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An interesting class of ideals

in subalgebras of C(X) containing C∗(X)

Sudip Kumar Acharyya, Dibyendu De

Abstract. In the present paper we give a duality between a special type of ideals of
subalgebras of C(X) containing C∗(X) and z-filters of βX by generalization of the
notion z-ideal of C(X). We also use it to establish some intersecting properties of prime
ideals lying between C∗(X) and C(X). For instance we may mention that such an ideal
becomes prime if and only if it contains a prime ideal. Another interesting one is that
for such an ideal the residue class ring is totally ordered if and only if it is prime.

Keywords: Stone-Čech compactification, rings of continuous functions, maximal ideals,

zβ
A
-ideals

Classification: 54D35

1. Introduction

Throughout the paper all topological spaces are assumed to be Tychonoff. For
a space X , C(X) stands for the ring of all real valued continuous functions on X ,
C∗(X) is the subring of C(X) consisting of all bounded functions and Σ(X) will
denote the collection of all subalgebras of C(X) containing C∗(X).
It is a fascinating fact in the theory of rings of continuous functions that for

a space X the structure spaces of both C(X) and C∗(X) produce the Stone-
Čech compactification βX of that space. Plank [7] has proved that the structure
space of any subalgebra of C(X) containing C∗(X) also produces the Stone-Čech
compactification βX of X in an analogous manner. In this course an analogous
study of arbitrary subalgebra of C(X) containing C∗(X) becomes important.
The study of ideals in C(X) depends strongly on the fact that if I is a proper
ideal in C(X) then Z(I) = {Z(f) : f ∈ I} becomes a z-filter on X . But in
case of an arbitrary A(X) ∈ Σ(X) the analogous statement is not necessarily
true. H.L. Byun and S. Watson [2] introduced a method for studying ideals in
arbitrary A(X) ∈ Σ(X). For each ideal I in A(X), they associated a family of
subsets of X given by ZA[I] =

⋃
{ZA(f) : f ∈ I}, where for each f ∈ A(X),

ZA(f) = {E ∈ Z(X) : ∃ g ∈ A(X) with f · g|X−E = 1}, which latter turned
out to be a z-filter on X . Further they called an ideal I in A(X) a B-ideal if

Z−1
A [ZA[I]] = I. But the map ZA, which relates ideals in A(X) to z-filters on

X , lacks the sensitivity for distinguishing prime ideals. In fact even in case of
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A(X) = C(X) also, it follows that ZC [O
p
C ] = ZC [M

p
C ] for all p ∈ βX , where

O
p
C = {f ∈ C(X) : p ∈ intβX{clβX Z(f)}}. More generally, if P is a prime

ideal contained in a maximal ideal Mp
A in A(X) then ZA[P ] = ZA[M

p
A]. So by

this definition of B-ideal there does not exist any non-maximal prime B-ideal. In

this article we introduce a new type of ideals in A(X) called zβ
A-ideals , and a

correspondence zβ
A from the set of all ideals in A(X) to the set of a special type of

filters in βX in such a way that the correspondence zβ
A retains the sensitivity of

distinguishing prime ideals to some extent. In fact we shall show that there exists

a non-maximal prime z
β
A-ideal in A(X). Following Plank [7], for any f ∈ A(X)

we denote {p ∈ βX : (f · g)∗(p) = 0 for all g ∈ A(X)} as SA(f) and Z
β
A[I] =

{SA(f) : f ∈ I}. Throughout this article we shall call SA(f) an A-zeroset in βX ,

and the set {SA(f) : f ∈ A(X)} will be denoted by Zβ
A[X ].

2. z
β
A-filter on βX

Like z-filters in X , we define zβ
A-filters in βX in the following way.

Definition 2.1. A non empty subset ̥ of Z
β
A[X ] is called a z

β
A-filter on βX

provided that

(1) ϕ /∈ ̥,
(2) if Z1, Z2 are in ̥ then Z1 ∩ Z2 ∈ ̥,

(3) if Z is in ̥ and Z ′ ∈ Z
β
A[X ] with Z ′ ⊃ Z then Z ′ ∈ ̥.

Now we can easily see that if f is a unit of A(X) then 1f ∈ A(X) so that

(f · 1f )
∗(p) = 1 for all p ∈ βX and therefore SA(f) = ϕ. Again for each p ∈ βX

there exists gp ∈ A(X) such that (f · gp)
∗(p) 6= 0. This means that f is missed

by every maximal ideal in A(X), so that f is not a unit of A(X). Therefore we
have the following lemma.

Lemma 2.2. Suppose A(X) ∈ Σ(X). Then for any f ∈ A(X), SA(f) = ϕ if and
only if f is a unit of A(X).

The above lemma discovers the duality existing between the ideals of A(X)

and z
β
A-filters on βX .

Theorem 2.3. For any A(X) ∈ Σ(X) the following holds.

(1) If I is an ideal in A(X) then the family Zβ
A[I] = {SA(f) : f ∈ I} is a

zβ
A-filter on βX .

(2) If ̥ is a zβ
A-filter on βX then the family Zβ−1

A [̥] given as {f ∈ A(X) :
SA(f) ∈ ̥} is an ideal in A(X).
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Before talking about the duality between maximal ideals in A(X) and maximal

z
β
A-filter in βX we simply write down the following results, whose proofs can also
be given by using the well-known routine arguments. First we introduce the
following notion.

Definition 2.4. A z
β
A-ultrafilter on βX is a z

β
A-filter on βX which is not con-

tained in any other z
β
A-filter on βX .

Theorem 2.5. For any A(X) ∈ Σ(X) the followings are equivalent.

(1) Every zβ
A-filter on βX can be extended to a zβ

A-ultrafilter on βX .

(2) Every subfamily of Zβ
A[X ] with finite intersection property can be ex-

tended to a zβ
A-ultrafilter on βX and therefore a zβ

A-ultrafilter on βX is

a subfamily of Zβ
A[X ] which is maximal with respect to having finite in-

tersection property. Conversely a subfamily ̥ of Zβ
A[X ] enjoying finite

intersection property and maximal with respect to this property is neces-

sary a z
β
A-ultrafilter on βX .

(3) A z
β
A-filter ̥ on βX is a z

β
A-ultrafilter on βX if and only if for any Z ∈

Z
β
A[X ], Z ∩ Z ′ 6= ϕ for any Z ′ ∈ ̥, implies that Z ∈ ̥.

As a straightforward consequence of the above theorem, taking into account
the maximality of M and ̥, we have the following theorem.

Theorem 2.6. Suppose A(X) ∈ Σ(X). Then

(1) if M is a maximal ideal in A(X) then Zβ
A[M ] is a zβ

A-ultrafilter on βX ,

(2) if ℑ is a zβ
A-ultrafilter on βX then Zβ−1

A [ℑ] is a maximal ideal in A(X).

Using the duality between maximal ideals in A(X) and ultrafilters in βX we
have the following theorem.

Theorem 2.7. Let A(X) ∈ Σ(X) and f ∈ A(X). If M is a maximal ideal in

A(X) and SA(f) meets every member of Z
β
A[M ] then f ∈ M .

3. z
β
A-ideals in A(X) and its properties

For any A(X) ∈ Σ(X) and for any zβ
A-filter ℑ on βX , it is obvious that

ℑ = Zβ
A[Z

β−1
A [ℑ]]; therefore Zβ

A can be considered to be a mapping from the set

of all ideals in A(X) onto the set of all zβ
A-filters on βX . Furthermore, for any ideal

I in A(X), we have I ⊂ Zβ−1
A [Zβ

A[I]]. The inclusion in the above relation may
be proper. In fact in the ring C(R) if we consider the ideal I = 〈i〉, the smallest
ideal in C(R) generated by the identity mapping i, we can easily observe that the

mapping i1/3 is in Zβ−1
C [Zβ

C [I]] but it does not belong to I. This motivates to
introduce the following definition.
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Definition 3.1. An ideal I in A(X) ∈ Σ(X) is said to be a z
β
A-ideal if for any

f ∈ A(X), SA(f) ∈ Z
β
A[I] implies that f ∈ I, that is, I = Z

β−1
A [Z

β
A[I]].

Clearly if ̥ is a z
β
A-filter on βX then I = Z

β−1
A [ℑ] is a z

β
A-ideal in A(X), in fact

ℑ = Z
β
A[Z

β−1
A [ℑ]]. Further for any p ∈ βX , O

p
A = {f ∈ A(X) : p ∈ intβX SA(f)}

is a zβ
A-ideal. It is also evident that the intersection of any nonempty collection

of zβ
A-ideals in A(X) is again a zβ

A-ideal. Again from Theorem 2.7 we can prove

that for any maximal ideal M in A(X), M = Zβ−1
A [Zβ

A[M ]]. Thus we have the
following theorem.

Theorem 3.2. Suppose A(X) ∈ Σ(X). Then every maximal ideal in A(X) is a

zβ
A-ideal in A(X).

The following theorem shows that like maximal prime ideals, i.e. maximal

ideals, minimal prime ideals in A(X) are also z
β
A-ideals.

Theorem 3.3. If I is a z
β
A-ideal in A(X) and P is minimal in the class of prime

ideals containing I, then P is a z
β
A-ideal.

Proof: Let J be a prime ideal containing I which is not a z
β
A-ideal. Then

to prove the theorem it is sufficient to show that J is not minimal in the class

of prime ideals containing I. Since J is not a zβ
A-ideal there exists an f ∈ J

and a g ∈ A(X) with g /∈ J such that SA(f) = SA(g). Now consider the set
S = (A(X)−J)∪{hfn : h /∈ J, n ∈ N}. Since J is a prime ideal, S is closed under
multiplication. Furthermore S does not meet I. In fact hfn ∈ I for some h ∈ J ,
n ∈ N implies that h · g ∈ J , which contradicts that J is a prime ideal. Hence
there exists a prime ideal containing I and disjoint from S and, hence, contained
in J properly. Therefore J is not minimal. �

Remark 3.4. Since the ideal 〈0〉 in any A(X) is a zβ
A-ideal, every minimal prime

ideal in an arbitrary A(X) is a zβ
A-ideal.

It is well known that every z-ideal in C(X) is the intersection of all prime
ideals containing it. The basic fact behind the result is that Z(fn) = Z(f) for all
n ∈ N. In our setting of A(X) we also see that SA(f

n) = SA(f) for all n ∈ N and
therefore we get the following theorem.

Theorem 3.5. Every zβ
A-ideal in A(X) is the intersection of all prime ideals in

A(X) containing it.

Remark 3.6. Using Theorem 3.3 and Theorem 3.5 it is easy to observe that every

z
β
A-ideal in A(X) is the intersection of all minimal prime ideals containing it.

The following theorem shows that zβ
A-ideals in A(X) are actually A-analogues

of z-ideals in C(X).
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Theorem 3.7. In C(X), an ideal I is a z-ideal if and only if it is a z
β
C -ideal.

Proof: Let I be a z-ideal in C(X) and f ∈ C(X) be such that SC(f) ∈ Zβ
C [I].

Then there exists g ∈ I such that SC(f) = SC(g). Since it is well known that for
any f ∈ C(X), SC(f) = clβX Z(f) and clβX Z(f)

⋂
X = Z(f), the above relation

implies that Z(f) = Z(g) ∈ Z[I]. Hence f ∈ I, as I is a z-ideal. Therefore every

z-ideal in C(X) is also a zβ
C -ideal.

Conversely, let I be a zβ
C-ideal in C(X) and f ∈ C(X) with Z(f) ∈ Z[I].

Then there exists an element g of I such that Z(f) = Z(g), so that clβX Z(f) =

clβX Z(g) ∈ Zβ
C [I]. Since I is a zβ

C -ideal, it follows that f ∈ I, proving that I is
a z-ideal in C(X). �

It is known that in case of C(X), an intersection of prime ideals need not be
a z-ideal, see Example 2G.1 of [5]. So Theorem 3.7 shows that the converse of

Theorem 3.5 is not valid. But like z-ideals in C(X), a zβ
A-ideal in an arbitrary

A(X) ∈ Σ(X) can also be described as a purely algebraic object.

Theorem 3.8. An ideal I in A(X) ∈ Σ(X) is a zβ
A-ideal if and only if given

f ∈ A(X) there exists g ∈ I such that whenever f belongs to every maximal ideal
in A(X) containing g, then f ∈ I.

Proof: Let I be a zβ
A-ideal in A(X) and f ∈ A(X). Again let g ∈ I be such that

f belongs to every maximal ideal in A(X) containing g. Then SA(g) ⊂ SA(f) so

that SA(f) ∈ Zβ
A[I]. Since I is a zβ

A-ideal in A(X), we have f ∈ I.
For the converse, let us assume that the given condition holds and SA(f) ∈

Z
β
A[I] for some f ∈ A(X). Taking f = g we see that f belongs to every maximal

ideal in A(X) that contains g. Hence f ∈ I so that I is a z
β
A-ideal. �

Now we present an example which shows that the notion of B-ideal in A(X) [2],

already described in Introduction, does not coincide with the notion of z
β
A-ideal

even with the choice A(X) = C(X).

Example. Let us consider the z-ideal O0 = {f ∈ C(X) : 0 ∈ intX Z(f)}. Then
the z-filter ZC (i) = {Z ∈ Z(R) : ∃ g ∈ C(R) with i · g|R−Z = 1} ⊂ ZC [O0].
In fact if Z ∈ ZC(i) then there exists g ∈ C(R) such that i · g|R−Z = 1, which
implies that i · g(clR(R − Z)) = {1}. It then clearly follows that 0 /∈ clR(R − Z).
Therefore there exists a δ > 0 such that (R−Z)∩(−δ, δ) = ∅. We define h ∈ C(R)

as follows: if |x| ≤ δ
2 then h(x) = 0, if δ

2 ≤ x ≤ δ then h(x) =
g(δ)

δ (2x − δ), if

|x| ≥ δ then h(x) = g(x), and if −δ ≤ x ≤ − δ
2 then h(x) =

g(−δ)
−δ (2x+ δ).

Then clearly h ∈ O0 and i · h|R−Z = 1, so that Z ∈ ZC(h). Hence Z ∈ ZC [O0].
But as i /∈ O0, O0 cannot be an B-ideal in C(R).

Next we recall the definition of e-ideal [5]. An ideal I in C∗(X) is called an
e-ideal if Eǫ(f) ∈ E(I) =

⋃
ǫ Eǫ(f) for all ǫ > 0 implies that f ∈ I, where
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Eǫ(f) = f−1[(−ǫ, ǫ)]. But the following example shows that the notion of e-ideal

in C∗(X) does not coincide with the notion of z
β
C∗-ideal.

Example. In the ring C∗(R) let us consider the ideal O0 = {f ∈ C∗(R) : 0 ∈
intβR Z(fβ)}. Since Z(fβ) = SC∗(f) for any f ∈ C∗(R), it is easy to see that O0

is a zβ
C∗-ideal in C∗(R). Now taking f = (i ∨−1) ∧ 1 we see that Eǫ(f) ∈ E(O0)

for all ǫ > 0, but f /∈ O0. Hence O0 is not an e-ideal.

In case of C(X) it is well known that a z-ideal need not be prime. In fact
if X is not an F -space then there exists some p ∈ βX such that O

p
C is not a

prime ideal. But O
p
C is a z-ideal for every p ∈ βX , i.e. a z

β
C -ideal. The following

theorem tells us that if a z
β
A-ideal contains a prime ideal then it becomes prime.

Theorem 3.9. Suppose A(X) ∈ Σ(X) and let I be a zβ
A-ideal in A(X). Then

the following statements are equivalent.

(1) I is a prime ideal in A(X).
(2) I contains a prime ideal in A(X).
(3) For all g, h in A(X), g · h = 0 implies that g ∈ I or h ∈ I.

(4) For every f ∈ A(X) there exists an A-zero set Z in Z
β
A[I] such that either

Mp
A(f) ≥ 0 ∀ p ∈ Z or Mp

A(f) ≤ 0 ∀ p ∈ Z.

Proof: (1)⇒ (2) is trivial.
(2)⇒ (3) Let us assume that P is a prime ideal in A(X) contained in I. Now

for any two g, h in A(X) if g · h = 0 then g · h ∈ P . So either g ∈ P or h ∈ P ,
that is, either g ∈ I or h ∈ I.
(3) ⇒ (4) For any given f ∈ A(X), (f ∨ 0) · (f ∧ 0) = 0. Hence from (3) it

follows that f ∨ 0 ∈ I or f ∧ 0 ∈ I. If f ∨ 0 ∈ I then SA(f ∨ 0) ∈ Z
β
A[I]. In

this case for any p ∈ SA(f ∨ 0), we have f ∨ 0 ∈ Mp
A, that is, Mp

A(f) ∨ 0 = 0.

Clearly this implies that Mp
A(f) ≤ 0 for all p ∈ SA(f ∨ 0) ∈ Zβ

A[I]. Similarly in

case f ∧ 0 ∈ I we have Mp
A(f) ≥ 0 for all p ∈ SA(f ∧ 0) ∈ Zβ

A[I].
(4) ⇒ (1) Let us assume g · h ∈ I, g, h ∈ A(X), and consider the function

|g| − |h| in A(X). Then there exists an A-zeroset Z such that M
p
A(|g| − |h|) ≥ 0

for all p ∈ Z, say for definiteness. Then clearly

M
p
A(|g|) ≥ [M

p
A(|h|) for all p ∈ Z.

Now we claim that Z ∩ SA(g · h) = Z ∩ SA(h) ⊂ SA(h). In fact, by the above
relation, p ∈ SA(g) ∩ Z implies that p ∈ SA(h) ∩ Z, here we use the absolute

convexity of maximal ideals in A(X). Now because SA(f · g) ∈ Z
β
A[I], it follows

that SA(h) ∈ Z
β
A[I]. Therefore I is a z

β
A-ideal and we have h ∈ I. Analogously, if
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Mp
A(|g| − |h|) ≥ 0 for all p ∈ Z, then we would have obtained g ∈ I. Hence I is a
prime ideal in A(X). �

In [6] we have observed that in any uniformly closed φ-algebra every prime
ideal can be extended to a unique maximal ideal, where by a φ-algebra we mean
an archimedean lattice ordered algebra over the real field R which has an identity
element 1 that is a weak order unit (i.e. x ∧ 0 implies x = 0) and it is called
uniformly closed if every Cauchy sequence of its elements converges in it. Here we
present a different proof of the above result for arbitrary A(X) ∈ Σ(X). We recall
that in any commutative ring if I and J are two prime ideals neither containing
the other then I ∩ J is not a prime ideal. Therefore in arbitrary A(X) ∈ Σ(X)
if two distinct maximal ideals contain a single prime ideal we get a contradiction

as intersection of two maximal ideals is a z
β
A-ideal in A(X) and by the above

theorem any z
β
A-ideal containing a prime ideal is prime. This gives an alternative

proof of the following theorem.

Theorem 3.10. Every prime ideal in an A(X) ∈ Σ(X) can be extended to a
unique maximal ideal.

To end this article we are interested in knowing when a partially ordered residue

class ring modulo a zβ
A-ideal is totally ordered . The following theorem shows that

these are only when zβ
A-ideals are prime. We recall that every prime ideal in

arbitrary A(X) ∈ Σ(X) is absolutely convex. From this it is easy to conclude

that every z
β
A-ideal is also absolutely convex.

Theorem 3.11. Suppose that A(X) ∈ Σ(X) and that I is a zβ
A-ideal in A(X).

Then A(X)/I is totally ordered if and only if I is prime.

Proof: Let A(X)/I be a totally ordered ring and f ∈ A(X). We assume that
I(f) ≥ 0. Since I is absolutely convex we have f −|f | ∈ I, and therefore SA(f) ∈

Zβ
A[I]. Hence for any p ∈ SA(f) it follows that Mp

A(f − |f |) = 0 that is Mp
A(f) =

Mp
A(|f |). This implies that Mp

A(f) ≥ 0 for all p ∈ Z = SA(f − |f |) ∈ Zβ
A[I].

Therefore by Theorem 3.9 I becomes a prime ideal.

Conversely let I be a prime ideal in A(X) and f ∈ A(X). Then again by

Theorem 3.9 there exists a Z ∈ Z
β
A[I] such that either M

p
A(f) ≥ 0 for all p ∈ Z

or Mp
A(f) ≤ 0 for all p ∈ Z. Let us assume that Mp

A(f) ≥ 0 for all p ∈ Z.

This implies that f − |f | ∈ M
p
A so that M

p
A(f) = M

p
A(|f |) for all p ∈ Z. Hence

M
p
A(f −|f |) = 0 for all p ∈ Z, that is Z ⊂ SA(f −|f |). Now as Z

β
A[I] is a z

β
A-filter

on βX and I is a z
β
A-ideal in A(X) we have f − |f | ∈ I and hence I(f) ≥ 0.

Similarly Mp
A(f) ≤ 0 for all p ∈ Z implies that I(f) ≤ 0. Therefore A(X)/I

becomes totally ordered. �
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