n|

p − λ1

∫

Ω
d(x)|v̂n|

p
}

−λ1

∫

Ω
b(x)|ûn|

α|v̂n|
β ûnv̂n

]
≤ 0,

and Lemma 1 gives

lim sup
n→+∞

[
α+1

p

{∫

Ω
|∇ûn|

p +

∫

∂Ω
c1(x)|ûn|

p
}

+ β+1
p

{∫

Ω
|∇v̂n|

p +

∫

∂Ω
c2(x)|v̂n|

p
}]

≤ λ1

(
α+1

p

∫

Ω
a(x)|û|p + β+1

p

∫

Ω
d(x)|v̂|p +

∫

Ω
b(x)|û|α|v̂|β ûv̂

)
.

The reverse inequality (with the limsup replaced by liminf) also holds due to the
lower semicontinuity of the norms. Thus (û, v̂) is a nonzero solution of (3) with
‖(û, v̂)‖ = 1. In view of Lemma 4, û 6= 0 and v̂ 6= 0. By Theorem 2, û and v̂ have
the same sign. Suppose that both û and v̂ are positive, the other case can be
treated similarly. Thus û = u1 and v̂ = v1. If we replace (u, v) by (un, vn) in (8),
write the relation for −Φ′, multiply the members of (7) by p, add memberwise
the resulting inequalities, and divide by ‖(un, vn)‖, we obtain

∣∣∣∣(α+ 1)(p− 1)
∫

Ω
h1(x)ûn + (β + 1)(p− 1)

∫

Ω
h2(x)v̂n

−(α+ 1)p

∫

Ω
ĝ1(x, un)ûn + (α+ 1)

∫

Ω
g1(x, un)ûn − (β + 1)p

∫

Ω
ĝ2(x, vn)v̂n

+(β + 1)

∫

Ω
g2(x, vn)v̂n

∣∣∣∣ ≤
c

‖(un, vn)‖
+ εn,
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where

ĝi(x, s) :=

{
Gi(x,s)

s if s 6= 0,

gi(x, 0) if s = 0,
i = 1, 2.

By letting n→ +∞, we get

(11)

lim
n→+∞

{
(α+ 1)

∫

Ω
[g1(x, un)ûn − pĝ1(x, un)ûn]

+(β + 1)

∫

Ω
[g2(x, vn)v̂n − pĝ2(x, vn)v̂n]

}

= (α+ 1)(1− p)

∫

Ω
h1(x)û + (β + 1)(1− p)

∫

Ω
h2(x)v̂.

By (9), un(x) and vn(x) tend to +∞, so

g1(x, un)→ g+1 (x) and g2(x, vn)→ g+2 (x) a.e. in Ω.

Therefore

(12) lim
n→+∞

∫

Ω
[g1(x, un)ûn − pĝ1(x, un)ûn] = (1 − p)

∫

Ω
g+1 (x)û,

with a similar relation holding for g2(·, ·) as well. In view of (11) and (12), we
have

(α+1)

∫

Ω
g+1 (x)u1+(β+1)

∫

Ω
g+2 (x)v1 = (α+1)

∫

Ω
h1(x)u1+(β+1)

∫

Ω
h2(x)v1,

contradicting (4). Thus {(un, vn)}n∈N is bounded. Therefore, up to subse-
quences, un → u0 and vn → v0 weakly in Ep and strongly in L

p(wα1 ,Ω) and
Lp(wα2 ,Ω), respectively. By taking (u, v) = (un, vn) − (u0, v0) in (8), and using
Lemma 1, we derive that

(α + 1)

{∫

Ω

(
|∇un|

p−2∇un − |∇u0|
p−2∇u0

)
(∇un −∇u0)

+

∫

∂Ω
c1

(
|un|

p−2un − |u0|
p−2u0

)
(un − u0)

}

+ (β + 1)

{∫

Ω

(
|∇vn|

p−2∇vn − |∇v0|
p−2∇v0

)
(∇vn −∇v0)

+

∫

∂Ω
c1

(
|vn|

p−2vn − |v0|
p−2v0

)
(vn − v0)

}
→ 0,
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which, in view of inequality 2.5 in [2], implies that (un, vn)→ (u0, v0) in E.
We show next that Φ is coercive. Indeed, if this were not the case, there would
exist a sequence {(un, vn)}n∈N with ‖(un, vn)‖ → +∞ and

(13) |Φ(un, vn)| ≤M, for some M > 0.

Working as before, we get that

lim
n→+∞

[
α+1

p

{∫

Ω
|∇ûn|

p +

∫

∂Ω
c1(x)|ûn|

p − λ1

∫

Ω
a(x)|ûn|

p
}

+ β+1
p

{∫

Ω
|∇v̂n|

p +

∫

∂Ω
c2(x)|v̂n|

p − λ1

∫

Ω
d(x)|v̂n|

p
}

−λ1

∫

Ω
b(x)|ûn|

α|v̂n|
β ûnv̂n

]
= 0,

where ûn and v̂n are defined in (9). Thus (ûn, v̂n) → (u1, v1) or (ûn, v̂n) →
−(u1, v1) in E. If (ûn, v̂n)→ (u1, v1), by (13) and the variational characterization
of λ1, we obtain

(α+1)

∫

Ω
g+1 (x)u1+(β+1)

∫

Ω
g+2 (x)v1 ≥ (α+1)

∫

Ω
h1(x)u1+(β+1)

∫

Ω
h2(x)v1,

while if (ûn, v̂n)→ −(u1, v1), we get

(α+1)

∫

Ω
g−1 (x)u1+(β+1)

∫

Ω
g−2 (x)v1 ≤ (α+1)

∫

Ω
h1(x)u1+(β+1)

∫

Ω
h2(x)v1,

contradicting (4). We can now use Theorem 4.7 in [3] to get a weak solution of
(1)–(2).
Assume next that (5) holds. We split E as the direct sum of the eigenspace

X and Y = {(u, v) ∈ E :
∫
Ω uu

p−1
1 +

∫
Ω vv

p−1
1 = 0}. Then Φ has a saddle point

geometry, i.e.,

(i) Φ(t(u1, v1))→ −∞ if |t| → +∞, and
(ii) Φ is bounded from below on Y .

Indeed, since

Φ(t(u1, v1)) = (α+ 1)

[∫

Ω
h1(x)tu1 −

∫

Ω
G1(x, tu1)

]

+ (β + 1)

[∫

Ω
h2(x)tv1 −

∫

Ω
G2(x, tv1)

]

= (α+ 1)t

[∫

Ω
h1(x)u1 −

∫

Ω

G1(x, tu1)

tu1
u1

]

+ (β + 1)t

[∫

Ω
h2(x)v1 −

∫

Ω

G2(x, tv1)

tv1
v1

]
,
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by taking the limit as |t| → ∞ and working as in the first part of the proof, we
can use (5) to get (i). To prove (ii) we exploit the isolation of λ1, see Theorem 2,

to derive that there exists λ̂ > λ1 such that

λ̂ <
I(u, v)

J(u, v)

for every (u, v) ∈ Y . If (u, v) ∈ Y , in view of Lemma 1,

Φ(u, v) = I(u, v)− λ1J(u, v) + (α+ 1)

[∫

Ω
h1(x)u −

∫

Ω
G1(x, u)

]

+ (β + 1)

[∫

Ω
h2(x)v −

∫

Ω
G2(x, v)

]

>

(
1−

λ1

λ̂

)
I(u, v)− (α+ 1)c1‖u‖1,p − (β + 1)c2‖v‖1,p,

for some c1, c2 > 0. Consequently, Φ is bounded from below on Y . An application
of the saddle point theorem, see [6], provides a weak solution of (1)–(2). �
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