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On non-normality points and metrizable crowded spaces

SERGEI LOGUNOV

Abstract. X — {p} is non-normal for any metrizable crowded space X and an arbitrary
point p € X*.
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1. Introduction

We investigate non-normality points in Cech-Stone remainders X* = 3X — X
of metrizable spaces.

There are several simple proofs that, under CH, w* — {p} is not normal for
any p € w* [7], [8]. “Naively” it is known only for special points of w*. If p is
an accumulation point of some countable discrete subset of w*, or if p is a strong
R-point, or if p is a Kunen’s point, then w* — {p} is not normal (Blaszczyk and
Szymanski [1], Gryzlov [2], van Douwen respectively).

What about realcompact crowded spaces? Is 8X — {p} non-normal whenever
X is realcompact and crowded and p € X*? Probably, but we are unaware of
any counterexample. On the other hand, the answer is “yes” if X is a locally
compact Lindelof separable crowded space with mw(X) < wj and p is remote
[6]. It is also “yes” if X is a second countable crowded space and either X is
locally compact, or X is zero-dimensional, or p is remote [3], [4], [6]. Using the
regular base of Arhangel’skii J. Terasawa has omitted the separability condition
in the last two cases. He has obtained the affirmative answer in case if X is a
metrizable crowded space and either X is strongly zero-dimensional or p is remote
[10]. Here, introducing p-filters into this construction, we answer affirmatively for
all metrizable crowded spaces.

B. Shapirovskij [9] has defined a butterfly-point (or b-point) in a space X. We
call p € X* a butterfly-point in X, if {p} = C1 FNCI G for some F,G C X*—{p}
with C1(FUG) C X*.

Theorem. Let X be a non-compact metrizable crowded space. Then any point
p € X* is a butterfly-point in 3X. Hence BX — {p} is not normal.
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2. Proofs

From now on a space X is non-compact, metrizable and crowded, i.e. X has
no isolated points, and p € X* is an arbitrary point. We denote by cl- and Cl-
the closure operations in X and X respectively, 3 = {0,1,2}.

Let m and o be an arbitrary families. A set U € 7 is called a mazimal member
of the family 7 if U C V for no V € 7. If members of 7 are mutually disjoint
(with closure), then 7 is called (strongly) cellular. We write 1 < o f UNV # ()
implies U 2 V for any U € m and V € 0. We denote by Exp 7 the set of
subfamilies {F : F C w}. We define a projection fI from Exp 7 to Exp o by
AP ={Veog:UFNV #0} for every F € Exp .

A maximal locally finite cellular family of open sets is called nice. The intro-
duced in [6] cellular refinement Cel (1) = {(N¢—cl U(m — @) : ¢ C 7} of 7 is nice,
if 7 is an open locally finite cover of X.

Let m and o be nice families. A collection F = {F'} of subfamilies F' C
7 is called a p-filter on =, if p € ClU(j_yFy for any finite subcollection
{Fg,...,Fn} C F. Obviously, the union of any increasing family of p-filters
is also a p-filter. So by Zorn’s lemma there are maximal p-filters or p-ultrafilters
F' on m, that is F/ = G for any p-filter G with 7/ C G. Adding step-by-step new
subfamilies from Exp m — F to F, while possible, we can embed any p-filter F
into some p-ultrafilter F'. If p is not a remote point, distinct p-ultrafilters 7' may
exist. But each of them contains 7(O) = {V € 7 : VN O # 0} for any neighbor-
hood O of p and its image f7F = {fTF : F € F} is a p-filter on 0. We write
T <x o, if there is F € F with F < 0. We denote F*=N{CLUF : F € F}.

For every i € N we fix an open locally finite cover P; of X so that diam U < %
for any U € P; and {V € P; : VN U # (0} is finite for each j < i. Then it is easy

to see that
P=JP
€N

is a regular base of Arhangel’skii, i.e. for any point x € X and for any its neigh-
borhood O C X there is another neighborhood O’ C X of z with the following
properties: O’ C O and at most finitely many members of P meet booth O’ and
X — O simultaneously. Moreover, for any cover m C P the family of its maximal
members is a locally finite subcover of X.

By induction (see, also, [6]) we define the families of non-empty open sets Dy,
and W, C P for all k € N as follows:

Dy = Cel (P7).
If a nice family Dy, = {U} has been constructed, then

Wy ={U(v):U €Dy and v e 3}
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is strongly cellular with ¢l U(v) C U for any its member and
Dyy1 = Cel (D UWy, U Pp1).

By our construction, if U, V' € |J,cn Dy, are not disjoint, then either U C V' or
U D V. For any U € P}, the family U = {V € Dy, : VN U # 0} is locally finite
and nice in U. For any locally finite cover 7 C P we denote o(nw) all maximal
members of the family J{U : U € 7}. Then o(r) is nice. Define

Y ={o(w): 7w CP is alocally finite cover of X}

and put o(v) = {U(v): U € o} for any 0 € ¥ and v € 3.
Lemma 1. If 7 is an open locally finite cover of X, then Cel () is nice.

PROOF: Let ¢ C . If (¢ # 0, then ¢ is finite. So ()¢ and, hence, (p—cl (7 —¢)
is open.

Let ¢, ¢ C 7 be different and U € ¢ — ¢/. Then (¢ C U and (¢ NU = 0,
because U € m — ¢'.

Let a neighborhood O of x € X meet finitely many members of 7, say Uy, ...,
Uy. If ¢ C 7 contains some U € 7 —{Uq,... ,Ui},then ¢ CU C X — 0. So O
meets at most 2¥ members of Cel ().

As 7 is a locally finite family of open sets, K = |J{cl U—-U : U € 7} is nowhere
dense. Let x ¢ K and ¢ = {U € m: x € U}. Then U ¢ ¢ implies x ¢ cl U. So
z € ¢ —clU(m — ¢), because 7 is conservative, and Cel () is maximal. Our
proof is complete. O

Lemma 2. There is a well-ordered chain {oq : « < A} C X and p-ultrafilters Fo,
on o, with the following properties for all a < f < A\ and fg‘ = fgg

(1) p¢ ClU for each U € op;
(2) fg]:a - fﬁ;
(4) for any 0 € ¥ — {04 : « < A} there is a < X\ with =(co <f, 0).

PROOF: Let 7 be all maximal members of the cover {U € P :p ¢ Cl U} and let
Fo be any p-ultrafilter on og = o ().

For any ordinal 3 assume p-ultrafilters F, on o, € ¥ have been constructed
for all a < . If some 0 € ¥ — {0, : a < (B} satisfies the condition oo <z, o
for all o < 3, then we put o0g = o and embed the p-filter Ua<5 fg‘fa into some
p-ultrafilter 73 on 0g. Otherwise our construction is complete. O

Lemma 3. (F; C X*.

PROOF: Let z € X be an arbitrary point. Then F = {U € g9 : = ¢ clU}
satisfies, obviously, ¢ Cl |J F and F € Fy. O

525



526

S. Logunov

Lemma 4. If a < <A, then (Y Fj5 C () Fg.

PRrOOF: There is F' € F, with ' < og by (3). For any G € F, we have
GNF e F, and G0F<05. But then

(75 cClf§(GNF)cCl(GNF)CClG.

O
Lemma 5. For any neighbourhood O of p in 8X there is a < A with (| F,, C O.

ProOOF: Let C1 O’ C O for a neighourhood O’ of p and let 7 be all maximal
members of the cover {U € P: UNO’ # () = U C O}. For o = o(r) thereis o < A
with (0o <z, 0) by (3) or (4). As 04(0') € Fo then F = {V € 04(0'): V C
U for some U € o} also belongs Fo. So ((Fi c ClJF Cc ClJo(O') C C1 0.
O

Proposition 6. For any o < X and v € 3 there is a point po(v) € (| Fg such
that po(v) € ClJog(v) for all 3 € A — a.

PROOF: Let a < By < ... < Bp < A be any finite sequence and F € F,. Our
idea is to find non-empty W € |J;«,, o0, so that

ww)< N Ues)nJF

i<n

At the first step of induction we put Ag = {og, : i < n}, Og = () and choose
Wo € [JAg as follows: We may assume F' < og,. For any i < n there is G; € Fp,
with G; < 0g,,,. We denote Fy = f§ F'NGo and Fiy; = f§;+1FZ- N Gyt1. Then
Fiy1 = F; and |JF;41 € UF;. Any pairwise intersecting U; € F; make up an
embedded sequence Uy, C ... C Uy C |JF. We define Wy = Up.

For any m < n let Ay, O, C Ag and Wy, € |J Ay, has been constructed so
that

Let Qp, = {0 € Ap, : Uy = Wi, }.

If Ay # Qu, then we put A1 = Ay — Qi and 4,41 = 0, U Q. As o €
Ayn41 are nice, we can choose U. € o so that (UL : 0 € App1} N Win(v) # 0.
Then U, C Wy, implies U, C Wy, (v) by our construction. We define Wi, 11 to

be the maximal member of embedded sequence {U. : 0 € Ay11}-
If, finally, A,y = Quyy, then W), is as required. O
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PROOF OF THEOREM: Define F, = {pa(v) : a < A} for all v € 3. By our
construction, F,, C (| Fg C X* and for any neighbourhood O of p there is o < X
with {pg(v) : 8 € A —a} C (NF; C O. Then the condition {pg(v) : < a} C
Cl | oq(v) implies that the sets Cl F,, — {p} are pairwise disjoint and p € F,, for
no more then one unique F,,. The other two ensure that p is a b-point in SX.
Our proof is complete. (I
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