Characterizations of L^1 -predual spaces by centerable subsets

YANZHENG DUAN, BOR-LUH LIN

Abstract. In this note, we prove that a real or complex Banach space X is an L^1 -predual space if and only if every four-point subset of X is centerable. The real case sharpens Rao's result in [Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. **130** (2002), no. 9, 2593–2598] and the complex case is closely related to the characterizations of L^1 -predual spaces by Lima [Complex Banach spaces whose duals are L_1 -spaces, Israel J. Math. **24** (1976), no. 1, 59–72].

Keywords: Chebyshev radius, centerable subsets and L^1 -predual spaces

Classification: Primary 41A65; Secondary 46B20

1. Introduction

Let X be a Banach space. For $a \in X$, r > 0, let $B[a, r] = \{x \in X : ||a - x|| \le r\}$ and let $S(X) = \{x \in X : ||x|| = 1\}$. If A is a bounded subset of X, let

$$r(A, x) = \sup_{a \in A} \|x - a\|$$

and let

$$r(A) = \inf_{x \in X} r(A, x)$$

denote the Chebyshev radius of A. Let

$$\delta(A) = \sup\{\|a - b\| : a, b \in A\}$$

denote the diameter of A. Then $\delta(A) \leq 2r(A)$ for every bounded subset A of X.

Definition 1.1 ([4]). Let X be a Banach space and A a bounded subset of X. If $\delta(A) = 2r(A)$, then A is said to be centerable.

Research of the second author partially supported by NSF/OISE-03-52523.

Definition 1.2 ([6]). A Banach space X whose dual X^* is isometrically isomorphic to $L^1(\mu)$ for some positive measure μ is called an L^1 -predual space.

 L^1 -predual spaces are also called Lindenstrauss spaces. In [9], Lindenstrauss gave several characterizations of real L^1 -predual spaces using intersection properties of balls. In [7], Lima gave several characterizations of complex L^1 -predual spaces using intersection properties of balls.

A Banach space X is called a \mathcal{P}_1 space if X is norm-one complemented in every Banach space Z containing X. Let X be a real or complex Banach space. By Theorem 6.1 of [9] and Theorem 4.1 of [7], X is an L^1 -predual space if and only if X^{**} is a \mathcal{P}_1 space. By [4, p. 193], every bounded subset of a \mathcal{P}_1 space is centerable. In 1977, W.J. Davis [2] proved that the converse is true.

In 2002, Rao [10] proved that a real Banach space X is an L^1 -predual space if and only if every finite subset of X is centerable. In this note, we prove that if every four-point subset of a real or complex Banach space X is centerable, then X is an L^1 -predual space. The result for the real case sharpens Rao's result in [10] and our proof is different from Rao's. The result for the complex case is a new form of characterizations of L^1 -predual spaces. We also point out that it cannot be sharpened anymore, i.e., that every three-point subset of a real or complex Banach space X is centerable does not imply that X is an L^1 -predual space.

2. Main results

We first give a characterization of n-point subsets of Banach spaces to be centerable.

Proposition 2.1. Let X be a real or complex Banach space and $n \ge 3$ be an integer. Then every n-point subset of X is centerable if and only if for every r > 0 and every family of pairwise intersecting closed balls $\{B[a_i, r]\}_{i=1}^n$ in X, $\bigcap_{i=1}^n B[a_i, r+\epsilon] \neq \emptyset$ for all $\varepsilon > 0$.

PROOF: \Rightarrow . Let $A = \{a_1, a_2, \ldots, a_n\}$. Since $\{B[a_i, r]\}_{i=1}^n$ are pairwise intersecting, $||a_i - a_j|| \leq 2r$ for all i, j. Hence, $2r(A) = \delta(A) \leq 2r$. So $r(A) \leq r$. Therefore, for any $\varepsilon > 0$, there exists $x_0 \in X$ such that $r(A, x_0) \leq r + \varepsilon$, which implies that $x_0 \in \bigcap_{i=1}^n B[a_i, r + \varepsilon]$.

Next theorem is due to Lindenstrauss [9].

Theorem 2.2 ([9]). Let X be a real Banach space and $n \ge 3$ an integer. Then the following statements are equivalent.

(1) For every r > 0 and every family of pairwise intersecting closed balls

 $\{B[a_i,r]\}_{i=1}^n$ in X, $\bigcap_{i=1}^n B[a_i,r+\varepsilon] \neq \emptyset$ for all $\varepsilon > 0$.

- (2) For every r > 0 and every family of pairwise intersecting closed balls $\{B[a_i,r]\}_{i=1}^n$ in X, $\bigcap_{i=1}^n B[a_i,r] \neq \emptyset$.
- (3) For every family of pairwise intersecting closed balls $\{B[a_i, r_i]\}_{i=1}^n$ in X, $\bigcap_{i=1}^{n} B[a_i, r_i] \neq \emptyset.$
- (4) For every family of pairwise intersecting closed balls $\{B[a_i, r_i]\}_{i=1}^n$ in X, $\bigcap_{i=1}^{n} B[a_i, r_i + \varepsilon] \neq \emptyset$ for all $\varepsilon > 0$.

Combining Proposition 2.1 and Theorem 2.2, we have the following theorem.

Theorem 2.3. Let X be a real Banach space and $n \geq 3$ an integer. Then every n-point subset of X is centerable if and only if one of the four conditions in Theorem 2.2 holds.

The following theorem is a special case of Lindenstrauss's Theorem 4.1 in [9].

Theorem 2.4 ([9]). Let X be a real Banach space and $n \geq 3$ an integer. Then the following statements are equivalent.

- (1) For every family of pairwise intersecting closed balls $\{B[a_i, r_i]\}_{i=1}^4$ in X,
- $\bigcap_{i=1}^{4} B[a_i, r_i] \neq \emptyset.$ (2) For every family of pairwise intersecting closed balls $\{B[a_i, r_i]\}_{i=1}^n$ in X, $\bigcap_{i=1}^{n} B[a_i, r_i] \neq \emptyset.$

Following Theorem 2.3 and Theorem 2.4, we have the following.

Theorem 2.5. Let X be a real Banach space. Then every four-point subset of X is centerable if and only if every finite subset of X is centerable.

In [1], P. Bandyopadhyay and T.S.S.R.K. Rao proved the following result.

Theorem 2.6 ([1, Theorem 3.9]). Let X be a real or complex L^1 -predual space. Then any compact subset A of X is centerable.

Now we are ready to give characterizations of real L^1 -predual spaces by centerable subsets.

Theorem 2.7. Let X be a real Banach space. Then the following statements are equivalent.

- (1) X is an L^1 -predual space.
- (2) Every four-point subset of X is centerable.
- (3) Every finite subset of X is centerable.
- (4) Every compact subset of X is centerable.

PROOF: $(4) \Rightarrow (3) \Rightarrow (2)$. Trivial. $(2) \Rightarrow (1)$. Following Theorem 2.3, Theorem 2.5 and Theorem 6.1 in [9]. (1) \Rightarrow (4). Following Theorem 2.6. \square

In order to give a similar characterization of complex L^1 -predual spaces by centerable subsets, we need Lima's results [7], [8] about characterizations of complex L^1 -predual spaces.

Definition 2.8 ([5]). A family of closed balls $\{B[a_i, r_i]\}_{i \in I}$ in a complex (real) Banach space X is said to have the weak intersection property if for any $f \in S(X^*)$, $\bigcap_{i \in I} B[f(a_i), r_i] \neq \emptyset$ in $\mathbb{C}(\mathbb{R})$.

Definition 2.9 ([7]). Let $n \geq 3$ be an integer. We say that a real or complex Banach space X is an E(n)-space if for every family $\{B[a_i, r_i]\}_{i=1}^n$ of n closed balls in X with the weak intersection property, $\bigcap_{i=1}^n B[a_i, r_i] \neq \emptyset$.

Theorem 2.10 ([8, Corollary 2.5]). Let X be a real or complex Banach space and let $n \ge 3$ be an integer. Then the following statements are equivalent.

- (1) For every r > 0 and every family of n closed balls $\{B[a_i, r]\}_{i=1}^n$ in X such that any three of them have nonempty intersection, $\bigcap_{i=1}^n B[a_i, r+\varepsilon] \neq \emptyset$ for all $\varepsilon > 0$.
- (2) For every family of n closed balls $\{B[a_i, r_i]\}_{i=1}^n$ in X such that any three of them have nonempty intersection, $\bigcap_{i=1}^n B[a_i, r_i + \varepsilon] \neq \emptyset$ for all $\varepsilon > 0$.

Theorem 2.11 ([7, Corollary 4.3]). Let X be a complex Banach space. If for every family of 4 closed balls $\{B[a_i, r_i]\}_{i=1}^4$ in X such that any three of them have nonempty intersection, $\bigcap_{i=1}^4 B[a_i, r_i + \varepsilon] \neq \emptyset$ for all $\varepsilon > 0$, then X is an E(n)-space for all $n \geq 3$.

Theorem 2.12 ([7, Theorem 4.1]). Let X be a complex Banach space. Then the following statements are equivalent.

- (1) X is an L^1 -predual space.
- (2) X is an E(n)-space for all $n \ge 3$.

Theorem 2.13. Let X be a complex Banach space. Then the following statements are equivalent.

- (1) X is an L^1 -predual space.
- (2) Every four-point subset of X is centerable.
- (3) Every finite subset of X is centerable.
- (4) Every compact subset of X is centerable.

PROOF: (1) \Rightarrow (4). Following Theorem 2.6. (4) \Rightarrow (3) \Rightarrow (2). Trivial.

 $(2) \Rightarrow (1)$. Let r > 0 and let $\{B[a_i, r]\}_{i=1}^4$ be a family of four closed balls such that any three of them intersect. Since $\{B[a_i, r]\}_{i=1}^4$ is pairwise intersecting and $\{a_1, a_2, a_3, a_4\}$ is centerable, by Theorem 2.1, $\bigcap_{i=1}^4 B[a_i, r+\varepsilon] \neq \emptyset$ for all $\varepsilon > 0$. Hence, by Theorem 2.10, for every family of 4 closed balls $\{B[a_i, r_i]\}_{i=1}^4$ in X such that any three of them have nonempty intersection, $\bigcap_{i=1}^4 B[a_i, r_i + \varepsilon] \neq \emptyset$ for all $\varepsilon > 0$. Following Theorem 2.11, X is an E(n)-space for all $n \ge 3$. Therefore by Theorem 2.12, X is an L^1 -predual space.

Remark 2.14. Let us show that centerability of all three-point subsets of X does not imply that X is an L^1 -predual space. Consider the real or complex space ℓ_1 . Since every three pairwise intersecting closed balls in \mathbb{R} or \mathbb{C} intersect (see [3, p. 65]), the same holds also for ℓ_1 by Theorem 4.6(c) in [9]. Hence, by Theorem 2.3, every three-point set in ℓ_1 is centerable. On the other hand, ℓ_1 is not an L^1 -predual space since $\ell_1^* = \ell_{\infty}$.

Acknowledgment. The authors are very grateful to the referee for reading the paper very thoroughly and giving many useful suggestions.

References

- Bandyopadhyay P., Rao T.S.S.R.K., Central subspaces of Banach spaces, J. Approx. Theory 103 (2000), 206–222.
- [2] Davis W.J., A characterization of \mathcal{P}_1 spaces, J. Approx. Theory **21** (1977), 315–318.
- [3] Hanner O., Intersections of translates of convex bodies, Math. Scand. 4 (1956), 65-87.
- [4] Holmes R.B., A course on optimization and best approximation, Lecture Notes in Math., Vol. 257, Springer, Berlin, 1972.
- [5] Hustad O., Intersection properties of balls in complex Banach spaces whose dual are L¹spaces, Acta Math. 132 (1974), 282–313.
- [6] Lacey H.E., The isometric theory of classical Banach spaces, Grundlehren Math. Wiss., Band 208, Springer, New York-Heidelberg, 1974.
- [7] Lima A., Complex Banach spaces whose duals are L₁-spaces, Israel J. Math. 24 (1976), no. 1, 59–72.
- [8] Lima A., Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1–62.
- [9] Lindenstrauss J., Extension of compact operators, Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964.
- [10] Rao T.S.S.R.K., Chebyshev centers and centerable sets, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2593–2598.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF IOWA, IOWA CITY, IA 52242-1419, U.S.A.

E-mail: yduan@math.uiowa.edu bllin@math.uiowa.edu

(Received July 6, 2006, revised October 24, 2006)