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Characterization of the strict convexity

of the Besicovitch-Musielak-Orlicz

space of almost periodic functions
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Abstract. We introduce the new class of Besicovitch-Musielak-Orlicz almost periodic
functions and consider its strict convexity with respect to the Luxemburg norm.
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1. Introduction

We denote by C0a.p. the linear set of all continuous almost periodic functions
(u.a.p.). Let A be the subspace of C0a.p. whose elements are the generalized
trigonometric polynomials i.e.,

A =



Pn(t) =

n∑

j=1

aje
iλjt, aj ∈ C, λj ∈ R, n ∈ N



 .

The class C0a.p. is in fact the closure of A in the uniform norm of Cb(R) (the
space of continuous and bounded functions on R).
This topological characterization is used to define widest classes of almost

periodic functions as the closure of the linear set A with respect to some specific
norms.
The first extension was obtained by A.S. Besicovitch (cf. [2]) in the context of

Lp spaces. Namely he defined the S
q
a.p., W

q
a.p. and B

q
a.p. spaces (resp. Stepanoff,

Weyl and Besicovitch spaces of almost periodic functions). Later on, T.R. Hill-
mann (cf. [5]) used a similar approach to obtain an extension in the context of
Orlicz spaces.
Most of the Hillmann’s work concerns topological and structural properties of

the new spaces.
In [9], [10], [11], there are considered the fundamental geometric properties of

the Besicovitch-Orlicz spaces of almost periodic functions.
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In this paper, we consider the natural extension of almost periodicity to the
context of Besicovitch-Musielak-Orlicz spaces, in particular the case when the
function ϕ generating the space depends on a parameter.
The theory of spaces of generalized almost periodic functions was since its be-

ginning a subject of great interest. This was essentially motivated by the devel-
opment of the theory of differential and partial differential equations with almost
periodic terms (cf. [1], [8], [13]).
Actually this interest is still in growth and is enlarged to cover new domains

of applications.

2. Preliminaries

In the sequel ϕ : R× [0,+∞[ → [0,+∞[ will be a continuous function on
R× [0,+∞[ satisfying:

(i) For every t ∈ R, ϕ(t, 0) = 0.
(ii) For each t ∈ R, ϕ(t, u) is convex with respect to u ∈ [0,+∞[.
(iii) For every u ∈ [0,+∞[, ϕ(t, u) is periodic with respect to t ∈ R, the period

τ being fixed and independent of u ∈ [0,+∞[. Without loss of generality
we may suppose that τ = 1.

(iv) For each α > 0, we have inft∈R ϕ(t, α) = φ(α) > 0.

We denote byM(R) the space of all real valued Lebesgue measurable functions.
The functional

ρϕ :M (R) → [0,+∞]

f 7→ ρϕ(f) = lim
T→+∞

1

2T

∫ +T

−T
ϕ(t, |f(t)|) dt

is a convex pseudomodular (cf. [10], [12]).
We define the Besicovitch-Musielak-Orlicz space associated to this pseudomod-

ular by

Bϕ (R) =

{
f ∈ M (R) : lim

α→0
ρϕ(αf) = 0

}

=
{
f ∈ M (R) : ρϕ(αf) < +∞, for some α > 0

}
.

The space Bϕ(R) is naturally endowed with the pseudonorm

‖f‖ϕ = inf

{
k > 0 : ρϕ

(
f

k

)
≤ 1

}
, f ∈ Bϕ (R) .

Let A be the set of all generalized trigonometric polynomials, i.e.,

A =



Pn(t) =

n∑

j=1

aje
iλjt, aj ∈ C, λj ∈ R, n ∈ N



 .
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We denote by B̃ϕ
a.p.(R) (resp. Bϕ

a.p.(R)) the closure of A with respect to the
pseudomodular ρϕ (resp. with respect to the pseudonorm ‖.‖ϕ), more precisely:

B̃ϕ
a.p. (R) =

{
f ∈ Bϕ (R) : ∃ fn ∈ A, ∃ k0 > 0, lim

n→+∞
ρϕ (k0 (fn − f)) = 0

}
,

Bϕ
a.p. (R) =

{
f ∈ Bϕ (R) : ∃ fn ∈ A, ∀ k > 0, lim

n→+∞
ρϕ (k (fn − f)) = 0

}

=

{
f ∈ Bϕ (R) : ∃ fn ∈ A, lim

n→+∞
‖fn − f‖ϕ = 0

}
.

B̃ϕ
a.p.(R) and Bϕ

a.p.(R) will be called Besicovitch-Musielak-Orlicz spaces of al-
most periodic functions.
It is clear that

Bϕ
a.p. (R) ⊆ B̃ϕ

a.p. (R) ⊆ Bϕ (R) .

When ϕ(t, |x|) = |x|, we denote by B1(R) and B1a.p.(R) the respective spaces.
The notation ρ1 is used for the associated pseudomodular.
Recall that the function ϕ is said to be strictly convex if ϕ(t, λu+ (1− λ)v) <

λϕ(t, u) + (1 − λ)ϕ(t, v) for almost all t ∈ R and for every 0 ≤ u < v < +∞,
0 < λ < 1.

A normed linear space (X, ‖.‖) is strictly convex if
∥∥∥x+y
2

∥∥∥ < 1 whenever ‖x‖ =

‖y‖ = 1 and ‖x − y‖ > 0.
We say that ϕ satisfies the ∆2-condition (ϕ ∈ ∆2) if there exist k > 1 and a

measurable nonnegative function h such that ρϕ(h) < +∞ and ϕ(t, 2u) ≤ kϕ(t, u)
for almost all t ∈ R and all u ≥ h(t).

3. Auxiliary results

The space Bϕ
a.p.(R) can be regarded as a subspace of measurable functions on

R with respect to Lebesgue measure. However, the theory of B
ϕ
a.p.(R) spaces is

different from that of Lϕ(R) spaces: the usual convergence results of the Lebesgue
measure theory are not valid in the Bϕ

a.p.(R) spaces (see [11]).

To handle Bϕ
a.p.(R) spaces as Lϕ(R) ones, we introduce the set function µ̄.

Let Σ = Σ(R) be the σ-algebra of all Lebesgue measurable subsets of R. We
denote by µ̄ the set function defined on Σ by

µ̄(A) = lim
T→+∞

1

2T

∫ +T

−T
χA(t) dt = lim

T→+∞

1

2T
µ(A ∩ [−T,+T ]),

where µ denotes the Lebesgue measure on R.
It is easily seen that the set function µ̄ is not σ-additive.
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A sequence {fn} ⊂ Bϕ(R) is said to be µ̄-convergent to some f ∈ Bϕ(R) (in

symbol fn
µ̄

−−→ f) when, for every α > 0, we have

lim
n→+∞

µ̄ {x ∈ R : |fn(x)− f(x)| > α} = 0.

We give here some technical results that are the key arguments in the proof of
the main theorem.

Lemma 1. Let ν(A) = limT→+∞
1
2T

∫ +T
−T ϕ(t, χA(t)) dt. Then the set function

µ̄ is absolutely continuous with respect to ν, i.e., for every ε > 0 there exists δ > 0
such that

(3.1) (A ∈ Σ, ν(A) < δ)⇒ (µ̄(A) < ε).

Proof: Suppose that (3.1) is false. Then for some ε0 > 0 we will have the
following:
for each n ∈ N, there exists En ∈ Σ s.t. ν(En) < 1

2n and µ̄(En) > ε0. Thus

ν (En) = lim
T→+∞

1

2T

∫ +T

−T
ϕ (t, χEn

(t)) dt

= lim
T→+∞

1

2T

∫ +T

−T
ϕ(t, 1)χEn

(t) dt

≥ φ(1)µ̄ (En) ≥ φ(1)ε0,

a contradiction. �

Lemma 2. Let {fn}n≥1 ⊂ Bϕ
a.p.(R) be a sequence modular convergent to f ∈

B
ϕ
a.p.(R), i.e., limn→+∞ ρϕ(fn − f) = 0. Then fn

µ̄
−−→ f .

Proof: Notice first that we have also limn→+∞ ρφ(fn − f) = 0. Then from a

similar result for functions without parameter (cf. [10]) it follows that fn
µ̄

−−→ f .
�

Lemma 3. Let h ∈ Bϕ(R) be such that ρϕ(h) = a > 0. Then for every θ̄ ∈ (0, 1)
there exist constants β > 0, T0 > 0 and a set Ḡ = {t ∈ R, |h(t)| ≤ β} such that

(3.2) µ
{
Ḡ ∩ [−T,+T ]

}
≥ θ̄2T, for T ≥ T0.

Proof: It is clear that h ∈ Bφ(R). Then if ρφ(h) > 0 the conclusion follows from
a similar result for the function φ without parameter (cf. [10]). The conclusion is
immediate if ρφ(h) = 0. �
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Lemma 4. Let g ∈ Bϕ
a.p.(R). Then for all ε > 0 there exist δ > 0 and T0 > 0

such that ρϕ(gχQ) ≤ ε, for all Q ∈ Σ satisfying µ{Q∩ [−T,+T ]} ≤ 2δT , T ≥ T0.

Proof: We may suppose ρϕ(g) > 0.
Let ε > 0 and Pε ∈ A be such that ρϕ(2(g−Pε)) < ε

2 . Using the properties of ϕ

we have ϕ(t, 2|Pε(t)|) ∈ C0a.p. (cf. [4]). We then put Mε = supt∈R ϕ(t, 2|Pε(t)|).

We choose θ̄ ∈ (0, 1) satisfying Mε(1 − θ̄) < ε
2 . Then by Lemma 3 there exist

β > 0 and a set Ḡ = {t ∈ R, |g(t)| ≤ β} for which µ{Ḡ ∩ [−T,+T ]} ≥ 2θ̄T ,
∀T ≥ T0, for some T0 > 0. Hence, denoting by Ḡ′ the complement of Ḡ, we will
have for all T ≥ T0,

(3.3)

1

2T

∫

Ḡ′∩[−T,+T ]
ϕ(t, |g(t)|) dt

≤
1

2

(
1

2T

∫

Ḡ′∩[−T,+T ]
[ϕ (t, 2 |g(t)− Pε (t)|) + ϕ (t, 2 |Pε(t)|)] dt

)

≤
ε

4
+
1

4T
Mε

(
1− θ̄

)
2T ≤

ε

2
.

We put δ = ε
2 supt∈R ϕ(t,β)

and let Q ⊂ R be such that µ{Q∩ [−T,+T ]} ≤ 2δT

for T ≥ T0.
Then if Q1 = Q ∩ Ḡ and Q2 = Q ∩ Ḡ′, we will have

1

2T

∫

Q1∩[−T,T ]
ϕ(t, |g(t)|) dt ≤

1

2T

∫

Q1∩[−T,T ]
ϕ(t, β) dt

≤
1

2T
µ (Q1) sup

t∈R

ϕ(t, β)

≤ δ sup
t∈R

ϕ(t, β) ≤
ε

2
.

Similarly using (3.3) we get

1

2T

∫

Q2

ϕ(t, |g(t)|) dt ≤
1

2T

∫

Ḡ′∩[−T,+T ]
ϕ(t, |g(t)|) dt ≤

ε

2
.

Finally for all T ≥ T0, we have

1

2T

∫

Q∩[−T,+T ]
ϕ(t, |g(t)|) dt ≤ ε,

which means that ρϕ(gχQ) ≤ ε. �
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Proposition 1. Let f ∈ Bϕ
a.p.(R). Then ϕ(t, |f(t)|) ∈ B1a.p.(R) and consequently

the limit limT→+∞
1
2T

∫ +T
−T ϕ(t, |f(t)|) dt exists and is finite.

Proof: Let {fn} be a sequence of trigonometric polynomials such that ‖fn −

f‖ϕ → 0. Then using Lemma 2 we have also fn
µ̄

−−→ f .
Let θ̄ ∈ (0, 1). In view of Lemma 3, there exist β > 0 and T0 > 0 for which

µ̄(Ḡ) ≥ θ̄ with Ḡ = {t ∈ R : |f(t)| ≤ β}.
Let α > 0 and Aα

n = {t ∈ R : |fn(t) − f(t)| > α}. It is easily seen that
|fn(t)| ≤ β + α, ∀ t ∈ Ḡ ∩ (Aα

n)
′.

Now, the function ϕ being continuous on R× [0,+∞[, is also uniformly contin-
uous on [0, 1]× [0, α+ β]. Moreover, using the periodicity of ϕ(t, u) with respect
to t ∈ R, it follows that ϕ is uniformly continuous on R × [0, α+ β].
Then for every η > 0 there exists αη > 0 such that

∀ t ∈ Ḡ ∩ (Aα
n)

′

: |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ η =⇒ |fn(t)− f(t)| > αη.

Hence, since fn
µ̄

−−→ f we get also

lim
n→+∞

µ̄
{
t ∈ Ḡ ∩ (Aα

n)
′

: |ϕ (t, |fn(t)|)− ϕ (t, |f (t)|)| ≥ η
}
= 0.

Consequently,

µ̄ {t ∈ R : |ϕ (t, |fn (t)|)− ϕ (t, |f(t)|)| ≥ η}

≤ µ̄
{

t ∈ Ḡ ∩ (Aα
n)

′

: |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ η
}

+ µ̄
{
t ∈

(
Ḡ
)′
: |ϕ (t, |fn (t)|)− ϕ (t, |f(t)|)| ≥ η

}

+ µ̄ {t ∈ Aα
n : |ϕ (t, |fn (t)|)− ϕ (t, |f(t)|)| ≥ η}

≤ µ̄
{

t ∈ Ḡ ∩ (Aα
n)

′

: |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ η
}

+ µ̄
((

Ḡ
)′)
+ µ̄ (Aα

n)

≤ µ̄
{

t ∈ Ḡ ∩ (Aα
n)

′

: |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ η
}

+
(
1− θ̄

)
+ µ̄ (Aα

n) .

Letting n tend to infinity, we will have

lim
n→+∞

µ̄ {t ∈ R : |ϕ (t, |fn(t)|)− ϕ (t, |f(t)|)| ≥ η} ≤
(
1− θ̄

)
.

Finally, since θ̄ ∈ (0, 1) is arbitrary, we deduce that for all η > 0

(3.4) lim
n→+∞

µ̄ {t ∈ R : |ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| ≥ η} = 0.



Characterization of the strict convexity 449

On the other hand, using Lemma 4, it is easy to see that given ε > 0 there
exist δ > 0 and n0 ∈ N such that for all n ≥ n0 the following implication holds

(Q ∈ Σ, µ̄(Q) ≤ δ) =⇒ max
(
ρϕ

(
fχQ

)
, ρϕ

(
fnχQ

))
≤ ε.

Let Eε
n = {t ∈ R : |ϕ(t, |fn(t)|) − ϕ(t, |f(t)|)| ≥ ε}. Then since by (3.3),

µ̄(Eε
n) ≤ δ for n ≥ n0, we get

lim
T→+∞

1

2T

∫ +T

−T
|ϕ (t, |fn(t)|)− ϕ(t, |f(t)|)| dt

≤ lim
T→+∞

1

2T

∫

Eε
n∩[−T,T ]

|ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| dt

+ lim
T→+∞

1

2T

∫

(Eε
n)

′∩[−T,T ]
|ϕ (t, |fn (t)|)− ϕ (t, |f (t)|)| dt

≤ 2ε+ ε = 3ε.

Finally by ε > 0 being arbitrary we deduce that

lim
n→+∞

lim
T→+∞

1

2T

∫ +T

−T
|ϕ (t, |fn(t)|)− ϕ (t, |f (t)|)| dt = 0.

It remains to see that ϕ(t, |fn(t)|) ∈ C0a.p. This follows from the properties
of the function ϕ and the fact that fn ∈ A (see [4]). �

Lemma 5. Let {fn}n ⊂ B1a.p.(R) be such that fn
µ̄

−−→ f ∈ B1a.p.(R). Suppose

there exists g ∈ B1a.p.(R) for which max(|fn(t)|, |f(t)|) ≤ g(t), t ∈ R. Then

ρ1(fn)→ ρ1(f).

Proof: Take ε > 0 and let δ > 0 be associated to g as in Lemma 4. We put

Aε
n = {t ∈ R : |fn(t)− f(t)| ≥ ε

2}. Then since fn
µ̄

−−→ f it follows that µ̄(Aε
n) ≤ δ

for all n ≥ n0 and then by Lemma 4

ρ1
(
|fn − f |χAε

n

)
≤ ρ1

(
2gχAε

n

)
≤

ε

2
.

Consequently, for all n ≥ n0 we have

ρ1 (|fn − f |) ≤ ρ1

(
|fn − f |χ

Aε
n

)
+ ρ1

(
|fn − f |χ

(Aε
n)

′

)

≤
ε

2
+

ε

2
= ε

i.e., limn→+∞ ρ1(fn) = ρ1(f). �
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Lemma 6. Let f ∈ Bϕ
a.p.(R). Then the functional λ 7→ ρϕ

(
f
λ

)
is continuous on

]0,+∞[.

Proof: First, notice that since f ∈ Bϕ
a.p.(R) we have ρϕ(αf) < +∞ for each

α > 0. Indeed, f being in B
ϕ
a.p.(R) there exists a sequence {fn}n ⊂ A such that

limn→∞ ‖f−fn‖ϕ = 0 or equivalently limn→∞ ρϕ(α(f−fn)) = 0 for every α > 0.
Let α > 0 and n0 ∈ N such that ρϕ(2α(f − fn0)) ≤ 1. Then

ρϕ(αf) ≤
1

2
ρϕ (2α (f − fn0)) +

1

2
ρϕ (2αfn0) ,

consequently, using the fact that the trigonometric polynomial fn0 is uniformly
bounded, it follows that ρϕ(αf) < +∞.
Let now λ0 ∈ ]0,+∞[ and {λn} be a sequence of real numbers which converges

to λ0. We have

ρϕ

(
f

λn
−

f

λ0

)
≤

∣∣∣∣
1

λn
−
1

λ0

∣∣∣∣ ρϕ(f) for every n ≥ n0.

Then limn→+∞ ρϕ

(
f
λn

− f
λ0

)
= 0.

Now, using Lemma 2 we get f
λn

µ̄
−−→ f

λ0
and then ϕ

(
t,

|f(t)|
λn

)
µ̄

−−→ ϕ
(
t,

|f(t)|
λ0

)

(see the proof of Proposition 1). Furthermore

max

(
ϕ

(
t,
|f(t)|

λn

)
, ϕ

(
t,
|f(t)|

λ0

))
≤ ϕ

(
t,
2

λ0
|f(t)|

)

and by Proposition 1 we have ϕ
(
t, 2

λ0
|f(t)|

)
∈ B1a.p.(R). Consequently, using

Lemma 5 we deduce

ρϕ

(
f

λn

)
→ ρϕ

(
f

λ0

)
.

This means that λ 7→ ρϕ

(
f
λ

)
is continuous on ]0,+∞[. �

Corollary 1. Let f ∈ Bϕ
a.p.(R). Then

(1) ‖f‖ϕ ≤ 1 if and only if ρϕ(f) ≤ 1;
(2) ‖f‖ϕ = 1 if and only if ρϕ(f) = 1.

Proof: We prove briefly (2), the assertion (1) follows then easily.

Let f ∈ Bϕ
a.p.(R) with ‖f‖ϕ = 1. Then for ε > 0 we will have ρϕ

(
f
1+ε

)
≤ 1

and using Lemma 6 it follows that ρϕ(f) ≤ 1.

We have also ρϕ

(
f
1−ε

)
≥ 1 and again by Lemma 6 we get ρϕ(f) ≥ 1. Finally,

ρϕ(f) = 1.
The converse implication is known for a general modular space. �
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Remark 1. We recall that a similar result holds in classical Musielak-Orlicz
spaces under the additional ∆2-condition. This condition is not necessary in our
case since Lemma 6 holds with the restriction f ∈ Bϕ

a.p.(R).

Lemma 7. Let f ∈ B
ϕ
a.p.(R) with ‖f‖ϕ = 1. Then there exist real numbers

0 < α < β and θ ∈ (0, 1) such that if G1 = {t ∈ R : α ≤ |f(t)| ≤ β} we have
µ̄(G1) ≥ θ.

Proof: Let θ̄ ∈ (0, 1). Then from Lemma 3 there exist β > 0 and T0 > 0 such
that µ{Ḡ ∩ [−T,+T ]} ≥ θ̄2T, ∀T ≥ T0, where Ḡ = {t ∈ R : |f(t)| ≤ β}.
We claim that the following is also true:

• for each δ ∈ (0, 1) there exist θ̃ ∈ (0, 1), T0 > 0 and a set G̃ = {t ∈ R,
ϕ(t, |f(t)|) ≤ 1− δ} such that for T ≥ T0

(3.5) µ
{
G̃ ∩ [−T,+T ]

}
< θ̃2T.

For, let δ ∈ (0, 1) and Pn be a sequence of trigonometric polynomials approxi-

mating f , i.e., ‖f − Pn‖ϕ → 0. We take Pδ such that ρϕ(2|f − Pδ|) < δ
4 and put

M = supt∈R ϕ(t, 2Pδ(t)).

Let ε > 0 be such that
(

δ
4 +Mε

)
< δ and suppose that (3.5) is not satisfied.

Then taking θ̃ = 1− ε, there will exists a sequence {Tn} increasing to infinity for

which µ{G̃ ∩ [−Tn,+Tn]} ≥ θ̃2Tn. We then get

1

2Tn

∫ +Tn

−Tn

ϕ (t, |f (t)|) dt =
1

2Tn

∫

G̃∩[−Tn,+Tn]
ϕ (t, |f (t)|) dt

+
1

2Tn

∫

(G̃)
′
∩[−Tn,+Tn]

ϕ (t, |f (t)|) dt

≤ (1− δ) +
1

2Tn

∫

(G̃)
′
∩[−Tn,+Tn]

ϕ (t, |f (t)|) dt.

Moreover, we have

1

2Tn

∫

(G̃)
′
∩[−Tn,+Tn]

ϕ (t, |f (t)|) dt

≤
1

2

[
1

2Tn

∫

(G̃)
′
∩[−Tn,+Tn]

ϕ (t, 2 |f (t)− Pδ(t)|) dt

+
1

2Tn

∫

(G̃)
′
∩[−Tn,+Tn]

ϕ (t, 2 |Pδ(t)|) dt

]

≤
1

2

[
δ

4
+Mε

]
≤

δ

2
.
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Then
1

2Tn

∫ +Tn

−Tn

ϕ (t, |f(t)|) dt ≤ 1− δ +
δ

2
≤ 1−

δ

2
.

Hence, letting n tend to infinity we will have ρϕ(f) ≤ 1 − δ
2 . Finally, using

Corollary 1 it follows ‖f‖ϕ < 1. This contradicts the fact that ‖f‖ϕ = 1.

We now show the statement of the lemma. Let δ ∈ (0, 1) and α > 0 be such that

supt∈R ϕ(t, α) ≤ 1−δ. We choose θ̃ as in (3.5) and then take θ̄ > θ̃ as in Lemma 3.
If β > α is a fixed number we define the set G1 = {t ∈ R : α ≤ |f(t)| ≤ β}. Then
since

(G1)
′∩ [−T, T ] = {t ∈ [−T, T ] : |f(t)| ≤ α}∪{t ∈ [−T, T ] : f(t) ≥ β} ⊂ G̃∪

(
Ḡ
)′

,

it follows that for T ≥ T0 we have

µ
(
(G1)

′ ∩ [−T, T ]
)
≤ µ

(
G̃ ∩ [−T, T ]

)
+ µ

((
Ḡ
)′
∩ [−T, T ]

)

≤ θ̃2T +
(
1− θ̄

)
2T =

(
1−

(
θ̄ − θ̃

))
2T,

or equivalently

µ (G1 ∩ [−T, T ]) ≥
(
θ̄ − θ̃

)
2T, for T ≥ T0.

�

Lemma 8. Let {an}n, an > 0 be a sequence of real numbers and α ∈ (0, 1). To
each n we associate a measurable set An such that

(i) Ai ∩ Aj = φ, for i 6= j and
⋃

n≥1An ⊂ [0, α[ , α < 1;

(ii)
∑

n≥0

∫ 1
0 ϕ(t, anχAn

(t)) dt < +∞.

Consider the function f =
∑

n≥1 anχAn
on [0, 1] and let f̃ be the periodic exten-

sion of f to the whole R (with period τ = 1). Then f̃ ∈ B̃ϕ
a.p..

Proof: Let us first remark that since
∫ 1
0 ϕ(t, an) dt < +∞, for n ≥ 1 there exists

a set An ⊂ [0, α[ for which
∫ 1
0 ϕ(t, anχAn

(t)) dt < 1
n2
. It is also clear that we

may choose the An’s so that the conditions of the lemma are satisfied. Now, for

an arbitrary ε > 0 we fix n0 such that
∑

n≥n0

∫ 1
0 ϕ(t, anχAn

(t)) dt ≤ ε
3 and put

f1 =
∑n0

i=1 aiχAi
on [0, 1[. Let thenM = maxi≤n0 supt∈[0,1] ϕ(t, 2ai) and δ ≤ ε

3M
(remark that we may suppose 1− α > δ).
Let fr

1 denote the restriction of f1 to [0, 1− δ]. Then by Luzin’s theorem there
exists a continuous function gr

ε on [0, 1− δ] such that

µ {t ∈ [0, 1− δ] : ϕ (t, |fr
1 (t)− gr

ε(t)|) > 0} ≤
ε

3M
.
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Moreover since f1 is bounded so is gr
ε (with the same bound).

Let now gε be a linear extension of g
r
ε to [0, 1], more precisely gε is such that

gε = gr
ε on [0, 1− δ], gε is linear between 1− δ and 1 and satisfies gε(1) = gr

ε(0).
We then get

∫ 1

0
ϕ

(
t,
|f (t)− gε (t)|

2

)
dt

≤

∫ 1

0
ϕ

(
t,
|f (t)− f1 (t)|+ |f1 (t)− gε (t)|

2

)
dt

≤
1

2

∫ 1

0
ϕ (t, |f(t)− f1 (t)|) dt+

1

2

∫ 1

0
ϕ (t, |f1 (t)− gε (t)|) dt

≤
1

2

∫ 1

0
ϕ

(
t,
∑

n≥n0

anχAn
(t)

)
dt

+
1

2

∫ 1−δ

0
ϕ (t, |fr

1 (t)− gr
ε (t)|) dt+

1

2

∫ 1

1−δ
ϕ (t, |f1(t)− gε(t)|) dt

≤
1

2

∑

n≥n0

∫ 1

0
ϕ (t, anχAn

(t)) dt+
1

2
M

ε

3M
+
1

2
M

ε

3M

≤
ε

2
.

Finally, the continuous function gε : [0, 1]→ R satisfies

gε(0) = gε(1) and

∫ 1

0
ϕ

(
t,
|f(t)− gε(t)|

2

)
dt ≤

ε

2
.

Let now f̃ and g̃ε be the respective periodic extensions of f and gε to the whole
R (with the period τ = 1). Clearly g̃ε is u.a.p. and then it is also in Bϕ

a.p.(R).

Consequently, there exists Pε ∈ A for which ρϕ

(
g̃ε−Pε

2

)
≤ ε
2 .

On the other hand f̃ and g̃ being periodic with period τ = 1, using the peri-
odicity of ϕ (with τ = 1), we get

ρϕ

(
f̃ − g̃ε

2

)
= lim

T→+∞

1

2T

∫ +T

−T
ϕ



t,

∣∣∣f̃ (t)− g̃ε (t)
∣∣∣

2



 dt

=

∫ 1

0
ϕ

(
t,
|f(t)− gε (t)|

2

)
dt ≤

ε

2
.

Finally,

ρϕ

(
f̃ − Pε

4

)
≤
1

2

[
ρϕ

(
f̃ − g̃ε

2

)
+ ρϕ

(
g̃ε − Pε

2

)]
≤ ε,

i.e., f̃ ∈ B̃
ϕ
a.p.. �
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4. Results

Lemma 9. Let ϕ(t, u) be strictly convex with respect to u ≥ 0 and fn, gn ∈
Bϕ

a.p.(R) be sequences such that, for some r > 0, we have

ρϕ (fn) ≤ r, ρϕ (gn) ≤ r and lim
n→∞

ρϕ

(
fn + gn

2

)
= r.

Then (fn − gn)
µ̄

−−→ 0.

Proof: Suppose that limn→∞(fn − gn) 6= 0 in the µ̄-convergence sense. Then
there exist ε > 0, σ > 0 and nk ր ∞ such that if Ek = {t ∈ R : |fnk

(t)−gnk
(t)| ≥

σ} we have µ̄(Ek) > ε.
Take a number kε > 1 such that (see Lemma 1) there holds

µ̄(E) ≥
ε

4
⇒ ρϕ (χE) >

r

kε
,

where r > 0 is the constant from the lemma.
Then putting

Ak = {t ∈ R : |fnk
(t)| > kε} ,

Bk = {t ∈ R : |gnk
(t)| > kε}

we obtain

r ≥ ρϕ (fnk
)

= lim
T→+∞

1

2T

∫ +T

−T
ϕ (t, |fnk

(t)|) dt

≥ lim
T→+∞

1

2T

∫

Ak∩[−T,T ]
ϕ (t, kε) dt

≥ kε lim
T→+∞

1

2T

∫

Ak∩[−T,T ]
ϕ(t, 1) dt = kερϕ

(
χAk

)
.

It follows that ρϕ(χAk
) ≤ r

kε
and then µ̄(Ak) ≤

ε
4 .

In the same way we show that µ̄(Bk) ≤
ε
4 .

Now, define the set

Q = {(u, v) ∈ R
2/ |u| ≤ kε, |v| ≤ kε, |u − v| ≥ σ},

and consider the function

F (t, u, v) =
2ϕ
(
t, u+v
2

)

ϕ (t, u) + ϕ (t, v)
.
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Since ϕ is strictly convex we have F (t, u, v) < 1, for all (t, u, v) ∈ R × Q. Then
using the continuity of ϕ on R × Q (where Q is a compact set of R2) and its
periodicity with respect to t, it follows that

sup
R×Q

F (t, u, v) = 1− δ for some δ > 0.

More precisely, for (t, u, v) ∈ R×Q we have

ϕ

(
t,

u+ v

2

)
≤ (1− δ)

ϕ(t, u) + ϕ(t, v)

2
.

Let now t ∈ Ek\(Ak ∪ Bk). Then fnk
(t), gnk

(t) ∈ Q and consequently

ϕ

(
t,
|fnk
(t) + gnk

(t)|

2

)
≤ (1− δ)

ϕ (t, |fnk
(t)|) + ϕ (t, |gnk

(t)|)

2
.

Hence

r − ρϕ

(
fnk
+ gnk

2

)

≥
ρϕ (fnk

) + ρϕ (gnk
)

2
− ρϕ

(
fnk
+ gnk

2

)

≥ lim
T→+∞

1

2T

∫

[Ek\(Ak∪Bk)]∩[−T,+T ]
[
ϕ (t, |fnk

(t)|) + ϕ (t, |gnk
(t)|)

2
− ϕ

(
t,
|fnk
(t) + gnk

(t)|

2

)]
dt

≥
δ

2
lim

T→+∞

1

2T

∫

[Ek\(Ak∪Bk)]∩[−T,+T ]
[ϕ (t, |fnk

(t)|) + ϕ (t, |gnk
(t)|)] dt

≥ δ lim
T→+∞

1

2T

∫

[Ek\(Ak∪Bk)]∩[−T,+T ]
ϕ

(
t,
|fnk
(t)− gnk

(t)|

2

)
dt

≥ δϕ
(σ

2

)(
ε −

ε

4
−

ε

4

)
= δ

ε

2
ϕ
(σ

2

)
.

Finally,

r − ρϕ

(
fn + gn

2

)
≥ δ

ε

2
φ
(σ

2

)
> 0,

a contradiction with the hypothesis ρϕ

(
fn+gn

2

)
→ r. �
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Theorem 1. B̃ϕ
a.p.(R) is strictly convex if and only if ϕ is strictly convex and ϕ

satisfies the ∆2-condition.

Proof: Sufficiency. Suppose that ϕ is strictly convex and satisfies the ∆2-
condition but B̃ϕ

a.p.(R) is not strictly convex. Then for some f and g ∈ B̃ϕ
a.p.(R)

we will have ‖f‖ϕ = ‖g‖ϕ = 1 and ‖f − g‖ϕ > 0 but
∥∥∥ f+g
2

∥∥∥
ϕ
= 1. From Corol-

lary 1 we will have also ρϕ(f) = ρϕ(g) = ρϕ

(
f+g
2

)
= 1. Then from Lemma 9 it

follows that for each α > 0, µ̄{t ∈ R : |f − g| > α} = 0. Finally, using Lemma 7
we get ρϕ(f − g) = 0. Contradiction.

Necessity. Let Lϕ = Lϕ([0, 1]) = {f ∈ M(R) :
∫ 1
0 ϕ(t, λ|f(t)|) dt < +∞

for some λ > 0} be the usual Musielak-Orlicz space and ‖.‖Lϕ its associated
Luxemburg norm.
We consider the injection map

i : Lϕ →֒ B̃ϕ
a.p. (R) , i(f) = f̃ ,

where f̃ is the periodic extension (with period τ = 1) of f to R. We show first

that i(Lϕ) ⊂ B̃
ϕ
a.p.(R).

Let f ∈ Lϕ([0, 1]). Then there exists λ > 0 such that ϕ(t, λ|f(t)|) ∈ L1([0, 1]).
From usual arguments of Lebesgue theory we have limN→+∞ µ(VN ) = 0, where

VN = {t ∈ [0, 1] : ϕ (t, λ |f(t)|) ≥ N} .

Let EN = {t ∈ [0, 1] : |f(t)| ≥ N}. Then for t ∈ EN we have

ϕ (t, λ |f(t)|) ≥ ϕ(t, λN) ≥ λNϕ(t, 1) ≥ λNφ(1),

where φ(1) = inft∈[0,1] ϕ(t, 1), φ(1) > 0 (we may suppose φ(1) = 1). It follows

that EN ⊂ VλN and then we get limN→+∞ µ(EN ) = 0.
Consider the following functions for N ∈ N,

fN (t) =

{
f(t) if f(t) ≤ N

N if f(t) ≥ N.

It is clear that the sequence {fN} is increasing and fN ≤ f . Moreover, since
limN→+∞ µ(EN ) = 0 we have limN→+∞

∫
EN

ϕ(t, λ|f(t)|) dt = 0.

Then for a given ε > 0 there is an Nε ∈ N such that

∫ 1

0
ϕ (t, λ |f(t)− fNε

(t)|) dt ≤

∫

ENε

ϕ (t, λ |f(t)|) dt ≤ ε.
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Now for fNε
being bounded there exists a sequence of simple functions (SNε

)n
uniformly convergent to fNε

. In particular, there exists a simple function SNε

such that supt∈[0,1] |λ (fNε
(t)− SNε

(t))| ≤ ε and then

∫ 1

0
ϕ

(
t,

λ

2
|f(t)− SNε

(t)|

)
dt

≤
1

2

∫ 1

0
ϕ (t, λ |f(t)− fNε

(t)|) dt+
1

2

∫ 1

0
ϕ (t, λ |fNε

(t)− SNε
(t)|) dt ≤ ε.

We denote by f̃ , f̃Nε
and S̃Nε

the respective periodic extensions (with period
τ = 1) of the functions f, fNε

and SNε
. We have from the periodicity properties

of ϕ, f̃ , f̃Nε
and S̃Nε

:

ρϕ

(
λ

2

(
f̃ − S̃Nε

))
= lim

T→+∞

1

2T

∫ +T

−T
ϕ

(
t,

λ

2

∣∣∣f̃ (t)− S̃Nε
(t)
∣∣∣
)

dt

=

∫ 1

0
ϕ

(
t,

λ

2
|f(t)− SNε

(t)|

)
dt ≤ ε.

Moreover, from Lemma 8 we have S̃Nε
∈ B̃ϕ

a.p.(R). Then there exists Pε ∈ A

for which ρϕ

(
1
4 (S̃Nε

− Pε)
)
≤ ε (see the proof of Lemma 8).

Finally, putting α = min
(
λ, 14

)
we get

ρϕ

(α

2

(
f̃ − Pε

))
≤
1

2

{
ρϕ

(
λ

2

(
f̃ − S̃Nε

))
+ ρϕ

(
1

4

(
S̃Nε

− Pε

))}
≤ ε.

This means that f̃ ∈ B̃
ϕ
a.p.(R).

Now, since i : Lϕ([0, 1]) →֒ B̃ϕ
a.p.(R) is an isometry, the strict convexity of

B̃
ϕ
a.p.(R) implies the strict convexity of L

ϕ([0, 1]).
Consequently ϕ(t, u), t ∈ [0, 1], u ≥ 0 is strictly convex and satisfies the ∆2-

condition for Musielak-Orlicz spaces (see [6], [7]) i.e., there exist k ≥ 1 and h ≥ 0

with
∫ 1
0 h(t) dt < ∞ such that ϕ(t, 2u) ≤ kϕ(t, u)+h(t) for all u ≥ 0 and almost all

t ∈ [0, 1]. The periodically (with τ = 1) extended functions ϕ(t, u), t ∈ R, u ≥ 0

and h̃(t), t ∈ R satisfy the conditions h̃ ∈ B1(R) and ϕ(t, 2u) ≤ kϕ(t, u) + h̃(t)
for u ≥ 0 and almost all t ∈ R.
Now, putting f(t) = sup{u ≥ 0 : ϕ(t, u) ≤ h̃(t)} it follows that f is measurable

and ϕ(t, f(t)) = h̃(t) for t ∈ R. Finally, we get

ϕ(t, 2u) ≤ kϕ(t, u) + h̃(t) ≤ (k + 1)ϕ(t, u)

for u ≥ f(t) and almost all t ∈ R, i.e., ϕ satisfies the ∆2-condition for Besicovitch-
Musielak-Orlicz spaces.

�
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