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Representation of bilinear forms in non-Archimedean

Hilbert space by linear operators II

Dodzi Attimu, Toka Diagana

Abstract. The paper considers the representation of non-degenerate bilinear forms on
the non-Archimedean Hilbert space Eω × Eω by linear operators. More precisely, upon
making some suitable assumptions we prove that if ϕ is a non-degenerate bilinear form
on Eω×Eω , then ϕ is representable by a unique linear operator A whose adjoint operator
A∗ exists.
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1. Introduction

Let K be a field, which is complete with respect to a non-Archimedean val-
uation denoted | · |. Classical examples of such a field include Qp, the field of
p-adic numbers, where p ≥ 2 is a prime, Cp, the field of p-adic complex numbers,
and the field of Laurent series. Fix once and for all a sequence ω = (ωi)i∈N

of nonzero elements of K and define Eω as the set of all sequences u = (ui)i∈N

of elements of K such that the series
∑

i∈N
ωiu
2
i converges in K, equivalently,

limi→∞(|ui| . |ωi|
1/2) = 0. A natural norm is defined on Eω as follows:

u = (ui)i∈N, ‖u‖ = sup
i∈N

(

|ui| . |ωi|
1/2
)

.

This norm is non-Archimedean in the sense that, for any u, v ∈ Eω,

‖u+ v‖ ≤ max (‖u‖, ‖v‖)

with the equality holding if ‖u‖ 6= ‖v‖. An inner product (symmetric, bilin-
ear, non-degenerate form) is defined on Eω as follows: for all u = (ui)i∈N,
v = (vi)i∈N ∈ Eω ,

〈u, v〉 :=
∞
∑

i=0

ωi ui vi.
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The vector space Eω has a special base, denoted (ei)i∈N where ei is the sequence
whose j-th term is 0 if i 6= j, and the i-th term is 1. This base satisfies the

following: (i) for every i, ‖ei‖ = |ωi|
1/2; (ii) 〈ei, ej〉 = 0 if i 6= j; (iii) for every i,

〈ei, ei〉 = ωi; and (iv) every u ∈ Eω can be written uniquely as

u =

∞
∑

i=0

uiei, where ui ∈ K, and lim
i→∞

(

|ui| . |ωi|
1/2
)

= 0.

The base (ei)i∈N is called the canonical orthogonal base of Eω .
In the literature, the space Eω endowed with its norm and inner product given

above, is called a p-adic or non-Archimedean Hilbert space. However, one should
point out that the norm on Eω does not stem from the inner product. In addition
to that the space Eω contains isotropic vectors, that is, 〈u, u〉 = 0 while 0 6= u ∈
Eω .
A bilinear form ϕ : D(ϕ) × D(ϕ) 7→ K with domain D(ϕ) is said to be rep-

resentable (Definition 3.7) whenever there exists a (possibly unbounded) linear
operator A : D(A) 7→ Eω (D(A) being the domain of A) such that

ϕ(u, v) = 〈Au, v〉, ∀u ∈ D(A), v ∈ D(ϕ).

An unbounded bilinear form ϕ : D(ϕ) × D(ϕ) 7→ K whose domain D(ϕ) con-
tains all elements of the canonical base (ei)i∈N is called stable. The subclass of
all these stable unbounded bilinear forms is denoted ΣS(Eω ×Eω). Similarly, the
subclass of all bilinear forms whose domains do not contain the above-mentioned
canonical base is called unstable and denoted ΣU (Eω × Eω).
In Diagana [3], it was shown that if ϕ is a non-degenerate, symmetric bilinear

form satisfying

(1.1) lim
i→∞

(

|ϕ(ei, ej)|

‖ei‖

)

= 0, ∀ j ∈ N,

then ϕ is uniquely representable. Moreover, if A denotes the (possibly unbounded)
linear operator associated with ϕ, then its adjoint A∗ does exist with A = A∗.
In this paper we are interested in studying representation theorems for bounded

and stable unbounded bilinear forms not necessarily symmetric. Namely, it is
shown that a non-degenerate (stable) bilinear form ϕ on Eω ×Eω is representable
whenever

(1.2) lim
i→∞

(

|ϕ(ei, ej)|

‖ei‖

)

= lim
i→∞

(

|ϕ(ej , ei)|

‖ei‖

)

= 0, ∀ j ∈ N.

Moreover, if A denotes the linear operator on Eω associated with the form ϕ, then
the adjoint A∗ of A does exist.



Bilinear forms on non-Archimedean Hilbert spaces 433

Beside of the above-mentioned representation results for bilinear forms, we also
establish a non-Archimedean version of the Riesz’s representation theorem for a
subclass of linear functionals on Eω . Namely, it is shown that if F : Eω 7→ K is a
linear functional such that

lim
i→∞

|F (ei)|

‖ei‖
= 0,

then there exists a unique vector u0 ∈ Eω such that F (u) = 〈u, u0〉 for each
u ∈ Eω . Furthermore, |‖F‖| = ‖u0‖, where |‖ · ‖| is the natural norm on E∗

ω , the
(topological) dual of Eω .
Representing (un)bounded bilinear forms by linear operators in the classical

setting is a topic that arises in several fields such as quantum mechanics through
the study of form sums associated with the Hamiltonian, mathematical physics,
symplectic geometry, and the study of weak solutions to some linear partial differ-
ential equations, see, e.g., [2], [7], [11], [12]. In the non-Archimedean realm, one
may expect some related applications in: (i) the study of weak solutions to some
p-adic partial differential equations; and (ii) the study of a non-Archimedean ver-
sion of the square root problem of Kato, which is of a great interest to the second
named author.
To deal with the above-mentioned issues we shall make extensive use of the

formalism of unbounded linear operators on non-Archimedean Hilbert spaces Eω

[4], [5], [8] and that of (un)bounded bilinear forms on Eω×Eω, recently introduced
in [6] while studying non-Archimedean counterparts of the convergence in the
sense of quadratic forms of bilinear forms defined on a Hilbert space.

3. Preliminary results

Let K be a complete non-Archimedean valued field and let ω = (ωi)i∈N be a
sequence of nonzero elements in K. Throughout the rest of the paper, Eω denotes
the non-Archimedean Hilbert space associated with the sequence ω = (ωi)i∈N,
and (ei)i∈N stands for the canonical orthogonal base associated with Eω . Define
e′j ∈ E∗

ω for each j ∈ N by

x =
∑

i∈N

xiei ∈ Eω , e′j(x) = xj .

Definition 2.1 ([4], [5], [8]). A stable unbounded linear operator A from Eω into
Eω is a pair (D(A), A) consisting of a subspace D(A) ⊂ Eω (called the domain
of A) and a (possibly not continuous) linear transformation A : D(A) ⊂ Eω 7→
Eω . Namely, the domain D(A) contains the basis (ei)i∈N and consists of all
u = (ui)i∈N ∈ Eω such Au =

∑

i∈N
uiAei converges in Eω, that is,











D(A) :=
{

u = (ui)i∈N ∈ Eω : lim
i→∞

|ui| ‖Aei‖ = 0
}

,

Au =
∑

i,j∈N

aij e′j(u) ei for each u ∈ D(A).
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Definition 2.2 ([4], [5], [8]). A stable linear operator











D(A) :=
{

u = (ui)i∈N ∈ Eω : lim
i→∞

|ui| ‖Aei‖ = 0
}

,

Au =
∑

i,j∈N

aij e′j(u) ei for each u ∈ D(A),

is said to have an adjoint A∗ if and only if

(2.1) lim
j→∞

(

|aij |

|ωj |1/2

)

= 0, ∀ i ∈ N.

In this case the adjoint A∗ of A is uniquely expressed by











D(A∗) :=
{

v = (vi)i∈N ∈ Eω : lim
i→∞

|vi| ‖A
∗ei‖ = 0

}

,

A∗u =
∑

i,j∈N

a∗ij e′j(u)ei for each u ∈ D(A∗),

where a∗ij =
ωjaji

ωi
.

Remark 2.3. (i) In contrast with the classical context, in the non-Archimedean
setting, there are linear operators, which do not have adjoint operators.
(ii) In the classical setting, if A is a closable unbounded linear operator on

a Hilbert space, then A∗∗ = A, where A is the closure of A. However, in the
non-Archimedean setting, if the adjoint A∗ of a stable unbounded linear operator
A exists, then A∗∗ = A.

2.1 Continuous linear functionals on Eω

Definition 2.4. A linear functional F : Eω 7→ K is said to be continuous if there
exists K ≥ 0 such that

|F (u)| ≤ K . ‖u‖ for each u ∈ Eω .

The smallest constant K such that the previous inequality holds is called the
norm of the continuous linear functional F and is defined by

|‖F‖| = sup
u 6=0

(

|F (u)|

‖u‖

)

.

Let us remind that the space of all continuous linear functionals on Eω is
denoted by E∗

ω and called the (topological) dual of Eω . The space (E
∗
ω , |‖ · ‖|) is

a Banach space over K.
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Proposition 2.5. Let F ∈ E∗
ω. Then its norm |‖F‖| can be explicitly expressed

as

|‖F‖| = sup
i∈N

(

|F (ei)|

‖ei‖

)

.

The next theorem constitutes a non-Archimedean version of the well-known
Riesz representation theorem [12].

Theorem 2.6. Let F : Eω 7→ K be a linear functional such that

(2.2) lim
i→∞

(

|F (ei)|

‖ei‖

)

= 0.

Then there exists a unique u0 ∈ Eω such that

F (u) = 〈u, u0〉, for all u ∈ Eω .

Moreover, |‖F‖| = ‖u0‖.

Proof: Obviously, (2.2) yields F is continuous, as |‖F‖| = supi∈N

|F (ei)|
‖ei‖

< ∞.

Let u =
∑

i∈N
uiei ∈ Eω . Now, F (u) =

∑

i∈N
uiF (ei) is well-defined. Indeed,

since u ∈ Eω, that is, limi→∞ |ui|‖ei‖ = 0, we have

lim
i→∞

|uiF (ei)| ≤ ‖u‖ . lim
i→∞

(

|F (ei)|

‖ei‖

)

= 0,

by using assumption (2.2).

Now, set u0 =
∑

i∈N
(
F (ei)

ωi
)ei. Again using assumption (2.2), one can easily

see that u0 ∈ Eω . Moreover, F (u) = 〈u, u0〉 for each u ∈ Eω.
Suppose that there exists another v0 ∈ Eω such that F (u) = 〈u, v0〉 for each

u ∈ Eω . Then, 〈u0 − v0, u〉 = 0 for each u ∈ Eω , that is, u0 − v0⊥ Eω . In
particular, 〈u0 − v0, ei〉 = 0 for each i ∈ N, that is, all coordinates of u0 − v0 in
the canonical base (ei)i∈N of Eω are zero, and hence u0 = v0.
Now

‖u0‖ := sup
i∈N

∥

∥

∥

∥

F (ei)

ωi
ei

∥

∥

∥

∥

= sup
i∈N

|F (ei)|

‖ei‖
= |‖F‖|.

�

3. Bilinear forms on Eω × Eω

Definition 3.1. A mapping ϕ : Eω × Eω 7→ K is said to be a bilinear form
whenever u 7→ ϕ(u, v) is linear for each v ∈ Eω and v 7→ ϕ(u, v) linear for each
u ∈ Eω .
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Note that if ϕ : Eω × Eω 7→ K is a bilinear form over Eω × Eω , then the sum

(3.1) ϕ(u, v) =

∞
∑

i,j=0

Ωij ui vj

may or may not be convergent. However if both u = (ui)i∈N and v = (vi)i∈N are
taken in Eω with

lim
i,j→∞

(

|ui| . |Ωij |
1/2
)

= 0 and lim
i,j→∞

(

|vj | . |Ωij |
1/2
)

= 0,

where Ωij = ϕ(ei, ej) for all i, j ∈ N, then the sum in (3.1) converges.

3.1 Bounded bilinear forms

Definition 3.2. A non-Archimedean bilinear form ϕ : Eω × Eω 7→ K is said to
be bounded if there exists M ≥ 0 such that

(3.2) |ϕ(u, v)| ≤ M . ‖u‖ . ‖v‖ for all u, v ∈ Eω .

The smallest M such that (3.2) holds is called the norm of the bilinear form ϕ

and is defined by

‖ϕ‖ = sup
u,v 6=0

(

|ϕ(u, v)|

‖u‖ . ‖v‖

)

.

Proposition 3.3. Let ϕ : Eω × Eω 7→ K be a bounded bilinear form. Then its

norm ‖ϕ‖ can be explicitly expressed as

‖ϕ‖ = sup
i,j∈N

(

|ϕ(ei, ej)|

‖ei‖ . ‖ej‖

)

.

Proof: The inequality, ‖ϕ‖ ≥ supi,j∈N(
|ϕ(ei,ej)|
‖ei‖ . ‖ej‖

), is a straightforward conse-

quence of the definition of the norm ‖ϕ‖ of ϕ.
Now suppose u, v 6= 0. In view of the above, one has

|ϕ(u, v)| =

∣

∣

∣

∣

∣

∣

∞
∑

i,j=0

ϕ(ei, ej) uivj

∣

∣

∣

∣

∣

∣

≤ sup
i,j∈N

(

|ϕ(ei, ej)| . |ui| . |vj |
)

= sup
i,j∈N

(

|ϕ(ei, ej)|(|ui| . ‖ei‖) (|vj | . ‖ej‖)

‖ei‖ . ‖ej‖

)

≤ ‖u‖ . ‖v‖ . sup
i,j∈N

(

|ϕ(ei, ej)|

‖ei‖ . ‖ej‖

)



Bilinear forms on non-Archimedean Hilbert spaces 437

and hence

‖ϕ‖ ≤ sup
i,j∈N

(

|ϕ(ei, ej)|

‖ei‖ . ‖ej‖

)

.

One completes the proof by combining the first and the last inequalities. �

Definition 3.4. A bounded bilinear form ϕ : Eω × Eω 7→ K is said to be rep-
resentable whether there exists a bounded linear operator A : Eω 7→ Eω such
that

ϕ(u, v) = 〈Au, v〉, ∀u, v ∈ Eω.

Theorem 3.5. Let ϕ : Eω ×Eω 7→ K be a non-degenerate bounded bilinear form

on Eω × Eω . Then ϕ is representable whenever (1.2) holds. In this case, if A

denotes the linear operator associated with ϕ, then the adjoint A∗ of A exists.

Proof: Define the linear operator A on Eω associated with ϕ as follows:

Au :=
∑

i,j∈N

[

ϕ(ej , ei)

ωi

]

e′j(u) ei

for each u ∈ Eω .
We first check that the linear operator A given above is well-defined on Eω.

For that, it suffices to see that, for all j ∈ N,

lim
i→∞

∣

∣

∣

∣

ϕ(ej , ei)

ωi

∣

∣

∣

∣

‖ei‖ = lim
i→∞

|ϕ(ei, ej)|

‖ei‖
= 0,

by using assumption (1.2). Furthermore, it is routine to see that ϕ(u, v) = 〈Au, v〉
for all u, v ∈ Eω. Of course, the linear operator A given above is unique since φ

is non-degenerate.
Now

‖A‖ := sup
i,j∈N





∣

∣

∣

ϕ(ej ,ei)
ωi

∣

∣

∣ ‖ei‖
∥

∥ej

∥

∥



 = sup
i,j∈N

(

|ϕ(ej , ei)|

‖ej‖ . ‖ei‖

)

= ‖ϕ‖,

and hence A is bounded.
It remains to show that A∗, the adjoint of A exists. Indeed,

lim
j→∞





∣

∣

∣

ϕ(ej ,ei)
ωi

∣

∣

∣

‖ej‖



 =
1

|ωi|
. lim

j→∞

(

|ϕ(ej , ei)|

‖ej‖

)

= 0, ∀ i ∈ N,

by using assumption (1.2), and hence the adjoint A∗ of A exists. �
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Example 3.6. Let (K, | · |) = (Qp, | · |) equipped with the p-adic absolute value

and let ωi = p−i for each i ∈ N. Let N0 ∈ N with N0 ≥ 1 (fixed) and set

πN0
ij = 1 +

1

ωj
+
1

ω2i ω2j
+ · · ·+

1

ωN0
i ωN0

j

for all i, j ∈ N.

Now, ∀ j ∈ N, limi→∞
|π

N0
ij |

‖ei‖
= limi→∞

|π
N0
ji |

‖ei‖
= 0, since |πN0

ij | = |πN0
ji | = 1 and

‖ei‖ = pi/2 for all i ∈ N. For all u = (ui)i∈N, v = (vi)i∈N ∈ Eω , define the bilinear
form as follows:

ϕ(u, v) =

∞
∑

i,j=0

πN0
ij uivj .

Obviously, ϕ is well-defined since, ∀ j ∈ N,

lim
i→∞

(

|ui| . |π
N0
ij |1/2

)

≤ ‖u‖ . lim
i→∞

1

‖ei‖
= 0.

Moreover ϕ is non-degenerate and its norm ‖ϕ‖ = 1. Therefore, the only
bounded linear operator on Eω associated with ϕ is the one defined by

Au =
∑

i,j∈N

[

πN0
ji

ωi

]

e′j(u)ei

for each u ∈ Eω with ‖A‖ = supi,j∈N(
|π

N0
ij |

‖ei‖ . ‖ej‖
) = 1.

It is also clear that A∗, the adjoint of A exists.

3.2 Stable unbounded bilinear forms

In this subsection we present with a representation theorem for some un-
bounded bilinear forms. More precisely, we consider those unbounded bilinear
forms whose domains contain all elements of the canonical base (ei)i∈N of Eω, as
such a base plays a key role in the present setting. The subclass of all those types
of unbounded bilinear forms will be called stable and denoted by ΣS(Eω × Eω).
Similarly, the subclass of all unbounded bilinear forms whose domains do not

contain elements of the above-mentioned canonical base will be called unstable
and denoted by ΣU (Eω × Eω). Note that a representation theorem similar to
Theorem 3.9 for elements of ΣU (Eω × Eω) will be left as an open question.

Definition 3.7. A mapping ϕ : D(ϕ) × D(ϕ) ⊂ Eω × Eω 7→ K is said to be
a stable unbounded bilinear form if u 7→ ϕ(u, v) is linear for each v ∈ D(ϕ),
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v 7→ ϕ(u, v) is linear for each u ∈ D(ϕ), where D(ϕ) is a vector subspace of Eω

that contains the base (ei)i∈N, and



































D(ϕ) :=
{

u = (ui)i∈N ∈ Eω : lim
i,j→∞

(

|ui| |Ωij |
1/2
)

= lim
i,j→∞

(

|ui| |Ωji|
1/2
)

= 0
}

,

ϕ(u, v) =

∞
∑

i,j=0

Ωij uivj , for all u, v ∈ D(ϕ),

where Ωij = ϕ(ei, ej).

The space D(ϕ) defined above is called the domain of the bilinear form ϕ.

Definition 3.8. A bilinear form ϕ : D(ϕ)×D(ϕ) 7→ K (D(ϕ) being its domain)
is said to be representable whenever there exists a (possibly unbounded) linear
operator A : D(A) 7→ Eω (D(A) being the domain of A) such that

ϕ(u, v) = 〈Au, v〉, ∀u ∈ D(A), v ∈ D(ϕ).

Theorem 3.9. Let ϕ : D(ϕ)×D(ϕ) 7→ K be a non-degenerate stable unbounded

bilinear form. Then ϕ is representable whenever assumption (1.2) holds. In this
case, if A denotes the linear operator associated with ϕ, then the adjoint A∗ of

A exists.

Proof: For all u = (ui)i∈N, v = (vj)j∈N ∈ D(ϕ), write ϕ(u, v) =
∑∞

i,j=0Ωij uivj

and define the linear operator A on Eω associated to it as follows:















D(A) :=
{

u = (ui)i∈N ∈ Eω : lim
i→∞

|ui| ‖Aei‖ = 0
}

,

Au =
∑

i,j∈N

[

ϕ(ej , ei)

ωi

]

e′j(u)ei for each u = (ui)i∈N ∈ D(A).

Obviously, A is well-defined. Indeed, for all j ∈ N,

lim
i→∞

∣

∣

∣

∣

ϕ(ej , ei)

ωi

∣

∣

∣

∣

‖ei‖ = lim
i→∞

|ϕ(ej , ei)|

‖ei‖
= lim

i→∞

|ϕ(ei, ej)|

‖ei‖
= 0,

by using assumption (1.2).
Now

Au =
∑

i∈N

1

ωi

(

∑

j∈N

ujϕ(ej , ei)

)

ei for each u = (ui)i∈N ∈ D(A),
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and hence 〈Aei, ej〉 = ϕ(ej , ei) for all i, j ∈ N.

Moreover, D(A) ⊂ D(ϕ). Indeed, if u = (ui)i∈N ∈ D(A), then using the
Cauchy-Schwartz inequality it follows that, ∀ i, j ∈ N,

|ui| . |uj | . |ϕ(ei, ej)| = |ui| . |uj | . |〈Aej , ei〉|

≤ (|uj | . ‖Aej‖) . (‖ei‖ . |ui|),

and hence

(

lim
i,j→∞

|ui| . |ϕ(ei, ej)|
1/2
)2

≤ lim
i,j→∞

(|uj | . ‖Aej‖) . (‖ei‖ . |ui|)

= 0,

that is, u ∈ D(ϕ).

Note that uivkϕ(ei, ek)→ 0 as i, k → ∞, by using the fact that (u ∈ D(A) ⊂
D(ϕ) and v ∈ D(ϕ)):

|uivkϕ(ei, ek)| =
(

|ui||ϕ(ei, ek)|
1/2
)

.
(

|ϕ(ei, ek)|
1/2|vk|

)

→ 0, as i, k → ∞,

and hence
∑

k∈N

∑

i∈N

uivkϕ(ei, ek) =
∑

i∈N

∑

k∈N

uivkϕ(ei, ek).

Consequently, the following successive equalities are justified:

〈Au, v〉 =
∑

k∈N

ωkvk
1

ωk

(

∑

i∈N

uiϕ(ei, ek)

)

=
∑

k∈N

vk

(

∑

i∈N

uiϕ(ei, ek)

)

=
∑

i,k∈N

ϕ(ei, ek)uivk

= ϕ(u, v)

for all u = (ui)i∈N ∈ D(A) and v = (vi)i∈N ∈ D(ϕ).

Furthermore, the uniqueness of A is guaranteed by the fact that ϕ is non-
degenerate. It remains to show that A∗, the adjoint of A exists; however, this can
be done as in the bounded case. �
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Example 3.10. This example is a generalization of Example 3.6. Consider the
bilinear form defined by

ϕ(u, v) =
∑

i,j∈N

πij . uivj , ∀u = (ui)i∈N, v = (vi)i∈N ∈ D(ϕ),

where (πij)i,j∈N ⊂ K is an arbitrary sequence, and the domain D(ϕ) of ϕ is
defined by

D(ϕ) =

{

u = (ui)i∈N ∈ Eω : lim
i,j→∞

(

|ui| . |πij |
1/2
)

= lim
i,j→∞

(

|ui| . |πji|
1/2
)

= 0

}

.

Note that ϕ(ei, ej) = πij for all i, j ∈ N and hence an equivalent of assump-
tion (1.2) is:

(3.3) lim
i→∞

|πij |

‖ei‖
= lim

i→∞

|πji|

‖ei‖
= 0.

Upon making assumption (3.3), the unique (possibly unbounded) linear ope-
rator associated with ϕ is given by

Au =
∑

i,j∈N

πji

ωi
e′j(u) ei, ∀u = (ui)i∈N ∈ D(A),

where D(A) = {u = (ui)i∈N ∈ Eω : limi→∞(‖Aei‖ . |ui|) = 0}.
In addition to the above, the adjoint A∗ of A does exist under assumption (3.3).

Acknowledgment. The authors express their thanks to the referee for his/her
valuable comments and suggestions on the paper.

References

[1] Basu S., Diagana T., Ramaroson F., A p-adic version of Hilbert-Schmidt operators and
applications, J. Anal. Appl. 2 (2004), no. 3, 173–188.

[2] de Bivar-Weinholtz A., Lapidus M.L., Product formula for resolvents of normal operator
and the modified Feynman integral, Proc. Amer. Math. Soc. 110 (1990), no. 2, 449–460.

[3] Diagana T., Representation of bilinear forms in non-Archimedean Hilbert space by linear
operators, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 695–705.

[4] Diagana T., Towards a theory of some unbounded linear operators on p-adic Hilbert spaces
and applications, Ann. Math. Blaise Pascal 12 (2005), no. 1, 205–222.

[5] Diagana T., Erratum to: “Towards a theory of some unbounded linear operators on p-adic
Hilbert spaces and applications”, Ann. Math. Blaise Pascal 13 (2006), 105–106.

[6] Diagana T., Bilinear forms on non-Archimedean Hilbert spaces, preprint, 2005.
[7] Diagana T., Fractional powers of the algebraic sum of normal operators, Proc. Amer. Math.
Soc. 134 (2006), no. 6, 1777–1782.

[8] Diagana T., An Introduction to Classical and p-adic Theory of Linear Operators and
Applications, Nova Science Publishers, New York, 2006.



442 D.Attimu, T.Diagana

[9] Diarra B., An operator on some ultrametric Hilbert spaces, J. Analysis 6 (1998), 55–74.
[10] Diarra B., Geometry of the p-adic Hilbert spaces, preprint, 1999.
[11] Johnson G.W., Lapidus M.L., The Feynman Integral and Feynman Operational Calculus,

Oxford Univ. Press, Oxford, 2000.
[12] Kato T., Perturbation Theory for Linear Operators, Springer, New York, 1966.
[13] Ochsenius H., Schikhof W.H., Banach Spaces Over Fields with an Infinite Rank Valuation,

p-adic Functional Analysis, (Poznan, 1998), Marcel Dekker, New York, 1999, pp. 233–293.
[14] van Rooij A.C.M., Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978.

Department of Mathematics, Howard University, 2441 6th Street N.W.,

Washington, D.C. 20059, USA

E-mail : dkattimu@gmail.com

Department of Mathematics, Howard University, 2441 6th Street N.W.,

Washington, D.C. 20059, USA

E-mail : tdiagana@howard.edu

(Received August 11, 2006, revised March 6, 2007)


