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Strong boundedness and algebraically closed groups

Barbara Majcher-Iwanow

Abstract. Let G be a non-trivial algebraically closed group and X be a subset of G

generating G in infinitely many steps. We give a construction of a binary tree associated
with (G, X). Using this we show that if G is ω1-existentially closed then it is strongly
bounded.
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Introduction

Definition ([1], [2]). A group G is Cayley bounded if for every generating subset
U ⊂ G there exists n ∈ ω such that every element of G is a product of n elements
of U ∪U−1∪{1}. A group is strongly bounded if it is Cayley bounded and cannot
be presented as the union of a strictly increasing chain {Hn : n ∈ ω} of proper
subgroups (has cofinality > ω).

It is shown in [2], that strongly bounded groups have property (FH) that every
affine isometric action of G on a Hilbert space has a fixed point [3]. Recent papers
[1], [2], [6] and [7] contain a number of uncountable examples of strongly bounded
groups. Most of them can be presented as closed subgroups of the group Sym(ω)
of all permutations of the set of natural numbers ω. The paper [7] contains
some other examples (for example, the group of Lipschitz homeomorphisms of
the Baire space), but the proof of their strong boundedness uses some reductions
to automorphism groups of countable structures.

ω1-existentially closed groups provide a different construction of uncountable
strongly bounded groups. In this case the property of strong boundedness has
been obtained in [2] (where the author of [2] mentions that A. Khelif has also
proved this).
We study non-trivial algebraically closed groups. Our main result (Proposi-

tion 2) associates an infinite binary tree with any set generating G in infinitely
many steps. Using this we give another proof that ω1-existentially closed groups
are strongly bounded. Our proof follows the approach of [6] and [7].
When these results were obtained the author did not know that Y. de Cornulier

extended the first version of [2] by the material about algebraically closed groups.
The author is grateful to the referee for helpful remarks. In particular, the idea

of using a theorem of Ziegler from [10] is due to the referee.
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Algebraically closed groups

A group G is algebraically closed if any finite system of equations Σ(x̄, ā) with
parameters ā from G and having a solution in some group extending G, already
has a solution in G. It is well-known that a non-trivial algebraically closed group is
existentially closed , i.e. any quantifier free formula φ(x̄, ā) (where we may assume
that φ(x̄, ā) is a conjunction of equalities and inequalities of the form w(x̄) = (6=)1)
with parameters from G and having a solution in some group extending G, already
has a solution in G (see [8]).

A group G is ω1-existentially closed if for every set Σ(x̄) of equalities and in-
equalities of the form w(x̄, ā) = (6=)1 depending on variables x̄ and at most count-
ably many parameters from G, if Σ(x̄) has a solution in some group extending
G, then it is satisfied already in G. Every group embeds into an ω1-existentially
closed group [9]. The following theorem has been already proved in [2].

Theorem 1. Every ω1-existentially closed group G is strongly bounded.

We have found that Theorem 1 can be proved by methods resembling those of
[6] and [7] (which in turn is based on the proof of Theorem 6.1 of [5]). We will
use the following statement from [1, Lemma 10] and [2, Proposition 2.7].

A group G is strongly bounded if and only if for every presentation of G as
G =

⋃
Xn for an increasing sequence Xn, n ∈ ω, with {1}∪X−1

n ∪Xn ·Xn ⊆
Xn+1 there is a number n such that Xn = G.

Our proof of Theorem 1 is based on the following proposition.

Proposition 2. Let G be an existentially closed group. Let a sequence {Xn}
define a presentation of G as above and G 6= Xn for all n. Then there is a binary
tree {gs : s ∈ 2<ω} ⊂ G such that all gs generate in G the free product of groups
〈gs〉 where |gs| = ∞. After possibly replacing Xn, n ∈ ω, by a subsequence, the
tree satisfies the following property: for every s ∈ 2<ω with |s| = n, gs0 ∈ Xn

and gs1 ∈ G \ Xn+2.

Before the proof we note that in the formulation G may be countable. In this
case a sequence Xn, n ∈ ω, as above (and the corresponding tree) can be easily
found.
The proof below uses a fundamental theorem of Ziegler [10] (or see Theo-

rem 3.3.7 of [4]). We give it in a form appropriate for our applications:

Let Φ(x̄) be a recursively enumerable set of quantifier-free Horn formulas of
the following form (strict Horn formulas):

k∧

i=1

wi(x̄) = 1→ w0(x̄) = 1,
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where wi are group words depending on variables x̄. Then there is a formula

φ(x̄) of the form ∃ȳ(
l∧

j=1
w′

j(x̄, ȳ) = 1), such that a tuple c̄ ∈ G satisfies Φ(x̄)

if and only if φ(c̄) is satisfied in some group extending G. If G is existentially
closed then Φ(x̄) is equivalent to φ(x̄) in G.

Proof: Assume that all gs with |s| ≤ n are already defined. To define all gs0

and gs1 with |s| = n we firstly find a tuple h′1, . . . , h
′
2n ∈ Xn such that the set

{h′1, . . . , h
′
2n} ∪ {gr : |r| ≤ n} freely generates (as a basis) in G a free subgroup.

To see that such a tuple exists take the set Φ(x′1, . . . , x
′
2n , z, z̄) of all strict Horn

formulas of the form
w(x′1, . . . , x

′
2n , z̄) = 1→ z = 1,

where the tuple z̄ consists of all zr with r ∈ 2≤n, and w(x̄′, z̄) is a non-trivial
reduced word. By Ziegler’s theorem there is a formula φ(x̄′, z, z̄) of the form
above, which is equivalent to Φ(x̄′, z, z̄) in G. Note that φ(x̄′, h, ḡ) is realized in
some group extending G ∗ 〈x1, . . . , x2n〉, where h ∈ G \ {1} is arbitrary. Since G
is existentially closed we can find a required tuple h′1, . . . , h

′
2n in G (using φ and

parameters from {h} ∪ {gr : |r| ≤ n}).
As

⋃
Xi = G, after possible changing of the enumeration {Xn} we can arrange

that h′1, . . . , h
′
2n ∈ Xn.

Now consider the complement of Xn+2.

Lemma 3. The set G\Xn+2 contains a tuple h1, . . . , h2n such that the elements
{h1, . . . , h2n , h′1, . . . , h

′
2n} ∪ {gr : |r| ≤ n} freely generate in G a free subgroup.

Proof: Assuming the contrary we find the maximal i such that there are h1, . . . ,
hi ∈ G \ Xn+2 such that {h1, . . . , hi, h

′
1, . . . , h

′
2n} ∪ {gr : |r| ≤ n} freely generate

in G a free subgroup. Thus i < 2n. We claim that

For any g ∈ G \ 〈{h1, . . . , hi, h
′
1, . . . , h

′
2n} ∪ {gr : |r| ≤ n}〉 there are hi+1

and hi+2 satisfying the following conditions: g = hi+1hi+2 and each of the sets
{h1, . . . , hi, hi+1, h

′
1, . . . , h

′
2n}∪{gr : |r| ≤ n} and {h1, . . . , hi, hi+2, h

′
1, . . . , h

′
2n}∪

{gr : |r| ≤ n} freely generates in G a free subgroup.

Indeed, let

H = 〈y1〉 ∗ 〈{g, h1, . . . , hi, h
′
1, . . . , h

′
2n} ∪ {gr : |r| ≤ n}〉.

Then the subgroup of H generated by {y1, h1, . . . , hi, h
′
1, . . . , h

′
2n}∪{gr : |r| ≤ n}

is the free product P = 〈y1〉 ∗ 〈{h1, . . . , hi, h
′
1, . . . , h

′
2n} ∪ {gr : |r| ≤ n}〉. Let

y2 = y−11 · g. Then the subgroup of H generated by {y2, h1, . . . , hi, h
′
1, . . . , h

′
2n}∪

{gr : |r| ≤ n} is the free product 〈y2〉 ∗ 〈{h1, . . . , hi} ∪ {gr : |r| ≤ n}〉. To verify
this take any non-trivial reduced word w(y2, h̄, ḡ) and replace all occurrences of

y2 by y−11 · g. It is easy to see that no occurrence of y1 can be reduced in this

word. Thus w(y2, h̄, ḡ) cannot be equal to 1 in H .
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Let Φ(y, z, x1, . . . , xi, x
′
1, . . . , x

′
2n , . . . , zr, . . . ), r ∈ 2≤n, be a set of strict quan-

tifier-free Horn formulas describing the property that {y, z, x1, . . . , xi, x
′
1, . . . , x

′
2n ,

. . . , zr, . . . } generates the free product 〈y〉∗ 〈z, x1, . . . , xi, x
′
1, . . . , x

′
2n , . . . , zr, . . . 〉.

Applying Ziegler’s theorem and the fact that G is existentially closed to Φ and an
appropriate extension of G ∗ 〈y1〉, we find hi+1 and hi+2 ∈ G satisfying the same
equations with y1 and y2 over {g, h1, . . . , hi, h

′
1, . . . , h

′
2n} ∪ {gr : |r| ≤ n}. These

elements satisfy the statement of the claim.
By the assumptions on hi, . . . , hi the claim implies that the set

G \ 〈{h1, . . . , hi, h
′
1, . . . , h

′
2n} ∪ {gr : |r| ≤ n}〉

is a subset of Xn+2 · Xn+2 ⊆ Xn+3. Since this set is non-trivial, we see that
G ⊆ Xn+3 · Xn+3 ⊆ Xn+4. This is a contradiction with the assumptions of the
proposition. �

We now finish the proof of Proposition 2 as follows. Define gs0 ∈ Xn, |s| = n,
to be h′i, where i − 1 is {0, 1}-presented by s. Define gs1 ∈ G \ Xn+2 to be the
corresponding hi. The statement of the proposition is obvious. �

We now notice that the assumptions of Proposition 2 also imply existence of a
binary tree γs ∈ G, s ∈ 2<ω, so that for all s, g

γs1

s1 = g
γs0

s0 = g
γs

s0 .
Indeed, assume that all γs with |s| = n are defined. Let fs ∈ G conjugate

gs1 to gs0 and commute with each gr where r is an initial segment of s. The
existence of such fs follows by an obvious argument involving HNN-extensions
and existential closure. Let γs0 = γs and γs1 = fs · γs.

Proof of Theorem 1: Find trees {gs : s ∈ 2<ω} (as in Proposition 2) and
{γs : s ∈ 2<ω} as above. Since G is ω1-existentially closed there are γσ ∈ G,
σ ∈ 2ω, satisfying gγσ

s = gγs

s for all s of the form σ|n. For σ 6= τ with σ|n = s0
and τ |n = s1 we have g

γσ

s0 = g
γs0

s0 = g
γs

s0 and g
γτ

s1 = g
γs1

s1 = g
γs

s0 . Since gs0 ∈ Xn

and gs1 /∈ Xn+2, we see that γσγ−1τ /∈ Xn. On the other hand, as G =
⋃

Xn, we
may assume that Xn−2 contains uncountably many elements γδ. Thus we may
assume that γσ and γτ as above are in Xn−2. This gives a contradiction with the
condition γσγ−1τ /∈ Xn. �
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