Weakly infinite-dimensional compactifications and countable-dimensional compactifications

Takashi Kimura, Chieko Komoda

Abstract. In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.

Keywords: S-weakly infinite-dimensional, countable-dimensional, compactification Classification: Primary 54D35, 54F45

1. Introduction

We assume that all spaces are separable and metrizable. By a compactification of a space X, we mean a compact metrizable space containing X as a dense subspace. We refer the reader to [3] for notions and terminology not explicitly given.

Borst [2] gave a characterization of spaces having a S-weakly infinite-dimensional compactification in terms of a special base. In [6], we obtained a result concerning C-spaces, which is similar to Borst's one.

On the other hand, in [1], Borst gave a characterization of spaces having a compactification which is a C-space in terms of a special metric. In this paper we give an alternative characterization of spaces having a S-weakly infinite-dimensional compactification in terms of a special metric, which is similar to Borst's one.

It is known that the class of C-spaces contains the class of countable-dimensional spaces.

Next, we give a characterization of spaces having a countable-dimensional compactification. The following theorem is well-known.

1.1 Theorem ([3, Theorem 7.2.21]). A space X has a countable-dimensional compactification if and only if X has small transfinite dimension trind.

However, by using Borst's method, we give two characterizations of spaces having a countable-dimensional compactification.

For a collection \mathcal{A} of subsets of a space X and for $Y \subset X$ we write $\mathcal{A}|Y$ for $\{A \cap Y : A \in \mathcal{A}\}, \bigcup \mathcal{A}$ for $\bigcup \{A : A \in \mathcal{A}\}, \bigcap \mathcal{A}$ for $\bigcap \{A : A \in \mathcal{A}\}$ and $[\mathcal{A}]^{<\omega}$ for $\{\mathcal{B} : \mathcal{B} \text{ is a finite subcollection of } \mathcal{A}\}.$

We denote by (\tilde{X}, \tilde{d}) the completion of a metric space (X, d).

For a point x of a metric space (X, d) and for a positive number ε , the set $B(x; \varepsilon) = \{y \in X : d(x, y) < \varepsilon\}$ is called the ε -ball about x. For a set $A \subset X$ and a positive number ε , by the ε -ball about A we mean $B(A; \varepsilon) = \bigcup \{B(x; \varepsilon) : x \in A\}$.

Let Γ be an index set. A collection $\tau = \{(A_i, B_i) : i \in \Gamma\}$ of pairs of disjoint closed subsets of X is called *essential* if for every $\{L_i : i \in \Gamma\}$, where L_i is a partition in X between A_i and B_i for every $i \in \Gamma$, we have $\bigcap_{i \in \Gamma} L_i \neq \emptyset$; if τ is not essential then it is called *inessential*.

A collection \mathcal{A} of subsets of a space X is called *closure-distributive* if for every finite subcollection $\{A_1, A_2, \dots, A_n\}$ of \mathcal{A} , the equality $\operatorname{Cl}(A_1 \cap A_2 \cap \dots \cap A_n) = \operatorname{Cl} A_1 \cap \operatorname{Cl} A_2 \cap \dots \cap \operatorname{Cl} A_n$ holds.

1.2 Lemma ([7, Lemma 3.2]). Let \mathcal{V} be a closure-distributive finite collection of open subsets of a space X and (F, U) be a pair of subsets of X such that F is closed, U is open and $F \subset U$. Then there exists an open subset V of X such that $F \subset V \subset \operatorname{Cl} V \subset U$ and $\mathcal{V} \cup \{V\}$ is closure-distributive.

The following lemma will play an important role in the proof of our main theorem.

1.3 Lemma ([10], cf. [5]). Every Čech-complete space X has a compactification αX such that $\alpha X - X$ is strongly countable-dimensional.

2. Spaces having a S-weakly infinite-dimensional compactification

We consider a characterization of spaces having a S-weakly infinite-dimensional compactification in terms of a special metric.

2.1 Definition. A space X is μ -S-weakly infinite-dimensional if there exists a totally bounded metric d on X satisfying the following condition:

(*) For every collection $\{(A_i, B_i) : i < \omega\}$ of pairs of disjoint closed subsets of X with $d(A_i, B_i) > 0$ for every $i < \omega$, there exists a collection $\{L_i : i < \omega\}$ of subsets of X such that L_i is a partition in X between A_i and B_i for every $i < \omega$ and $\bigcap_{i < n} L_i = \emptyset$ for some $n < \omega$.

Obviously, every S-weakly infinite-dimensional space is μ -S-weakly infinite-dimensional and every μ -S-weakly infinite-dimensional compact space is S-weakly infinite-dimensional.

A space Y is a $\check{C}ech$ -complete extension of a space X if Y contains X as a dense subspace and Y is $\check{C}ech$ -complete.

2.2 Lemma. Every μ -S-weakly infinite-dimensional space has a μ -S-weakly infinite-dimensional Čech-complete extension.

PROOF: Let X be a μ -S-weakly infinite-dimensional space and d be a totally bounded metric on X satisfying the condition (*) in Definition 2.1.

Take an arbitrary countable base \mathcal{U} for \tilde{X} which is closed under finite unions. Note that \tilde{X} is compact. Let us set

$$\mathcal{A} = \left\{ (U, U'; V, V') : \begin{array}{c} U, U', V, V' \in \mathcal{U}, \operatorname{Cl}_{\tilde{X}} U \subset U', \operatorname{Cl}_{\tilde{X}} V \subset V' \\ \text{and } \operatorname{Cl}_{\tilde{X}} U' \cap \operatorname{Cl}_{\tilde{X}} V' = \emptyset \end{array} \right\}.$$

We enumerate \mathcal{A} as $\mathcal{A} = \{(U_i, U'_i; V_i, V'_i) : i < \omega\}$. Let us set

$$\mathbb{D} = \{ \Delta \in [\omega]^{<\omega} : \{ (\operatorname{Cl}_{\tilde{X}} U'_n \cap X, \operatorname{Cl}_{\tilde{X}} V'_n \cap X) : n \in \Delta \} \text{ is inessential in } X \}.$$

Consider an element $\Delta \in \mathbb{D}$. We can take a partition $L(\Delta, n)$ in X between $\operatorname{Cl}_{\tilde{X}} U'_n \cap X$ and $\operatorname{Cl}_{\tilde{X}} V'_n \cap X$ for every $n \in \Delta$ such that $\bigcap_{n \in \Delta} L(\Delta, n) = \emptyset$. For every $n \in \Delta$, we take a partition $\tilde{L}(\Delta, n)$ in \tilde{X} between $\operatorname{Cl}_{\tilde{X}} U_n$ and $\operatorname{Cl}_{\tilde{X}} V_n$ such that $\tilde{L}(\Delta, n) \cap X \subset L(\Delta, n)$. For every $\Delta \in \mathbb{D}$ the set

$$T_{\Delta} = \bigcap_{n \in \Delta} \tilde{L}(\Delta, n)$$

is closed in \tilde{X} and disjoint from X. Thus the space

$$Y = \tilde{X} - \bigcup \{ T_\Delta : \Delta \in \mathbb{D} \}$$

is a Čech-complete extension of X. Let d_Y be the restriction of \tilde{d} to Y. It suffices to show that d_Y satisfies the condition (*) in Definition 2.1. Consider a collection $\{(A_i, B_i) : i < \omega\}$ of pairs of closed subsets of Y with $d_Y(A_i, B_i) > 0$ for every $i < \omega$. Since $\tilde{d}(\operatorname{Cl}_{\tilde{X}} A_i, \operatorname{Cl}_{\tilde{X}} B_i) = d_Y(A_i, B_i) > 0$, we have $\operatorname{Cl}_{\tilde{X}} A_i \cap \operatorname{Cl}_{\tilde{X}} B_i = \emptyset$. Take $U^i, U'^i, V^i, V'^i \in \mathcal{U}$ such that $\operatorname{Cl}_{\tilde{X}} A_i \subset U^i \subset \operatorname{Cl}_{\tilde{X}} U^i \subset U'^i$, $\operatorname{Cl}_{\tilde{X}} B_i \subset V^i \subset \operatorname{Cl}_{\tilde{X}} V^i \subset V'^i$, and $\operatorname{Cl}_{\tilde{X}} U'^i \cap \operatorname{Cl}_{\tilde{X}} V'^i = \emptyset$ for every $i < \omega$. Since $\tilde{d}(\operatorname{Cl}_{\tilde{X}} U'^i, \operatorname{Cl}_{\tilde{X}} V^i) > 0$, we have $d(\operatorname{Cl}_{\tilde{X}} U'^i \cap X, \operatorname{Cl}_{\tilde{X}} V'^i \cap X) > 0$. Thus there exists a partition L^i in X between $\operatorname{Cl}_{\tilde{X}} U'^i \cap X$ and $\operatorname{Cl}_{\tilde{X}} V'^i \cap X$ for every $i < \omega$ such that $\bigcap_{i < m} L^i = \emptyset$ for some $m < \omega$. Since $\{(\operatorname{Cl}_{\tilde{X}} U'^i \cap X, \operatorname{Cl}_{\tilde{X}} V'^i \cap X) : i < m\} \in \mathcal{A}$; thus $(U^i, U'^i, V^i; V'^i) = (U_{n(i)}, U'_{n(i)}; V_{n(i)}, V'_{n(i)})$ for some $n(i) < \omega$. Letting

$$\Delta = \{ n(i) : i < m \},\$$

we have $\Delta \in \mathbb{D}$. For every i < m, letting

$$L_i = \tilde{L}(\Delta, n(i)) \cap Y,$$

 L_i is a partition in Y between A_i and B_i . For every $i \ge m$ we take a partition L_i in Y between A_i and B_i . We have

$$\bigcap_{i < m} L_i = \bigcap_{i < m} (\tilde{L}(\Delta, n(i)) \cap Y) = \bigcap_{n(i) \in \Delta} \tilde{L}(\Delta, n(i)) \cap Y$$
$$= T_{\Delta} \cap Y \subset T_{\Delta} \cap (\tilde{X} - T_{\Delta}) = \emptyset,$$

thus d_Y satisfies the condition (*) in Definition 2.1. Hence Y is μ -S-weakly infinitedimensional.

2.3 Lemma. Every Čech-complete μ -S-weakly infinite-dimensional space X has a S-weakly infinite-dimensional compactification.

PROOF: Since X is Čech-complete, by Lemma 1.3, there exists a compactification αX such that the remainder $\alpha X - X$ is strongly countable-dimensional. We shall prove that αX is S-weakly infinite-dimensional.

Let $\{(A_i, B_i) : i < \omega\}$ be a collection of pairs of disjoint closed subsets of αX . For every $i < \omega$, we take two open subsets U_{2i+1} and V_{2i+1} of αX such that $A_{2i+1} \subset U_{2i+1}, B_{2i+1} \subset V_{2i+1}$ and $\operatorname{Cl}_{\alpha X} U_{2i+1} \cap \operatorname{Cl}_{\alpha X} V_{2i+1} = \emptyset$. Since $\alpha X - X$ is A-weakly infinite-dimensional, there exists a partition L_{2i+1} in $\alpha X - X$ between $\operatorname{Cl}_{\alpha X} U_{2i+1} \cap (\alpha X - X)$ and $\operatorname{Cl}_{\alpha X} V_{2i+1} \cap (\alpha X - X)$ for every $i < \omega$ such that $\bigcap_{i < \omega} L_{2i+1} = \emptyset$. For every $i < \omega$ we take a partition L'_{2i+1} in αX between A_{2i+1} and B_{2i+1} such that $L'_{2i+1} \cap (\alpha X - X) \subset L_{2i+1}$. Let us set $K = \bigcap_{i < \omega} L'_{2i+1}$. Since K is S-weakly infinite-dimensional, there exists a partition L_{2i} in K between $A_{2i} \cap K$ and $B_{2i} \cap K$ for every $i < \omega$ such that $\bigcap_{i < n} L_{2i} = \emptyset$ for some $n < \omega$. For every $i < \omega$ we take a partition L'_{2i} in αX between A_{2i} and $B_{2i} \cap K$ for every $i < \omega$ such that $\bigcap_{i < n} L_{2i} = \emptyset$ for some $n < \omega$. For every $i < \omega$ we take a partition L'_{2i} in αX between A_{2i} of K of every $i < \omega$ such that $\bigcap_{i < n} L_{2i} = \emptyset$ for some $n < \omega$. For every $i < \omega$ we take a partition L'_{2i} in αX between A_{2i} and B_{2i} such that $L'_{2i} \cap K \subset L_{2i}$. Obviously, we have $\bigcap_{i < \omega} L'_i = \emptyset$. This implies that αX is A-weakly infinite-dimensional and hence since αX is compact it is also S-weakly infinite-dimensional.

2.4 Lemma. Every space X having a S-weakly infinite-dimensional compactification αX is μ -S-weakly infinite-dimensional.

PROOF: Take an arbitrary metric d on αX . Let d_X be the restriction d to X. It is easy to show that d_X satisfies the condition (*) in Definition 2.1. Hence X is μ -S-weakly infinite-dimensional.

We now come to our main theorem.

2.5 Theorem. A space X has a S-weakly infinite-dimensional compactification if and only if X is μ -S-weakly infinite-dimensional.

PROOF: The theorem follows from Lemmas 2.2, 2.3 and 2.4. \Box

2.6 Problem. Does Lemma 2.2 remain true if we replace 'a totally bounded metric on X' in Definition 2.1 by 'a metric on X'?

3. Spaces having a countable-dimensional compactification

In this section we consider characterizations of spaces having a countabledimensional compactification.

A collection \mathcal{A} of subsets of a space X is *strongly point-finite* if for every infinite subcollection \mathcal{A}' of \mathcal{A} there exists $\mathcal{A}'' \in [\mathcal{A}']^{<\omega}$ such that $\cap \mathcal{A}'' = \emptyset$.

We need the following theorem to prove our main theorems.

3.1 Theorem ([5, Theorem 1]). A space X has small transfinite dimension trind if and only if X has a base \mathcal{B} such that {Bd $B : B \in \mathcal{B}$ } is strongly point-finite.

On the other hand, the following theorem is well-known.

3.2 Theorem ([8], [9]). A space X is countable-dimensional if and only if for every collection $\{(A_i, B_i) : i < \omega\}$ of pairs of disjoint closed subsets of X, there exists a collection $\{L_i : i < \omega\}$ of subsets of X such that L_i is a partition in X between A_i and B_i for every $i < \omega$ and $\{L_i : i < \omega\}$ is point-finite.

A collection \mathcal{A} of subsets of a space X is *separating* in X if for every $x \in X$ and every closed set $F \subset X$ with $x \notin F$ there exist $A_1, A_2 \in \mathcal{A}$ such that $x \in A_1$, $F \subset A_2$ and $A_1 \cap A_2 = \emptyset$. Obviously, every separating collection of open subsets of a space X is a base for X.

3.3 Definition. A space X is *small countable-dimensional* if there exists a countable separating collection \mathcal{B} of open subsets of X satisfying the following condition:

(*) For every collection $\{(B_{i1}, B_{i2}) : i < \omega\}$ of pairs of elements of \mathcal{B} with $\operatorname{Cl} B_{i1} \cap \operatorname{Cl} B_{i2} = \emptyset$ for every $i < \omega$, there exists a collection $\{L_i : i < \omega\}$ of subsets of X such that L_i is a partition in X between $\operatorname{Cl} B_{i1}$ and $\operatorname{Cl} B_{i2}$ for every $i < \omega$ and $\{L_i : i < \omega\}$ is strongly point-finite.

We now come to our main theorem.

3.4 Theorem. A space X has a countable-dimensional compactification if and only if X is small countable-dimensional.

PROOF: Let X be small countable-dimensional and \mathcal{U} be a countable separating collection of open subsets of X satisfying the condition (*) in Definition 3.3. Let us set

$$\mathcal{A} = \{ (U, U') : U, U' \in \mathcal{U} \text{ with } \operatorname{Cl}_{\tilde{X}} U \cap \operatorname{Cl}_{\tilde{X}} U' = \emptyset \}.$$

We enumerate \mathcal{A} as $\mathcal{A} = \{(U_i, U'_i) : i < \omega\}$. Take a partition L_i between $\operatorname{Cl} U_i$ and $\operatorname{Cl} U'_i$ for every $i < \omega$ such that $\{L_i : i < \omega\}$ is strongly point-finite. We can take disjoint open subsets B_i and B'_i such that $\operatorname{Cl} U_i \subset B_i, \operatorname{Cl} U'_i \subset B'_i$ and $X - L_i = B_i \cup B'_i$. It is easy to show that the set $\mathcal{B} = \{B_i : i < \omega\}$ is a base for X. Since $\{L_i : i < \omega\}$ is strongly point-finite, so is $\{\operatorname{Bd} B_i : i < \omega\}$. From Theorem 1.1, X has small transfinite dimension trind. By Theorem 3.1, X has a countable-dimensional compactification. Now let αX be a countable-dimensional compactification of X and \mathcal{U} be a countable base \mathcal{U} for αX . Let us set

$$\mathcal{A} = \{ (U, U') : U, U' \in \mathcal{U} \text{ with } \operatorname{Cl}_{\alpha X} U \subset U' \}.$$

We enumerate \mathcal{A} as $\mathcal{A} = \{(U_i, U'_i) : i < \omega\}$. For every $i < \omega$, inductively, we shall construct two open subsets V_i and V'_i of αX satisfying the following conditions:

$$\operatorname{Cl}_{\alpha X} U_i \subset V_i \subset \operatorname{Cl}_{\alpha X} V_i \subset \alpha X - \operatorname{Cl}_{\alpha X} V'_i \subset \alpha X - V'_i \subset U'_i$$
 and
 $\mathcal{V} = \{V_i : i < \omega\} \cup \{V'_i : i < \omega\}$ is closure-distributive.

Assume that for every k < i (> 0) we have constructed two open subsets V_k and V'_k of αX satisfying the following conditions: $\operatorname{Cl}_{\alpha X} U_k \subset V_k \subset \operatorname{Cl}_{\alpha X} V_k \subset \alpha X - \operatorname{Cl}_{\alpha X} V'_k \subset \alpha X - V'_k \subset U'_k$ and $\mathcal{V}_i = \{V_k : k < i\} \cup \{V'_k : k < i\}$ is closure-distributive. By Lemma 1.2, there exists open subsets V'_i and V'_i of αX such that $\operatorname{Cl}_{\alpha X} U_i \subset V_i \subset \operatorname{Cl}_{\alpha X} V_i \subset \alpha X - \operatorname{Cl}_{\alpha X} V'_i \subset \alpha X - V'_i \subset U'_i$ and $\mathcal{V}_{i+1} = \mathcal{V}_i \cup \{V_i, V'_i\}$ is closure-distributive. It is easily seen that \mathcal{V} is closuredistributive. Let us set

 $\mathcal{B} = \mathcal{V}|X.$

We shall prove that \mathcal{B} is a countable separating collection of open subsets of X satisfying the condition (*) in Definition 3.3. First we shall show that \mathcal{B} is separating. Consider a point $x \in X$ and a closed subset F of X with $x \notin F$. The collection \mathcal{U} being a base for αX , we can take $U, U' \in \mathcal{U}$ such that $x \in U \subset \operatorname{Cl}_{\alpha X} U \subset U' \subset \operatorname{Cl}_{\alpha X} U' \subset \alpha X - \operatorname{Cl}_{\alpha X} F$. Since $(U, U') \in \mathcal{A}$, $(U, U') = (U_n, U'_n)$ for some $n < \omega$. We have $x \in U_n \subset \operatorname{Cl}_{\alpha X} U_n \subset V_n$; thus $x \in V_n \cap X \in \mathcal{B}$. Since $\alpha X - V'_n \subset U'_n \subset \operatorname{Cl}_{\alpha X} U'_n \subset \alpha X - \operatorname{Cl}_{\alpha X} F$, we have $\operatorname{Cl}_{\alpha X} F \subset V'_n$; thus $F = \operatorname{Cl}_{\alpha X} F \cap X \subset V'_n \cap X \in \mathcal{B}$. Obviously, $(V_n \cap X) \cap (V'_n \cap X) = \emptyset$. Thus \mathcal{B} is separating. Next, we shall show that \mathcal{B} satisfies the condition (*) in Definition 3.3. Consider a collection $\{(B_{i1}, B_{i2}) : i < \omega\}$ of pairs of elements of \mathcal{B} with $\operatorname{Cl}_X B_{i1} \cap \operatorname{Cl}_X B_{i2} = \emptyset$ for every $i < \omega$. For every $i < \omega$ we can take $B'_{i1}, B'_{i2} \in \mathcal{V}$ such that

$$B_{i1} = B'_{i1} \cap X$$
 and $B_{i2} = B'_{i2} \cap X$.

Then we have

$$Cl_{\alpha X} B'_{i1} \cap Cl_{\alpha X} B'_{i2} = Cl_{\alpha X} (B'_{i1} \cap B'_{i2}) = Cl_{\alpha X} (B'_{i1} \cap B'_{i2} \cap X)$$
$$= Cl_{\alpha X} (B_{i1} \cap B_{i2}) \subset Cl_{\alpha X} (Cl_X B_{i1} \cap Cl_X B_{i2}) = \emptyset.$$

Since αX is countable-dimensional, we can take a collection $\{L'_i : i < \omega\}$ of subsets of αX such that L'_i is a partition in αX between $\operatorname{Cl}_{\alpha X} B'_{i1}$ and $\operatorname{Cl}_{\alpha X} B'_{i2}$, and $\{L'_i : i < \omega\}$ is strongly point-finite. Then $L_i = L'_i \cap X$ is a partition in Xbetween $\operatorname{Cl}_X B_{i1}$ and $\operatorname{Cl}_X B_{i2}$. Obviously, $\{L_i : i < \omega\}$ is strongly point-finite; thus \mathcal{B} satisfies the condition (*) in Definition 3.3. Hence X is small countabledimensional. **3.5 Problem.** Does Theorem 3.4 remain true if we replace 'a countable separating collection of open subsets of a space X' in Definition 3.3 by 'a countable base for X'?

Next we consider a characterization of spaces having a countable-dimensional compactification in terms of a special metric.

3.6 Definition. A space X is μ -countable-dimensional if there exists a totally bounded metric d on X satisfying the following condition:

(*) For every collection $\{(A_i, B_i) : i < \omega\}$ of pairs of disjoint closed subsets of X with $d(A_i, B_i) > 0$ for every $i < \omega$, there exists a collection $\{L_i : i < \omega\}$ of subsets of X such that L_i is a partition in X between A_i and B_i for every $i < \omega$ and $\{L_i : i < \omega\}$ is strongly point-finite.

3.7 Theorem. A space X has a countable-dimensional compactification if and only if X is μ -countable-dimensional.

PROOF: Let X be μ -countable-dimensional and d be a totally bounded metric on X satisfying the condition (*) in Definition 3.6. The completion (\tilde{X}, \tilde{d}) of (X, d) is compact. Take an arbitrary countable base \mathcal{U} for \tilde{X} . Let us set

$$\mathcal{A} = \{ (U, U') : U, U' \in \mathcal{U} \text{ with } \operatorname{Cl}_{\tilde{X}} U \subset U' \}.$$

We enumerate \mathcal{A} as $\mathcal{A} = \{(U_i, U'_i) : i < \omega\}$. For every $i < \omega$, since $\operatorname{Cl}_{\tilde{X}} U_i \cap (\tilde{X} - U'_i) = \emptyset$, $\varepsilon_i = \tilde{d}(\operatorname{Cl}_{\tilde{X}} U_i, \tilde{X} - U'_i) > 0$. Thus we can take a partition L_i in X between $\operatorname{Cl}_{\tilde{X}} B(\operatorname{Cl}_{\tilde{X}} U_i; \varepsilon_i/3) \cap X$ and $\operatorname{Cl}_{\tilde{X}} B(\tilde{X} - U'_i; \varepsilon_i/3) \cap X$ for every $i < \omega$ such that $\{L_i : i < \omega\}$ is strongly point-finite. For every $i < \omega$ we take a partition \tilde{L}_i in \tilde{X} between $\operatorname{Cl}_{\tilde{X}} U_i$ and $\tilde{X} - U'_i$ such that $\tilde{L}_i \cap X \subset L_i$. Let us set

$$\mathbb{D} = \{ \Delta \in [\omega]^{<\omega} : \bigcap_{n \in \Delta} L_n = \emptyset \}.$$

For every $\Delta \in \mathbb{D}$ the set

$$T_{\Delta} = \bigcap_{n \in \Delta} \tilde{L_n}$$

is closed in \tilde{X} and disjoint from X. The set

$$Y = \tilde{X} - \bigcup \{ T_{\Delta} : \Delta \in \mathbb{D} \}$$

is a Čech-complete extension of X. Now, for every $i < \omega$, we can take disjoint open subsets V_i and V'_i of Y such that $\operatorname{Cl}_{\tilde{X}} U_i \cap Y \subset V_i$, $(\tilde{X} - U'_i) \cap Y \subset V'_i$ and $Y - (\tilde{L}_i \cap Y) = V_i \cup V'_i$. Let us set

$$\mathcal{V} = \{ V_i : i < \omega \}.$$

It is easily seen that \mathcal{V} is a base for Y. We shall show that $\{\operatorname{Bd}_Y V_i : i < \omega\}$ is strongly point-finite. Obviously, $\operatorname{Bd}_Y V_i \subset \tilde{L}_i \cap Y$ for every $i < \omega$. It suffices to show that $\{\tilde{L}_i \cap Y : i < \omega\}$ is strongly point-finite. Consider an infinite subset Λ of ω . The collection $\{L_i : i < \omega\}$ being strongly point-finite, we can take $\Delta \in [\Lambda]^{<\omega}$ such that $\bigcap_{n \in \Delta} L_n = \emptyset$; thus $\Delta \in \mathbb{D}$. We have $\bigcap_{n \in \Delta} (\tilde{L}_n \cap Y) =$ $T_\Delta \cap Y \subset T_\Delta \cap (\tilde{X} - T_\Delta) = \emptyset$. Thus $\{\tilde{L}_i \cap Y : i < \omega\}$ is strongly point-finite. By Theorem 3.1, Y has a countable-dimensional compactification αY . Then αY is a compactification of X.

Now let αX be a countable-dimensional compactification of X. Take an arbitrary metric d on αX . Let d_X be the restriction of d to X. It is easy to show that d_X satisfies the condition (*) in Definition 3.6. Hence X is μ -countable-dimensional.

3.8 Problem. Does Theorem 3.7 remain true if we replace 'a totally bounded metric on X' in Definition 3.6 by 'a metric on X'?

References

- Borst P., Spaces having a weakly-infinite-dimensional compactification, Topology Appl. 21 (1985), 261–268.
- [2] Borst P., Some remarks concerning C-spaces, Topology Appl. 154 (2007), 665–674.
- [3] Engelking R., Theory of Dimensions Finite and Infinite, Heldermann Verlag, Lemgo, 1995.
- [4] Engelking R., Pol E., Countable-dimensional spaces: a survey, Dissertationes Math. 216 (1983).
- [5] Engelking R., Pol R., Compactifications of countable-dimensional and strongly countabledimensional spaces, Proc. Amer. Math. Soc. 104 (1988), 985–987.
- [6] Kimura T., Komoda C., Spaces having a compactification which is a C-space, Topology Appl. 143 (2004), 87–92.
- [7] Misra A.K., Some regular Wallman βX , Indag. Math. **35** (1973), 237–242.
- [8] Nagata J., Modern Dimension Theory, Groningen, 1965.
- [9] Nagami K., Roberts J.H., A note on countable-dimensional metric spaces, Proc. Japan Acad. 41 (1965), 155–158.
- [10] Schurle A.W., Compactification of strongly countable-dimensional spaces, Trans. Amer. Math. Soc. 136 (1969), 25–32.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, SAITAMA UNIVERSITY, SAKURA, SAITAMA, 338-0825, JAPAN

E-mail: kimura@post.saitama-u.ac.jp

DEPARTMENT OF HEALTH SCIENCE, SCHOOL OF HEALTH & SPORTS SCIENCE, JUNTENDO UNI-VERSITY, INBA, CHIBA, 270-1695, JAPAN

E-mail: chieko_komoda@sakura.juntendo.ac.jp

(Received July 6, 2007)