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Singular integral characterization

of nonisotropic generalized BMO spaces

Raquel Crescimbeni

Abstract. We extend a result of Coifman and Dahlberg [Singular integral characteriza-
tions of nonisotropic Hp spaces and the F. and M. Riesz theorem, Proc. Sympos. Pure
Math., Vol. 35, pp. 231–234; Amer. Math. Soc., Providence, 1979] on the characteriza-
tion of Hp spaces by singular integrals of R

n with a nonisotropic metric. Then we apply
it to produce singular integral versions of generalized BMO spaces. More precisely, if Tλ

is the family of dilations in R
n induced by a matrix with a nonnegative eigenvalue, then

there exist 2n singular integral operators homogeneous with respect to the dilations Tλ

that characterize BMOϕ under a natural condition on ϕ.
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§1. Introduction

We consider in R
n the translation invariant quasi-distances generated by the

nonisotropic dilations given by an n × n matrix A with some real eigenvalue.
Spaces of functions of bounded mean oscillation (BMO), maximal and atomic
Hardy spaces (Hp) and Lipschitz spaces (BMOϕ) are all well defined function
spaces in this setting with Lebesgue measure. In the usual isotropic case, when A
is the identity matrix, a deep characterization of H1 is given by the Riesz singular
integral transforms Rj , j = 1, . . . , n. A function f in L1 belongs to H1 if and

only if Rjf ∈ L1 for j = 1, . . . , n. Even when the atomic and maximal theories of
Hp spaces are completely developed in general settings ([MS2]), the existence of
enough singular integral operators in order to produce such a characterization in
abstract contexts is largely an unsolved problem. A first attempt in this direction
is the result by Coifman and Dahlberg [CD].

In this paper we extend the result of Coifman and Dahlberg to more general
dilations and we apply it to the characterization of generalized BMO and Lipschitz
spaces using our previous result in [C].

In Section 2 we introduce the spaces of homogeneous type and the function
spaces, and we state the main result obtained in this article: the characterization
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of BMOϕ through singular integral operators. In Section 3 we present the Hardy
space and show that, in the general setting of spaces of homogeneous type, a
singular integral characterization of the maximal version of H1 suffices to show
singular integral characterizations of BMO. In Section 4 we prove results that
allow us to obtain the nonisotropic version of the Fefferman-Stein Theorem. For
a given matrix A with some real eigenvalue, in Section 5 we prove the existence
of enough singular integrals in order to get the characterization of the maximal
Hardy space.

§2. Statement of the results

Given a set X , a nonnegative symmetric function d defined on X ×X is called
a quasi-distance if d(x, y) = 0 if and only if x = y and the following generalization
of the triangle inequality holds for every x, y and z ∈ X and some constant K,

d(x, z) ≤ K (d(x, y) + d(y, z)) .

A measure µ defined on the σ-algebra containing the d-balls, B(x, r) = {y :
d(x, y) < r}, is said to satisfy the doubling property if

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) <∞,

for some constant A, every x ∈ X and every r > 0.
If µ is a doubling measure we say, following [CW], that (X, d, µ) is a space of

homogeneous type.
Hardy spaces, on spaces of homogeneous type, in their maximal and atomic

approaches have been studied by Maćıas and Segovia in [MS2]. There, the basic
structure is that of normal spaces. We shall say that (X, d, µ) is a normal space
if there exist four positive constants A1, A2, K1 and K2 such that

A1r ≤ µ(B(x, r)) ≤ A2r for K1µ({x}) ≤ r ≤ K2µ(X),

B(x, r) = X if r > K2µ(X),

B(x, r) = {x} if r < K1µ({x}).

It is clear that we may assume without loosing generality that K1 < 1 < K2.
Moreover, in [MS1] it is proved that every quasi-distance d is equivalent to a
quasi-distance d′ of order β, i.e., there exist two constants C and 0 < β ≤ 1 such
that

|d′(x, y) − d′(y, z)| ≤ Cr1−βd′(x, z)β ,

for every x, y, z and r such that d′(x, y) < r and d′(y, z) < r.
Let us now introduce the function spaces which concern us in this paper. Let

ϕ : R
+ → R

+ be a nondecreasing function satisfying the ∆2 Orlicz’s condition:
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ϕ(2r) ≤ Cϕ(r) for some positive constant C and every r > 0 (see [KR]). Given
a real function f defined on a space of homogeneous type (X, d, µ) we shall say
that f satisfies the Lipschitz-ϕ condition and we shall write f ∈ Λϕ if there exists
C > 0 such that

|f(x) − f(y)| ≤ Cϕ(d(x, y)) for every x, y ∈ X.

The infimum of those constants C is a semi-norm which added to the L∞ norm
gives a Banach space structure on Λϕ. When ϕ(t) = tβ for 0 < β ≤ 1, Λϕ is
the class of Lipschitz-β functions, which under the hypothesis of regularity of the
measure µ, is dense in every Lp for p < ∞. Sometimes we shall write Λϕ(X, d)
instead of Λϕ to emphasize the role of the distance.

Let f ∈ L1loc, i.e.
∫
B |f | dµ <∞ for every ball B. We say that f is of ϕ-bounded

mean oscillation and write f ∈ BMOϕ if there exists a constant C such that the
inequality

1

µ(B)

∫

B
|f − fB | dµ ≤ Cϕ(r(B)),

holds for every ballB inX , where r(B) is the radius ofB and fB =µ(B)−1
∫
B f dµ.

If we identify two functions which differ by a constant, BMOϕ becomes a Banach
space with the norm

‖f‖BMOϕ
= sup

B

1

µ(B)ϕ(r(B))

∫

B
|f − fB| dµ,

which is equivalent to supB infa∈R µ(B)−1ϕ(r(B))−1
∫
B |f − a| dµ. We shall use

the notation BMOϕ(X, d, µ) instead of BMOϕ in order to recall the particular
structure of the underlying space of homogeneous type.

We denote by S the Schwartz class of functions and by S ′ the respective dis-
tribution space. Throughout this paper C will denote a positive constant, not
necessarily the same at each occurrence.

To each n × n diagonalizable matrix A and each λ > 0, we associate the
nonisotropic dilations whose matrix is given by Tλ = eA log λ where λ > 0. Let
us also assume, following [G], that the eigenvalues of A have a real part large
enough in order to have a unique solution ρ = ρ(x) of ‖T 1

ρ
(x)‖ = 1. The function

ρ(x− y) becomes a translation invariant distance on R
n. Moreover when µ is the

Lebesgue measure on R
n we have that (Rn, ρ, µ) is a space of homogeneous type.

Given a ρ-ball B = B(x0, r) in R
n, we have that µ(B) = Crτ where τ =

∑n
i aii

is the trace of A. The function d(x, y) = ρτ (x − y) is a quasi-distance of order
τ−1 on R

n and (Rn, d, µ) becomes a normal space of homogeneous type.
A convolution operator R is said to be Tλ-homogeneous of degree m if R(f ◦

Tλ)(x) = λ−m−τ (Rf)(Tλx).

The main result of this article is given in the next statement.
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Theorem 2.1. Let A be an n × n matrix with some real eigenvalue. Let Tλ

be the nonisotropic family of dilations induced by A. Let ϕ be a nondecreasing
function satisfying ∆2 and the following growth condition

rβ
∫ ∞

r

ϕ(t)

t1+β
dt ≤ Cϕ(r),

with β = τ−1. Then there exist 2n singular integral operators Ri, i = 1, . . . , 2n,
Tλ-homogeneous of degree −τ such that

BMOϕ(Rn, d, µ) ⊂ Λϕ +

2n∑

i=1

RiΛϕ.

From Theorem II in [C], Theorem 2.1 will follow at once from the characteri-
zation of the BMO(Rn, d, µ) space as the next theorem states.

Theorem 2.2. Let A be an n× n matrix with some real eigenvalue. Let Tλ be

the nonisotropic family of dilations induced by A. Then there exist 2n singular
integral operators Ri, i = 1, . . . , 2n, Tλ-homogeneous of degree −τ such that

BMO(Rn, d, µ) = L∞ +

2n∑

i=1

RiL
∞.

This theorem will be a direct consequence of the characterization of the non-
isotropic Hardy space H1 in terms of 2n singular integral operators, that we will
present in the next section and prove in the rest of the paper.

§3. Hardy and BMO spaces

Following Maćıas and Segovia [MS2] let us denote by Eα the space of all
functions with bounded supports belonging to Λβ , for every 0 < β < α. We shall
say that a linear functional f on Eα is a distribution on Eα if it is continuous when
Eα is endowed with the inductive limit topology of the Λβ with compact support.
For a space of homogeneous type (X, d, µ), γ a number such that 0 < γ < α,
and x in X , we introduce a class Dγ(x) which will allow us to define maximal
functions of distributions on Eα. We shall say that a function ψ belonging to
Eα is in Dγ(x) if there exists r such that r ≥ K1µ({x}), the support of ψ is

contained in B(x, r), r‖ψ‖∞ ≤ 1 and r1+γ‖ψ‖γ ≤ 1, where ‖ψ‖γ = inf C such
that |ψ(x) − ψ(y)| ≤ Cd(x, y)γ . Let f be a distribution on Eα and 0 < γ < α.
We define the γ-maximal functions f∗γ (x) of f as

f∗γ (x) = sup{|〈f, ψ〉| : ψ ∈ Dγ(x)}.
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In [MS2] Maćıas and Segovia give the atomic decomposition of the maximal Hardy
space Hp: let f be a distribution on Eα such that for some γ, 0 < γ < α,
and some p, (1 + γ)−1 < p ≤ 1, its γ-maximal function f∗γ (x) belongs to Lp.

Then there exists a sequence of p-atoms, {an(x)}, and a numerical sequence,
{λn}, such that f =

∑
n λnan strongly in the dual space of Eα. They actually

prove that the atomic and maximal Hp spaces are equivalent. Once we have
the atomic decomposition we can prove the duality between the spaces H1 and
BMO in the context of spaces of homogeneous type. This last result allows us to
extend the argument in [FS] in order to prove that if for a space of homogeneous
type (X, d, µ) we have that there exist Ri, i = 1, . . . ,m singular integral anti-
hermitian operators such that H1(X, d, µ) = {f ∈ L1(X) : Rif ∈ L1(X), i =
1, . . . ,m} then BMO(X, d, µ) = L∞ +

∑m
i=1RiL

∞. Here the expression anti-
hermitian means that

∫
(Rif)ϕ = −

∫
f(Riϕ) for f ∈ H1 and ϕ ∈ L∞. Of course

L∞ +
∑m

i=1RiL
∞ ⊂ BMO, since Ri i = 1, . . . ,m are standard singular integral

operators. In order to prove the opposite inclusion let B be the Banach space
which consists of the direct sum of m + 1 copies of L1(X) with the following
norm ‖(f0, f1, . . . , fm)‖ =

∑m
j=0 ‖fj‖1. Let S be the subspace of B with fj =

Rj(f0), j = 1, . . . ,m. S is a closed subspace of B and the mapping f0 →

(f0,R1f, . . . ,Rnf0) is a Banach space isometry of H1 to S. Then any continuous
linear functional on H1 can be identified with a corresponding functional defined
on S, and hence by the Hahn-Banach theorem, it extends to a continuous linear
functional on B. Now B = L1 ⊕ L1 . . .⊕ L1 and thus the dual of B is equivalent
to L∞ ⊕ L∞ . . . ⊕  L∞. Restricting our attention to S (and hence H1) we get
the following conclusion. Any g ∈ BMO(X, d, µ) defines a linear and continuous
functional on H1 by l(f) =

∫
X gf dµ. Then there exists ϕ0, ϕ1, . . . , ϕm ∈ L∞,

such that

l(f) =

m∑

j=0

∫

X
fjϕj dx, where f = f0, and fj = Rj(f), j = 1, . . . ,m.

Now the anti-hermitian character of the singular integral operators gives us the
desired result since

l(f) =

∫

X
fg =

∫

X
f




ϕ0 −
n∑

j=1

Rj(ϕj)




 dx,

for every f ∈ H1. Thus Theorem 2.2 and hence Theorem 2.1 will be a consequence
of the next result.

Theorem 3.1. Let A be an n× n matrix with some real eigenvalue. Let Tλ be

the nonisotropic family of dilations induced by A. Then there exist 2n singular
integral operators Ri, i = 1, . . . 2n, Tλ-homogeneous of degree −τ such that a
function f belongs to the maximal version of the Hardy space H1(Rn, d, µ) if and
only if Rif ∈ L1 for every i = 1, . . . , 2n.
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§4. A characterization of H1

In this section we consider A = (aij), an n×n matrix in Jordan canonical form
with a11 = 1. Let τ be the trace of A and ρ the nonisotropic metric associated
to A.

Let Sn−1 be the unit sphere in R
n. For S ∈ Sn−1 we consider the subset

Γ = {Tλξ / ξ ∈ S ⊂ Sn−1, λ > 0} of R
n. Let ϕ be a function belonging to the

Schwartz class S(R) such that, ϕ̂(x) = 1 for |x| ≤ 1
2 and ϕ̂(x) = 0 if |x| > 1. It is

easy to see, for ϕµ(x) = µϕ(µx), that ϕ̂µ(t) = ϕ̂( t
µ).

Let ζ be a C∞ function defined on Sn−1 such that ζ ≡ 1 on S ⊂ Sn−1

and ζ ≡ 0 outside a given open neighborhood of S. Let us now consider the
function Θ Tλ-homogeneous of degree zero such that Θ|Sn−1 = ζ. In other words
Θ(ξ) = ζ(T 1

ρ(ξ)
ξ) with ξ ∈ R

n − {0}.

For each λ > 0 let us define a function φλ such that

φ̂λ(ξ) = ϕ̂(
ρ(ξ)

λ
)Θ(ξ).

Notice that the right hand side of the above expression belongs to L1(Rn), since it
is bounded and supported on a bounded set. Now we obtain the following result.

Lemma 4.1. Let f ∈ S′(Rn) be such that supp f̂ ⊂ Γ. Then for any λ > 0 and

Fλ(ξ) = φλ ∗ f(ξ) we have F̂λ(ξ) = (ϕ̂λ ◦ ρ)f̂ . Moreover if µ is a positive number
with 2µ < λ then Fµ = φµ ∗ Fλ.

Proof: The first statement follows using the fact that Θ ≡ 1 on Γ and f̂ ≡ 0 out

of Γ. For the other statement it is enough to see that if ξ is such that F̂µ(ξ) is not

zero then φ̂λ(ξ) = 1, in fact let ξ ∈ Γ (this implies f̂(ξ) 6= 0) be such that
ρ(ξ)
µ ≤ 1

(this implies that φ̂µ(ξ) 6= 0); then we have that Θ(ξ) = 1 and, for our choice of

µ, we have that
ρ(ξ)
λ ≤

ρ(ξ)
2µ ≤ 1

2 hence ϕ̂(
ρ(ξ)
λ ) = 1 and the result follows. �

In this form Fµ is a convolution operator with kernel Kµ(ξ) = (ϕ̂µ ◦ ρ)∨(ξ)
belonging to S(Rn).

Associated with the metric ρ and the dilations Tλ, λ > 0 one can define,
following [G], in a natural way a system of polar coordinates through the following
mapping x ∈ R

n − {0} 7→ (x′, ρ(x)) ∈ Sn−1 × (0,∞) where x′ = T 1
ρ(x)

x. It is not

difficult to see that the integral in R
n can be expressed in this system of polar

coordinates in the following way

∫

Rn
f(x) dx =

∫ ∞

ρ=0

∫

x′∈Sn−1
f(Tρx

′) |〈Ax′, x′〉| dx′ρτ−1dρ.
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Here dx′ means the ordinary Lebesgue measure on the unit sphere. For simplicity
we use the notation |〈Ax′, x′〉|dx′ = dσ(x′). This change of variable and the fact
that Tst(x) = Ts◦Tt(x) allow us to prove, in an easy way, thatKµ(ξ) = µτK(T ∗

µξ),

where T ∗ is the adjoint operator and K(ξ) = (ϕ̂ ◦ ρ)∨(ξ).

For y′ ∈ Sn−1, µ > 0 and r > 0 we denote

Ky′

µ (r) = Kµ(Try
′)rτ−1 = rτ−1µτK ◦ T ∗

µ(Try
′)

and
Ψy′

µ (r) = rτ−1K(T ∗
µT 1

µ
Try

′) = rτ−1(K ◦ T ∗
µ)(T r

µ
y′),

therefore Ky′

µ (r) = µΨy′

µ (µr).

For λ > 0, y′ ∈ Sn−1 and ξ2 ∈ R
n−1 we consider the real function

F
y′,ξ2
λ

(r) = Fλ((Try
′)1, ξ2),

where (Try
′)1 denotes the first coordinate of Try

′ and Fλ is defined in the same

way that the Lemma 4.1 with f ∈ S′(Rn) such that supp f̂ ⊂ Γ. For these
functions we obtain the following result.

Lemma 4.2. (i) The function F y′,ξ2
λ

(r) has an analytic extension to the upper

half plane, i.e. F y′,ξ2
λ

(z) is analytic in Im z > 0.
(ii) Let s, r, s0 be such that |s0 − r| ≥ 2|s0 − s|. Then there exists a positive
constant ǫ such that for C = C(µ, τ) we have

|Ψy′

µ (µ(s− r)) − Ψy′

µ (µ(s0 − r))| ≤ C
|s0 − s|ǫ

(1 + |s0 − r|)n+ǫ
.

Proof: For the first statement, we observe that φ̂λf̂ is a smooth function with
compact support in Γ ∩ {ρ(ξ) ≤ λ}; hence from Paley-Wiener theory we have
that Fλ(ξ) is an analytic function in all variables. Therefore we must prove that

F y′,ξ2
λ

(z) = Fλ((Tzy
′)1, ξ2) is an analytic function in Im z > 0. For each λ > 0,

y′ ∈ Sn−1 and ξ2 ∈ R
n−1, using that φ̂λf̂ is smooth enough, we can see that

F y′,ξ2
λ

(z) is a continuous function. Let γ be a triangular path in R
n+1
+ and such

that the first eigenvalue of A is one. We have that (Tzy
′)1 = zy′1; this one and

the fact that the exponential is a analytic function allow us to obtain that
∫

γ
F

y′,ξ2
λ

(z) dz =

∫

γ

∫
eiu((Tzy′)1,ξ2)φ̂λ(u)f̂(u) du dz

=

∫
φ̂λ(u)f̂(u)

∫

γ
ei(zy′

1u1+ξ2u2) dz du = 0,
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therefore F
y′,ξ2
λ (z) is an analytic function.

In order to prove (ii), it is enough to see that there exists a positive constant
ǫ such that

|Ψy′

µ (µ(r − s)) − Ψy′

µ (µr)| ≤ C
sǫ

(1 + r)n+ǫ
,

for 2s < r and C = C(µ, τ). If we denote by η the function in S(Rn) given by
η = K ◦ T ∗

µ then

|Ψy′

µ (µ(r − s)) − Ψy′

µ (µr)| = |(µ(r − s))τ−1η(Tr−sy
′) − (µr)τ−1η(Try

′)|

≤ µτ−1
[
(r − s)τ−1|η(Tr−sy

′) − η(Try
′)|

]

+ µτ−1|η(Try
′)||(r − s)τ−1 − rτ−1|

= µτ−1[(I) + (II)].

We analyze each term separately. As η ∈ S for every k ∈ N there exists a
constant C such that |η(Try

′)| ≤ C

(1+‖Try′‖)k
. The fact that ‖Try‖ ≥ ‖y‖r, taken

k = [τ + n], where [x] denote the integer part function, gives us

(II) ≤ C
rτ−2s

(1 + r)k

≤ C
s

(1 + r)n+1
.

For (I) we observe that

|η(Tr−sy
′) − η(Try

′)| = s ‖
d

dr
(η(Tr(y′)))(r0)‖,

for r0 such that r − s < r0 < r, therefore r
2 < r0 < r. Using again the fact

that η is a function in the Schwartz class we have that for every k ∈ N there

exists a constant C such that | ∂η
∂xi

(TRy
′)| ≤ C

(1+‖TRy′‖)k
, for each i = 1, . . . , n,

and therefore ‖∇η(TRy
′)‖ ≤ C

(1+‖TRy′‖)k
. This estimate, the fact that Tr is a

nondecreasing function of r and the equivalence between r0 and r allow us to
obtain that

‖
d

dr
(η(Tr(y′)))(r0)‖ ≤ ‖∇η(Tr0y

′)‖
1

r0
‖A‖ ‖eA log r0‖

≤ ‖∇η(Tr0y
′)‖

1

r0
‖A‖ ‖Tr‖

≤
C‖A‖ ‖Tr‖

r

1

(1 + r)k
.
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Finally, choosing k = [τ + n+ ‖A‖], we obtain that

(I) ≤ Crτ−2s‖A‖ ‖Tr‖
1

(1 + r)k

≤ Crτ−2s
‖A‖ r‖A‖

(1 + r)k

≤ Cs
rτ−2+‖A‖

(1 + r)k

= C
s

(1 + r)n+1
,

and the result follows. �

Lemma 4.3 (Fefferman-Stein, nonisotropic version) [FS]. If ξ2 ∈ R
n−1, y′ ∈

Sn−1, and λ and µ are real numbers then

‖Ky′

µ ∗ F y′,ξ2
λ

‖L1 ≤ c(µ, y′)‖F y′,ξ2
λ

‖H1 .

Proof: From the duality between H1 and BMO in spaces of homogeneous type,

it is enough to prove, for g ∈ L∞(Rn), that the function φy′,ξ2
µ = Ky′

µ ∗ gy′,ξ2

belongs to BMO, where gy′,ξ2(r) = g((Try
′)1, ξ2). Let I = Ih = [s0 −

h
2 , s0 + h

2 ]

and let I2h be an concentric interval with length 2h. Decompose gy′,ξ2 = g1+ g2,

with g1 = gy′,ξ2χI2h . This decomposition induces two functions φ1 and φ2 where

φi = gi ∗ K
y′

µ , i = 1, 2. We will prove that each one belongs to BMO, in fact

∫

I
|φ1(s)|ds ≤

∫

R

|φ1(s)| ds

≤

∫

R

∫

R

µ(µr)τ−1|K(T ∗
µTry

′)||g1(s− r)| dr ds

=

∫

R

µ(µr)τ−1|K(T ∗
µTry

′)|

(∫

R

|g1(s− r)| ds

)
dr

≤ ‖gy′,ξ2‖∞|I2h|

∫

R

µ(µr)τ−1|K(T ∗
µTry

′)| dr.

If we denote G(µ, y′) =
∫
R
µ(µr)τ−1|K(T ∗

µTry
′)| dr, this function is finite for

almost every y′ ∈ Sn−1; in fact, using again the change of variable y = Try
′ and

observing that the kernel K ∈ L1(Rn) we have
∫

Sn−1

∫

r∈R

µ(µr)τ−1|KT ∗
µTry

′| dr dσ(y′) =

∫

Rn
µτ |K(T ∗

µx)| dx

= C(µ)‖K‖1.
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Therefore we have

1

|I|

∫

I
|φ1(s)| ds ≤ c‖gy′,ξ2‖∞G(µ, y′).

For the other function we consider

aI =

∫

Ic
2h

Ky′

µ (s0 − r)g2(r) dr =

∫

Ic
2h

µΨy′

µ (µ(s0 − r))g2(r) dr.

Taking s ∈ Ih and using Lemma 4.2 we obtain that

|φ2(s) − aI | ≤

∫

Ic
2h

µ|g2(r)||Ψy′

µ (µ(s− r)) − Ψy′

µ (µ(s0 − r))| dr

≤ µ‖gy′,ξ2‖∞

∫

|s0−r|>2h
|Ψy′

µ (µ(s− r)) − Ψy′

µ (µ(s0 − r))| dr

≤ Cµ‖gy′,ξ2‖∞

∫

|s0−r|>2h

|s0 − s|ǫ

(1 + |s0 − r|)n+ǫ
dr

≤ Cµ‖gy′,ξ2‖∞|s0 − s|ǫ
∫

|s0−r|>2h

1

|s0 − r|n+ǫ
dr

≤ Cµ‖gy′,ξ2‖∞
hǫ

ǫ(2h)ǫ

= C‖gy′,ξ2‖∞.

Then we have
1

|I|

∫

I
|φ2(s) − aI | ≤ C‖gy′,ξ2‖∞.

This statement together with that one obtained for φ1 give us

1

|I|

∫

I
|φy′,ξ2

µ − aI | ≤ C‖gy′,ξ2‖∞(1 +G(µ, y′)),

and the proof follows. �

Now, let us consider an appropriate change of variable, which together with
the last result allow us to arrive at the principal result of this section.

For y′ ∈ Sn−1, r ∈ R and x = (x1, x2) ∈ R
n with x1 ∈ R and x2 ∈ R

n−1, let,
as before, (Try)1 be the first coordinate of Try and (Try)2 the others. Consider
the following change of variables,

{
x1 = (Tξ1−ry

′)1 + (Try
′)1

x2 = ξ2 + (Try
′)2.

Using the fact that (Tλy)1 = λy1, we obtain

x− Try
′ = ((Tξ1−ry

′)1, ξ2) = ((ξ1 − r)y′1, ξ2).

The determinant of the jacobian matrix of this change of variable is y′1.
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Theorem 4.4. Let A be an n× n matrix with some real eigenvalue. Let f be a

distribution in S′(Rn) such that supp f̂ ⊂ Γ. Then there exists a constant C such
that

‖ sup
λ>0

|φλ ∗ f |‖L1 ≤ C lim
λ→∞

‖φλ ∗ f‖L1 .

Proof: For a fixed number N , we consider λ such that λ > 2N (this implies that
2µ < λ for all µ ≤ N). Then from Lemma 4.1 and 4.2 and using the previous two
changes of variables we have

∫

Rn
sup
µ≤N

|Fµ(x)| dx =

∫

Rn
sup
µ≤N

|Kµ ∗ Fλ(x)| dx

=

∫

Rn
sup
µ≤N

∣∣∣∣
∫

Rn
Kµ(y)Fλ(x− y) dy

∣∣∣∣ dx

≤

∫

Rn

∫

Sn−1
sup
µ≤N

∣∣∣∣
∫

R

Kµ(Try
′)Fλ(x − Try

′)rτ−1 dr

∣∣∣∣ dσ(y′) dx

=

∫

Sn−1

∫

ξ2∈Rn−1

∫

ξ1∈R

|y′1| sup
µ≤N

∣∣∣∣
∫

R

Ky′

µ (r)Fλ((Tξ1−ry
′)1, ξ2) dr

∣∣∣∣ dξ1 dξ2 dσ(y′)

=

∫

Sn−1
|y′1|

∫

ξ2∈Rn−1

∫

ξ1∈R

sup
µ≤N

∣∣∣∣
∫

Ky′

µ (r)F
y′,ξ2
λ

(ξ1 − r) dr

∣∣∣∣ dξ1 dξ2 dσ(y′)

=

∫

Sn−1
|y′1|

∫

ξ2∈Rn−1
‖ sup

µ≤N
|Ky′

µ ∗ F
y′,ξ2
λ

|‖1 dξ2 dσ(y′).

Therefore, using Lemma 4.3, we obtain

‖ sup
µ≤N

Ky′

µ ∗ F y′,ξ2
λ

‖1 ≤ C(1 +G(µ, y′))‖F y′,ξ2
λ

‖H1

= C(1 +G(µ, y′)) sup
y>0

∫

R

|F
y′,ξ2
λ

(x + iy)| dx

≤ C(1 +G(µ, y′))

∫

R

|F y′,ξ2
λ

(x)| dx,

and then
∫

Rn
sup
µ≤N

|Fµ(x)| dx ≤ C

∫

Sn−1
|y′1|

∫

ξ2∈Rn−1
(1 +G(µ, y′))‖F

y′,ξ2
λ

‖1 dξ2 dσ(y′)

= C

∫

Sn−1
(1 +G(µ, y′))

∫

ξ2∈Rn−1
|y′1|

∫

ξ1

|Fλ((Tξ1y
′)1, ξ2)| dξ1 dξ2 dσ(y′)

= C

∫

Sn−1
(1 +G(µ, y′))

∫

Rn
|Fλ(x)| dx dσ(y′).
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In the proof of Lemma 4.3, we have obtained that
∫
Sn−1(1+G(µ, y′)) <∞, hence∫

Rn supµ≤N |Fµ(x)| dx ≤ C
∫
Rn |Fλ(x)| dx, for λ > 2N and then

∫

Rn
sup
µ≤N

|Fµ(x)| dx ≤ C lim
λ→∞

‖φλ ∗ f‖1.

Taking the limit as N goes to infinity we obtain the desired inequality. �

§5. Proof of Theorem 3.1

Let us first reduce the problem to a matrix in a Jordan form.

Lemma 5.1. Let A be an n × n matrix and J = PAP−1 its Jordan canonical

matrix. If we denote by BMOJ and BMOA the BMO related to the metrics ρJ

and ρA, and by T
A
λ and T

J
λ the nonisotropic dilations associated to the matrix A

and J , respectively, then

(i) f ∈ BMOJ if and only if f ◦ P ∈ BMOA;

(ii) if for f ∈ BMOJ there existm singular integral operatorsRi, i = 1, . . . ,m

T J
λ -homogeneous of degree −τ and functions gi, i = 1, . . . ,m belonging
to L∞ such that f =

∑m
i=1Rigi then f ◦P have a similar decomposition.

Proof: Let BA and BJ be the balls for the metrics associated to A and J
respectively. We observe that PBA = {Pz/ρA(z) < r} = {u/ρA(P−1u) < r},
with r the BA ratios. For x ∈ R

n we consider the norm |||x||| = ‖Px‖, and for a

matrix A we take the metric ρ̄A such that |||TA
1

ρ̄A(x)

x||| = 1. Then

1 = |||TA
1

ρ̄A(P
−1u)

P−1u|||

= ‖Pe
A log 1

ρ̄A(P
−1)P−1u‖

= ‖e
J log 1

ρ̄A(P
−1u)u‖

= ‖T J
1

ρ̄A(P
−1u)

u‖.

By uniqueness we have that ρJu = ρ̄A(P−1u). The equivalence between the
norms in R

n implies an equivalence between the metrics ρ̄A and ρA and then we
have that PBA is equivalent to {u/ρ̄A(P−1u) < r} = {u/ρJ(u) < r} = BJ , and
therefore the families PBA and BJ are equivalent. Using the change of variable
Px = y we obtain (i). For the other statement, let f be a function in BMOJ such
that f =

∑m
i=1Rigi with Ri singular integral operators and gi ∈ L∞. Then we
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have that f ◦ P (x) =
∑

i Rigi(Px). Each term in the sum satisfies that

Rg(Px) =

∫
k(Px− y)g(y) dy

=

∫
k ◦ P (x− z)g(Pz)

dz

| detP |−1

= R̃g̃(x),

with R̃ the singular integral operator with kernel k ◦ P and g̃ = g ◦ P . It is clear
that g ◦ P ∈ L∞ if g ∈ L∞. Now we analyze the homogeneity of k̃.

k̃(TA
λ (x)) = k(PTA

λ x) = k(T J
λ Px)

= λτk ◦ P (x)

= λτ k̃(x),

and the result follows. �

Proof of Theorem 3.1: The proof follows the lines of that one by Coifman
and Dahlberg [CD]. We can find a C∞ partition of unity on Sn−1, consisting of
2n functions wi(ξ) having the following properties

ei ∈ sopwi ⊂ {ξ ∈ Sn−1, ξi > 0} for i = 1, . . . , n,

−ei ∈ sopwn+j ⊂ {ξ ∈ Sn−1, ξi < 0} for i = n+ j, j = 1, . . . , n;

here ei denotes the standard orthonormal basis of R
n. If we now extend wi by

homogeneity, i.e. wi(ξ) = wi(T 1
ρ(ξ)

ξ), we can define the operator

Rif = (wi(ξ)f̂ (ξ))
∨
.

By construction, wi(ξ)f̂(ξ) is supported in a region of the type Γ considered in
Theorem 4.4, hence

‖ sup
λ

|φλ ∗ Rif | ‖1 ≤ C lim
λ→∞

‖φλ ∗ Rif‖1 ≤ ‖Rif‖1.

Therefore, we obtain one part of the equivalence using the fact that f =
∑

i Rif .
The other part follows using a more general result on singular integral operator
in spaces of homogeneous type, as a consequence of the result in [MS2]. �
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