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On the lattices of quasivarieties of differential groupoids

A.V. KRAVCHENKO

Abstract. The main result of Romanowska A., Roszkowska B., On some groupoid modes,
Demonstratio Math. 20 (1987), no. 1-2, 277-290, provides us with an explicit description
of the lattice of varieties of differential groupoids. In the present article, we show that
this variety is Q-universal, which means that there is no convenient explicit description
for the lattice of quasivarieties of differential groupoids. We also find an example of a
subvariety of differential groupoids with a finite number of subquasivarieties.
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Introduction

A differential groupoid is a structure with one fundamental binary operation
satisfying the identities

) x-x =,
(E) (@-y)-(z-1)=(x-2)-(y-1),
(D) z-(x-y) =

Let Dm denote the variety of differential groupoids.

Many authors use the term medial groupoid instead of entropic, i.e., satisfy-
ing (E), see [3]. Differential groupoids were studied in [5]-[7], where they were
called LIR-groupoids (left normal, idempotent, and reductive groupoids) and a
different basis for identities was used. The term differential groupoid appeared
in [8]. For more information, the reader is referred to the monograph [9].

For i > 0 and n > 0, let D;, denote the subvariety of Dm defined by the
identity

&) zy T =y,
where zy* = (...((z -y)-y)...)-y. The structure of the lattice L,(Dm) of
| —

k times

subvarieties of Dm is described by [6, Theorem 5.3], cf. also [9, Theorem 8.4.14].
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Proposition 1. Let N. denote the lattice of natural numbers with the usual
order and let N; denote the lattice of positive integers ordered by the divisibility
relation.

Proper subvarieties of Dm form a lattice which is isomorphic to the direct
product Ne x Ng. Moreover, a pair (i,n) corresponds to the variety D ,,.

A quasivariety K of groupoids is said to be Q-universal if, for every quasivari-
ety K’ of structures of finite type, the lattice Lq(K’) of subquasivarieties of K’ is
a homomorphic image of some sublattice of the lattice Lq(K) of subquasivarieties
of K. For every Q-universal quasivariety K, the lattice Lq(K) is highly compli-
cated. Namely, |Lq(K)| = 2; moreover, this lattice satisfies no nontrivial lattice
identity and contains a sublattice that is isomorphic to the ideal lattice of a free
w-generated lattice.

In Section 1, we prove that the variety Dm is Q-universal. This shows that
there is no convenient description for the lattice Lq(Dm). The following ques-
tion naturally arises: Which proper subvarieties of differential groupoids are Q-
universal? In Section 2, we show that D1 1 is not Q-universal.

1. The variety Dm is Q-universal

We use the standard notation for class operators. Namely, Q stands for tak-
ing the least quasivariety containing a given class, while Pg, S, and H stand for
formation of subdirect products, subgroupoids, and homomorphic images, respec-
tively. For every class operator O and classes X and K, we denote by (ONK)(X)
the class O(X) N K.

Our proof is based on the following sufficient condition for Q-universality (cf. [2,
Theorem 5.4.26]).

Proposition 2. A quasivariety K of groupoids is Q-universal if there exist a
subclass B of K and a family (A;);<, of finite groupoids in B such that the
following conditions are satisfied.

(Q1) For every n < w and B-congruences § and §' on Ay, if A,/0' is embed-
dable into A, /0 then either § = 0' or A, /¢ is a trivial groupoid.

(Q2) For every n < w, the meet semilattice Ly, of B-congruences on A, is a
subsemilattice of the meet semilattice of congruences on Ay. Moreover,
the meet semilattice of subsets of an n-element set is embeddable into L,,.

(Q3) If m # n then the class Ap, N S(Ay,), where A, = H(Ay,) N B, consists
of trivial groupoids only.

(Q4) For every X C K and n < w, we have

Q(X) N An = (Ps N Ay)(S N AL (X).

For more information on Q-universal quasivarieties, the reader is referred to [1,
Section 5].



Quasivarieties of differential groupoids

Recall that a groupoid G is called a left zero band if G satisfies the identity
r-y =z, ie, if G € Dg1. We say that a groupoid G is an Lz-Lz-sum (of
left zero bands G; over a left zero band I) satisfying the left normal law if there
exists a partition G = | J;c; G; and, for every pair (i, j) € I2, there exists a map
hi;j : G; — G such that the following conditions are satisfied:

(i) hy; is the identity map for every i € I,

(i) hyj(hig(x)) = hig(hij(x)) for all 4, j,k € I and = € G,

(iii) a; - aj = h;j(a;) for all i,j € I, a; € G;, and a; € Gj.

The structure of differential groupoids was completely described in [6, Sec-
tion 2], cf. also [4, 5, 7]. Namely, we have G € Dm if and only if G is an
Lz-Lz-sum satisfying the left normal law.

Let Cy denote the trivial groupoid whose universe is {oo}. For every n > 0,
let Cy, denote the Lz-Lz-sum of G; = {0,1,...,n — 1} and Gy = {00}, where
hi2(k) = k41 (mod n) and hg; is the identity map. We have C;,, € Dm for each
n > 0.

We describe congruences on the constructed groupoids. Let m divide n. For
every k < n, let r; denote the remainder in the division of k by m. It is easy to
see that the map defined by the rule

00— 00, kg

is a homomorphism from C;, onto C,,. Let 6,, denote the kernel of this homomor-
phism.

Lemma 3. Let n > 0 and let 6 be a congruence on Cp. Then either Cp /0 is a
trivial groupoid or 6 = 6, for some divisor m of n.

PRrOOF: If (00,k) € 0, where 0 < k < n, then, as in [4, p. 378], we find that
Cn/0 is a trivial groupoid. If (co,k) ¢ 6 for all k with 0 < k& < n then 6 < 6;.
By [7, Propositions 2.2 and 2.5], we conclude that the restriction of 6 to Gy is
a congruence on a cyclic abelian group of order n. Hence, 6 = 6, for some m
dividing n. ([

Let B denote the subclass of Dm consisting of trivial groupoids and differential
groupoids that are not left zero bands. We have C,, € B if and only if n # 1.

Let IP denote the set of prime numbers. Consider a partition P = ( J,; ., P; with
|P| =i+ 1foralli <wand P,NP; =0 forali#j. Letk; =][[,cp p Put
A; =Cy, for i < w.

Theorem 4. The class B and the family (A;);<. satisfy conditions (Q1)—(Q4)
of Proposition 2. Hence, Dm is a Q-universal quasivariety.

PROOF: We have (A4;);<, C B. It is easy to see that, for i, j < w, the groupoid
C; is embeddable into the groupoid C; if and only if ¢ = j. By Lemma 3, this
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immediately implies (Q1) and (Q3). Since L; is obtained from the meet semilattice
of congruences on .4; by removing the congruence 61, we also obtain (Q2).

We prove (Q4). Let X C Dm and let n < w. The inclusion Q(X) N A, 2
(PsNAp)(SNAL)X) is obvious.

Consider a nontrivial groupoid B € Q(X)NA,,. By [2, Corollary 2.3.4], we have
Q(X) = SP,P(X), where P and Py, are the class operators for formation of direct
products and ultraproducts. Hence, there exists a family (5;);c of groupoids and
an ultrafilter U over I such that B is a subgroupoid of the ultraproduct [ ], ; B;/U.
Moreover, each B; is the direct product of a family (B;;);cy, of groupoids in X.

Since B is a homomorphic image of the finite groupoid A;,, we conclude that B
is a finite groupoid too. There exists a first-order sentence ¢ such that, for every
groupoid X, the following two conditions are equivalent: (a) X satisfies ¢; (b) B
is embeddable into X'. In particular, [[,c; B;/U satisfies . By the Lo$ Theorem,
there exists an i € I such that B; satisfies ¢. Hence, there exists an embedding
a:B— B;.

Let m; : Hjeli B;;j — B;j be the jth projection map. Denote by 1; the com-
position 7; o @ of homomorphisms. For every j € I;, let §; be the homomorphic
image of B with respect to ¢;. Then G; is a subgroupoid of B;; and a homomor-
phic image of A,.

We show that B is a subdirect product of the family (G;);ery,, i-e., if z,y € B
and x # y then there exists a j € I; such that 1;(x) # +;(y) (or, which is
equivalent, ﬂje 1, ker ¢; is the equality relation Ap on B). Indeed, since « is an
embedding, we have a(x) # a(y). Since each 7;, j € I;, is a projection, we have
Vi(x) = mj(a(x)) # mj(a(y)) = ¥j(y) for at least one j € I;.

Let J = {j € I; : G; ¢ Do1}. If J = 0 then B is a left zero band, a
contradiction. By Lemma 3, we have ker¢; C ker¢y, for all j € J and k € [; \ J.
Hence mjeJ kerv; = mjeli kery; = Ap. Therefore, B is a subdirect product of
the family (G;);es € B. Consequently, B € (PsN Ay,)(S N Ay)(X). O

2. The variety D;; is not Q-universal

In this section, we find subdirectly irreducible groupoids in D1 ;1 and show that
the lattice Lq(D1,1) is finite.
For i = n =1, identity (1) has the following form:

(1) xy? = ay.
Define a relation < on G as follows:
a<b < b=uax;...xy forsome zi,...,x, € G,

where, axy...zp = (... ((a-21) - x2) ... zy,). Using the left normal law

(L) (x-y)-z=(z-2)-y
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(see [9, Proposition 5.6.2]) and (1), it is easy to check that the relation < is a
partial order on G and

(2) z <y implies zz < yz

for all x,y,z € G.

Assume that G is a finite groupoid. Let M denote the set of maximal elements
with respect to the order < and, for every m € M, let G, denote the order ideal
generated by m (or the orbit of m). It is easy to see that mj # mg implies that
Gm; N Gmy = 0.

As in [9, p. 537] (cf. also [5]), let 8 denote the congruence on G defined as
follows:

(a,b) € 8 < a,be Gy, for some m € M.

Then G is an Lz-Lz-sum of its B-orbits.

Let Gg denote the two-element left zero band with the universe {0,1}. Let Gy
denote the Lz-Lz-sum of S-orbits {0,1} and {2}, where 0 < 1, i.e., 0-2 =1 and
x -y = z if the pair (x,y) is different from (0, 2).

Theorem 5. A finite groupoid G is subdirectly irreducible in D1 1 if and only if
G is isomorphic to either Gy or G .

PROOF: It is easy to see that Gy and Gy are subdirectly irreducible in D1 1 because
0 and 1 cannot be separated by proper homomorphisms, i.e., homomorphisms that
are not isomorphisms.

We prove the “only if” part.

(i) Let G € D11 and let J = {m € M : |G| > 1}. Notice that, for every
groupoid G that is subdirectly irreducible in D1 1, we have |J| < 1.

Indeed, let there exist m1, mg € M such that my # mg and |Gm, |, |Gms| > 1.
For j = 1,2, consider the map ¢; defined by the rule

Z, I¢ija
mj, T € Gm;.

3) oyt = {

Since my; is a maximal element and Gp; is a non-singleton orbit, ¢; is a proper
homomorphism, 7 = 1,2. It is easy to see that ker; N kero is the equality
relation Ag, i.e., the homomorphisms 1); and 19 separate points of G. Therefore,
if |J| > 1 then G is not subdirectly irreducible.

(i) If J = 0 then G € Dgy, ie., G is a left zero band. Each subdirectly
irreducible groupoid in Dy ; is isomorphic to Gg. In the sequel, we only consider
subdirectly irreducible groupoids in D1 ; that are not left zero bands and assume
that [J] =1, i.e.,

G= U G;, where |G1| > 1 and G; = {g¢;} for i > 1.
1<i<n
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(iii) Let xz,y € G and let © # y. We show that x and y are separated by
homomorphisms to Gj.

If either z = g; or y = g;, 2 < i < n, then it suffices to consider the homomor-
phism 1 from (3).

Assume that 2,y € G1 and y € x. Define a map ¢, as follows:

0, a<uz,
pey(a) =< 1, either a € Gy witha € ¢ or a =g with zg; =z,
2, a=gqg, with zg, # z.

It is clear that ¢y is a map from G onto G1 and @zy(x) = 0 # 1 = @uy(y). It
remains to prove that ¢z is a homomorphism.

We show that gy (ab) = pzy(a)pzy(b). Three cases are possible.

(a) Let pzy(a) =0, ie., let a < z.

If b € G1 then ab = a and @uy(a)pey(b) = 0-2 =0 = pzy(a) = pzy(ab), where
z€{0,1}.

If pry(b) =1 and b ¢ Gy then b = g; with xg; = x. Since a < z, we have
ab = ag; < xg; = x by (2). Hence, pzy(ab) =0=0-1= pzy(a)pzy(D).

If pry(b) = 2 then b = g; with zg; # x. Assume that ab = ag; < x. Since
a < z, there exist y1,...,yn € G such that ay;...yn, = x. We obtain zg; =
ayi ... Yngi = agiY1-.--Yn < TY1...Yn = x by using (L), (2), and (1’). Hence,
xg; < x. By definition, z < zg;, which implies = zg;, a contradiction. Thus,
ab £ x and pgy(ab) =1 =02 = pzy(a)pzy(b).

(b) Let a € G7 and let a £ .

For every b € GG, we have ab € G and ab € z. Since 1-z =1 in G, we obtain
Yey(ab) =1 =1-2z = @gy(a) - pzy(b) for every b € G.

(c) Let a = g;.

For every b € GG, we have ab=a. Since 1 -z =1 and 2- 2z = 2 in G, we obtain
Yey(ab) =t =1t -z = pzy(a) - pzy(b) for every b € G, where t € {1,2}.

Thus, if |G| > 3 then all points of G are separated by proper homomorphisms
to G1; hence, G cannot be subdirectly irreducible in D1 1. [l

Lemma 6. If G € D11 \ Dg1 then G; is embeddable into G.

PROOF: Since G ¢ Dy 1, there exist a,b € G such that ab # a. Define a map
from Gy into G as follows:

0—a, 1~—ab, 2+ ba.

It is easy to see that this is the required embedding. O
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Theorem 7. The lattice Lq(D1,1) is a three-element chain.

PROOF: Since Dy is locally finite and has finitely many finite subdirectly irre-
ducible groupoids, there are no infinite subdirectly irreducible groupoids in D1 1.
By the Birkhoff Subdirect Representation Theorem and Theorem 5, D1 1 is the
quasivariety generated by Gi. The lattice Lq(IDg 1) is a two-element chain. By
Lemma 6, if a subquasivariety K of D1 1 contains a groupoid G that is not a left
zero band then K = Dy 7. [l

3. Concluding remarks

We have proven that the variety Dm is Q-universal. It is easy to see that the
method used in the proof of Theorem 4 does not allow us to prove that some
subvariety of the form D; ,, is Q-universal. Indeed, the family (A;);<., does not
belong to such a subvariety. We have also shown that the variety D; 1 is not
Q-universal. The following problem seems to be of an interest: Determine the
borderline between simple and Q-universal varieties of differential groupoids.
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