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Weak-bases and D-spaces

Dennis K. Burke

Abstract. It is shown that certain weak-base structures on a topological space give a
D-space. This solves the question by A.V. Arhangel’skii of when quotient images of
metric spaces are D-spaces. A related result about symmetrizable spaces also answers a
question of Arhangel’skii.

Theorem. Any symmetrizable space X is a D-space (hereditarily).

Hence, quotient mappings, with compact fibers, from metric spaces have a D-space
image. What about quotient s-mappings? Arhangel’skii and Buzyakova have shown
that spaces with a point-countable base are D-spaces so open s-images of metric spaces
are already known to be D-spaces.
A collection W of subsets of a sequential space X is said to be a w-system for the

topology if whenever x ∈ U ⊆ X, with U open, there exists a subcollection V ⊆ W such
that x ∈

T
V ,
S

V is a weak-neighborhood of x, and
S

V ⊆ U .

Theorem. A sequential space X with a point-countable w-system is a D-space.

Corollary. A space X with a point-countable weak-base is a D-space.

Corollary. Any T2 quotient s-image of a metric space is a D-space.
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1. Introduction

All spaces in this paper are assumed to be at least T1. A neighborhood as-
signment for a topological space (X, τ) is a function φ : X → τ such that, for
all x ∈ X , x ∈ φ(x). With a mild abuse of the language we may speak of
{φ(x) : x ∈ X} as the neighborhood assignment. The space X is said to be a
D-space [vDP] if, whenever φ is a neighborhood assignment of X there exists a
closed discrete D ⊆ X such that X =

⋃

d∈D φ(d). The class of D-spaces was in-
troduced by E.K. van Douwen in [vDP]. A remarkable open question asks whether
Lindelöf spaces are D-spaces and it is not even known whether subparacompact
spaces are always D-spaces. It is clear that compact spaces, in fact σ-compact
spaces, are D-spaces. Beyond this it often appears that some base or complete-
ness “structure” is needed in order to prove certain spaces are D-spaces. Results
by Borges and Wehrly [BW] show that semi-stratifiable spaces and paracompact
p-spaces are D-spaces. Recent papers ([A2], [A3], [ABuz], [Buz1], [Buz2], [D],
[FS] and [G]) have contributed a good deal to the study of the class of D-spaces.



282 D.K.Burke

A.V. Arhangel’skii has asked whether symmetrizable spaces are D-spaces and
(a related question) whether quotient s-images of metric spaces are D-spaces.
In this note we show that symmetrizable spaces are, in fact, hereditarily D-
spaces. The hereditary result is a little surprising since the property of being
symmetrizable is not a hereditary property — symmetrizability is generally only
inherited to open or closed subspaces. An immediate corollary is that quotient
compact-images of metric spaces are D-spaces. However, the main result of the
last section gives the full answer to Arhangel’skii’s question about the quotient
s-images as a corollary. This result shows that a sequential space with a point-
countable w-structure is a D-space. Another corollary of this result is that a
space X with a point-countable weak-base is a D-space. This generalizes the re-
sult of Arhangel’skii and Buzyakova [ABuz] where it is shown that spaces with a
point-countable base are D-spaces.
In the next section we summarize and review some results about closed or open

(continuous) images of metric spaces. This may help justify why it was natural
to focus on the class of quotient s-images of metric spaces.

2. Closed and open images of metric spaces

The case of closed images of D-spaces is quickly dispatched with the result of
Borges and Wehrly.

• All closed continuous images of D-spaces are D-spaces [BW].

At first glance it may seem that open continuous images of metric spaces should
be D-spaces but this is not the case. Recall that first-countable spaces are exactly
the open continuous images of metric spaces so an example here could be any first-
countable non-D-space (such as ω1).

• Open continuous images of metric spaces need not be D-spaces .

It is even possible for the domain space to be a σ-discrete metric space — the
following specific example may be of interest.

Example 2.1. Let I(ω1) denote ω1 with the discrete topology and let

M = ω1 × I(ω1)r {(α, β) : α > β}.

Then, M is a σ-discrete metric space and M can be mapped onto ω1 by an open
continuous map with discrete fibers.

Proof: Notice that M is metrizable since it is the disjoint union of open metriz-
able (countable) subspaces. To see that M is σ-discrete, express each countable
level Lβ = {(α, β) : α ≤ β} as Lβ = {(αβ,n, β) : n ∈ N}. For m ∈ N, let
Sm = {(αβ,m, β) : β ∈ ω1} — the selection of exactly one from each level Lβ

makes Sm a closed discrete set in M and M =
⋃

n∈N
Sn. Now, we see that M is

an open subspace of ω1 × I(ω1); hence the projection π1|M :M → ω1 is an open
map from M onto ω1. �
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A function f :M → X is said to be an s-mapping if the fibers (point inverses)
of f are separable. The function π1|M in the previous example is not an s-mapping
since the fibers are uncountable and discrete. For continuous open mappings the
s-mapping condition turns out to be sufficient for carrying the D-space property
from a metric space to its image.

• All open continuous s-images of metric spaces are D-spaces [ABuz].

Recall that spaces with a point-countable base are exactly the open continuous
s-images of metric spaces so the above follows from the result of Arhangel’skii
and Buzyakova that all spaces with a point-countable base are D-spaces [ABuz].
Now it becomes natural to consider the quotient images of metric spaces as the

common generalization of closed or open (continuous) images of metric spaces.
The following is a corollary to the main result of Section 4.

• If f :M → X is a quotient s-map from a metric spaceM onto a T2 space
X then X is a D-space.

3. Symmetrizable spaces

Suppose X is a topological space and d : X × X → [0,∞) such that, for all
(x, y) ∈ X × X , d(x, y) = d(y, x) and d(x, y) = 0 ⇐⇒ x = y. The function
d is said to be a symmetric [A1] for X provided: For all nonempty A ⊆ X , A
is closed in X if and only if inf{d(x, z) : z ∈ A} > 0 for every x ∈ X r A. In
this case, one could say (X, d) (or X) is symmetrizable (with symmetric d). For

x ∈ X and n ∈ N let B(x, 1n ) = {z ∈ X : d(x, z) < 1
n}. Notice, by their very

nature, symmetrizable spaces are always at least T1. When d is a symmetric for
X we see that a subset W ⊆ X is open if and only if

(∗) whenever x ∈ W there exists nx ∈ N such that B(x, 1nx
) ⊆ W .

We remark that, in general, x is not in the interior of B(x, 1n ). The collection

{B(x, 1n ) : n ∈ N} may be thought of as a weak-base at x because of the way
the topology is determined above. The general notion of a weak-base is defined
in Section 4; for now, we can get by with the property given by (∗). In this
setting, by a weak-neighborhood of x in X , we will mean a set V ⊆ X such that
B(x, 1

k
) ⊆ V , for some k ∈ N.

Theorem 3.1. Symmetrizable spaces are hereditarily D-spaces.

Proof: Suppose (Z, d) is a symmetrizable space and X ⊆ Z with the subspace
topology τ . To show X is a D-space, let U : X → τ be an open neighbor-
hood assignment for X and let U = {U(x) : x ∈ X}. Since open subspaces of
symmetrizable spaces are symmetrizable, we may assume each U(x), x ∈ X , is
actually open in Z and Z =

⋃

{U(x) : x ∈ X}. We need to find a closed discrete
subset D of X such that X ⊆

⋃

{U(x) : x ∈ D}.

For every x ∈ X let kx ∈ N such that B(x, 1
kx
) ⊆ U(x). For every n ∈ N, let

I(n) = {x ∈ X : kx = n}.
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Well-order X so that when y ∈ I(i), z ∈ I(j) for i < j then y < z.

Now, recursively find J(n) ⊆ I(n) as follows:
For x ∈ I(n),

x ∈ J(n) ⇐⇒

x = min((I(n) r

⋃

{U(y) : i < n, y ∈ J(i)})r
⋃

{U(y) : y ∈ J(n), y < x}).

Let D =
⋃

n∈N
J(n).

Claim 0. D ⊆ X .

Claim 1. W = {U(x) : x ∈ D} covers X .

For any y ∈ X find m ∈ N such that y ∈ I(m). If y ∈ J(m) then certainly
y ∈ U(y) ⊆

⋃

W . If y /∈ J(m) then

y ∈
(

⋃

{U(x) : i < m, x ∈ J(i)}
)

∪
(

⋃

{U(z) : x ∈ J(m), x < y}
)

⊆
⋃

W .

Claim 2. D is a closed discrete set in
⋃

W (and hence in X).

This follows if we show that for any t ∈ D, D r {t} is closed. To this end
we may assume Z =

⋃

W and let x ∈ Z r (D r {t}). It suffices to find a weak
neighborhood V of x such that V ∩ (D r {t}) = ∅. Let m be the first element
of N such that there is a first element y of J(m) where x ∈ U(y). Now, for all
z ∈ D with y < z we have z /∈ U(y). Also, for all z ∈ D with z < y we have

B(z, 1m) ⊆ B(z, 1
kz
) ⊆ U(z) and x /∈ U(z) so z /∈ B(x, 1m). That is, U(y)∩B(x, 1m)

is a weak neighborhood of x with U(y) ∩ B(x, 1m ) ∩ (D r {y}) = ∅. If t = y we
are done. If t 6= y then since y ∈ D we know x 6= y and there is j ∈ N such that
y /∈ B(x, 1j ). This gives V = B(x, 1j )∩U(y)∩B(x, 1m ) as the weak neighborhood

of x with V ∩ (D r {t}) = ∅. �

The following corollary will be partially superseded in the next section. We
state it anyway since this did partially motivate the question about quotient s-
images of metric spaces. This also includes the hereditary result.

Corollary 3.2. The quotient compact-image of a metric space is a D-space
(hereditarily).

Proof: Recall that quotient compact-images of metric spaces are symmetrizable
[A1], hence are D-spaces (hereditarily) by the previous theorem. �

A spaceX is said to be irreducible if every open cover U ofX has an irreducible
open refinement V ; that is, the open refinement V has no proper subcover. It is
easy to show directly that a D-space is irreducible. It is not as easy to show that
symmetrizable spaces are irreducible and showing subspaces (of symmetrizable
spaces) are irreducible is more difficult. This may not have been previously known,
so perhaps it is worthwhile to mention this as another corollary to Theorem 3.1.

Corollary 3.3. A symmetrizable space is (hereditarily) irreducible.
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4. Quotient images of metric spaces

In this section we answer Arhangel’skii’s question about the quotient s-images
of metric spaces beingD-spaces. Rather than working with the quotient mappings
directly we use the notions of a weak-base and a w-system as defined below. This
will give a stronger result and the desired theorem about quotient s-images of
metric spaces will follow immediately.

Question (Arhangel’skii). Are the quotient s-images of metric spaces D-spaces?

Definition. A weak-base [A1] for a space X is a collection of subsets B =
⋃

{Bx :
x ∈ X} where, for all x ∈ X , x ∈

⋂

Bx, Bx is closed under finite intersections
and B determines the topology on X in the following way: A set U ⊆ X is open
in X if and only if for all z ∈ U , there exists B ∈ Bz with B ⊆ U .

Recall that a space X is said to be sequential if and only if for every non-closed
subset A ⊆ X there exists a sequence 〈xn〉n∈ω in A which converges to some
z ∈ X rA. We can use the setting of a sequential space to discuss the notion of a
weak-neighborhood of an element x without being given an entire weak-base for
a topology.

Definition. If X is a sequential space and x ∈ W ⊆ X we say W is a weak-
neighborhood of x if whenever 〈xn〉n∈ω converges to x then 〈xn〉n∈ω is eventually
in W .

The next proposition essentially says that in a sequential space the collection
of weak-neighborhoods is a weak-base for X . We leave the proof to the reader.

Proposition 4.1. If X is a sequential space then a subset U ⊆ X is open if and
only if for all x ∈ U there exists a weak-neighborhood W of x such that W ⊆ U .

Definition. A collection W of subsets of a sequential space X is said to be a
w-system for the topology if whenever x ∈ U ⊆ X , with U open, there exists a
subcollection V ⊆ W such that x ∈

⋂

V ,
⋃

V is a weak-neighborhood of x and
⋃

V ⊆ U .

Remark. As noted below in Proposition 4.2, a w-system structure can arise
naturally in the context of quotient spaces. A potential advantage in this setting
is that the w-system W is now an internal structure (to the range space) which
should contain all of the relevant topological information originally contained in
the more cumbersome external structure of the quotient mapping. Besides the
obvious topological information it is often desirable for a w-system to retain other
attributes of a particular base (e.g., point-countability) — hence the intention that
Proposition 4.2 be valid for “any base” on Z. It is clear that the entire topology
τ on the domain space Z will induce a w-system on a quotient image but this
may not be a very useful structure.
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Proposition 4.2. If f : Z → X is a quotient map from a space Z onto a T2
sequential space X and B is any base for the topology on Z then W = {f(B) :
B ∈ B} is a w-system for X .

Proof: Let x ∈ U ⊆ X , with U open. We need to find a subcollection V ⊆ W
such that x ∈

⋂

V ,
⋃

V is a weak-neighborhood of x, and
⋃

V ⊆ U . In Z, let C =
{B ∈ B : B ∩ f−1(x) 6= ∅ and B ⊆ f−1(U)} and let V = {f(B) : B ∈ C}. Clearly
x ∈

⋂

V and
⋃

V ⊆ U . To show that
⋃

V is a weak-neighborhood of x suppose
〈yn〉n∈ω converges to x; then we need only show that 〈yn〉n∈ω is eventually in

⋃

V .
If this were not the case there would be a subsequence “missing”

⋃

V completely
so without loss of generality we may assume {yn : n ∈ ω} ∩

⋃

V = ∅. Since X is
T2 we see that {yn : n ∈ ω} ∪ {x} is closed in X and f−1({yn : n ∈ ω} ∪ {x}) is
closed in Z. Now, f−1(x) ⊆

⋃

C and
⋃

{f−1(yn) : n ∈ ω} ∩
⋃

C = ∅ implies that
⋃

{f−1(yn) : n ∈ ω} is a closed saturated set in Z. This says {yn : n ∈ ω} is a
closed set in X , a contradiction. �

Unfortunately, the T2 condition onX in the previous proposition cannot simply
be removed. The next example gives a simple illustration of this.

Example 4.3. There is a countable metric space Z, a quotient map f : Z → X
onto a T1 space X , and a base B for Z such that {f(B) : B ∈ B} is not a
w-structure for X .

Proof: Let Z = {(k, 1n ) ∈ R
2 : k ∈ ω, n ∈ N} ∪ (ω × {0}) with the topology

inherited from R
2. Notice that Z is the topological sum of countably many

convergent sequences. Let X be the quotient map obtained from Z by identifying
the set Hk = {(n, 1

k
) : n ∈ N} to an element yk ∈ X , for every k ∈ N, and by

identifying the pairAm = {(0, 1m ), (m, 0)} to an element pm ∈ X , for everym ∈ N.
Let f : Z → X be the corresponding quotient map and let B be any base for Z such
that whenever (0, 0) ∈ B ∈ B then B ⊆ {(0, 0)}∪{(0, 1n ) : n ∈ N}. If x = f((0, 0)),
notice that yn → x but that {yn : n ∈ N}∩

⋃

{f(B) : (0, 0) ∈ B} = ∅. This shows
that W = {f(B) : B ∈ B} cannot be a w-system for X . �

Theorem 4.4. A sequential space X with a point-countable w-system is a D-
space.

Proof: Let W be a point-countable w-system for X (and for each x ∈ X let
Wx denote {W ∈ W : x ∈ W}). Suppose U = {U(x) : x ∈ X} is an open
neighborhood assignment for X . For every x ∈ X pick a subcollection Vx ⊆ Wx,
with x ∈

⋂

Vx, such that V (x) =
⋃

Vx is a weak-neighborhood of x and V (x) ⊆
U(x). For t ∈ X , let Ht denote the countable set {W ∈ W : t ∈ W ∈

⋃

x∈X Vx}.
ConsiderHt to be well-ordered with an order-type as a subset of ω. (Keep in mind
that the elements of Ht may not be weak-neighborhoods of t even though these
elements all contain t.) Identify the potential “centers” of elements of H ∈ Ht by
letting c(H) = {x ∈ H : H ∈ Vx} and C(t) =

⋃

{c(H) : H ∈ Ht}.
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By a recursion process we will identify an ordinal µ, countable sets Aα ⊆ X ,
for α < µ, and open sets Oα =

⋃

{U(x) : x ∈ Aα} so that
⋃

α<µ Oα = X and

D =
⋃

α<µ Aα is closed and discrete in X . (So {U(x) : x ∈ D} would be the

desired subcover of U witnessing the D-space property.)
For an ordinal β, assuming that Aα (and Oα), for all α < β, have been defined,

continue the process as follows:
If

⋃

α<β Oα = X , we stop and let µ = β.

If
⋃

α<β Oα 6= X , pick some zβ ∈ X r
⋃

α<β Oα. Next, we find (by induction

on ω) an increasing sequence 〈Fβ
n 〉n∈ω of finite subsets of X , with the initial

F
β
0 = {zβ}, as follows:

Given that F
β
n is defined and t ∈ F

β
n , let

R(t) =

(

C(t)r
⋃

s∈F
β
n

U(s)

)

r

⋃

α<β

Oα and Eβ
n =

{

t ∈ Fβ
n : R(t) 6= ∅

}

.

For t ∈ Eβ
n , let k(t, n) = min{n, |{W ∈ Ht : R(t) ∩ c(W ) 6= ∅}|}. Now, let Wt,i,

i = 1, 2, . . . , k(t, n), be the first k(t, n) elements of Ht such that R(t)∩c(Wt,i) 6= ∅
and pick x(t, i) ∈ R(t) ∩ c(Wt,i), for each i. We let

Fβ
n+1 = Fβ

n

⋃

{x(t, i) : t ∈ Eβ
n , 1 ≤ i ≤ k(t, n)}.

If some Eβ
n = ∅ then Fβ

n = Fβ
n+1 = Fβ

n+2 = · · · . In any case, notice that the

resulting F
β
m, m ∈ ω, form an increasing sequence of finite sets. Now we let

Aβ =
⋃

n∈ω F
β
n .

That concludes the recursion process which defines the countable sets Aα ⊆ X ,
for α < µ, and open setsOα =

⋃

{U(x) : x ∈ Aα}. It is clear from the construction
that

⋃

α<µ Oα = X . For later use, we state the following two crucial observations

which follow from the construction above:

(a) If β ≤ γ < µ and 0 ≤ n < k < ω then
(

⋃

α<β Oα

)

∩ F γ
n = ∅ and

(

⋃

s∈F
β
n

U(s)
)

⋂

Fβ
k

r Fβ
n = ∅.

(b) If t ∈ Fβ
m ⊆ Aβ , for some m ∈ ω, then Wt has been “revisited often

enough” so that C(t) ⊆
⋃

α≤β Oα.

It remains to be shown that D =
⋃

α<µ Aα is closed and discrete in X . For

contradiction, assume otherwise. X is sequential, so D not closed or not discrete
implies the existence of an infinite sequence 〈xn〉n∈ω from D which converges to
some y ∈ X . Let γ be the first ordinal where y ∈ Oγ and let m be the smallest

integer such that there exists z ∈ F
γ
m where y ∈ U(z).
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Since xn → y and V (y) is a weak-neighborhood of y there is k ∈ ω such that
xn ∈ V (y) ∩ U(z) for all n ≥ k. It follows from (a) above that all such xn, for
n ≥ k, must appear either in F γ

m (finite) or in
⋃

α<γ Aα; hence there is some

β < γ and some p > k such that xp ∈ Aβ . Now observation (b) above, says that

C(xp) ⊆
⋃

α≤β Oα. However, there must be some W ′ ∈ Vy ∩ Hxp and this puts

y ∈ C(xp). Recall that y /∈
⋃

α≤β Oα since β < γ and γ is the first ordinal where

y ∈ Oγ . This contradiction finishes the proof. �

Theorem 4.4 gives several corollaries. The first improves on the Arhangel’skii-
Buzyakova result [ABuz] that a space with a point-countable base is a D-space.

Corollary 4.5. Any space X with a point-countable weak-base is a D-space.

Proof: A point-countable weak-base for X makes X a sequential space and this
weak-base would certainly be a point-countable w-system. �

Corollary 4.6. If Z is a metric space and f : Z → X is a quotient s-map onto
a T2 space X then X is a D-space.

The above corollary answers the previously mentioned question by Arhan-
gel’skii about whether quotient s-images of metric spaces are D-spaces. In fact,
the following more general result holds.

Corollary 4.7. If Z has a point-countable base and f : Z → X is a quotient
s-map onto a T2 space X then X is a D-space.

Proof: The quotient image of a sequential space is sequential, soX is sequential.
If B is a point-countable base for Z and f−1(x), x ∈ X , is any fiber of the map
then f−1(x) separable implies that {B ∈ B : B ∩ f−1(x) 6= ∅} is countable. Now,
Proposition 4.2 gives that W = {f(B) : B ∈ B} is a point-countable w-system
for X ; an application of Theorem 4.4 concludes the argument. �
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