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Vector-valued modular forms associated

to linear ordinary differential equations

Min Ho Lee

Abstract. We consider a class of linear ordinary differential equations determined by a
modular form of weight one, and construct vector-valued modular forms of weight two
by using solutions of such differential equations.
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1. Introduction

Modular forms are complex-valued functions defined on the Poincaré upper half
plane H satisfying a certain transformation formula with respect to an action of
a discrete subgroup Γ of SL(2,R), and they play a major role in modern number
theory. Modular forms have also been studied in connection with problems in
many other areas of pure and applied mathematics such as cryptography, coding
theory, gauge theory, string theory, and conformal field theory.
Vector-valued modular forms for Γ are functions on H with values in a finite-

dimensional complex vector space satisfying a transformation formula with re-
spect to a representation of the group Γ, and they are related to many topics
in number theory. For example, they occur naturally in connection with Jacobi
forms (cf. [2]) or the cohomological interpretation of modular forms of Eichler [1]
and Shimura [5]. Vector-valued modular forms of weight two can be expressed
in terms of derivatives of a modular form by using a method developed by Kuga
and Shimura [3], and certain types of such modular forms correspond to usual
modular forms of higher weight.
In this paper we consider vector-valued modular forms associated to a certain

class of linear ordinary differential equations. Such differential equations are de-
termined by a modular form ϕ of weight one, and their connections with modular
forms as well as with elliptic surfaces were studied by P. Stiller (see e.g. [6]). For
example, modular forms of weight higher than two can be expressed in terms
of solutions of those differential equations and ϕ. We construct vector-valued
modular forms of weight two by combining this result with the above-mentioned
method of Kuga and Shimura.
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2. Vector-valued modular forms

In this section we describe relations between vector-valued meromorphic mo-
dular forms for a discrete subgroup of SL(2,R) and usual scalar-valued ones. In
particular, we review the method of Kuga and Shimura [3] of constructing vector-
valued modular forms of weight two by using derivatives of a usual scalar-valued
modular form.
LetH = {z ∈ C | Im z > 0} be the Poincaré upper half plane on which SL(2,R)

acts by linear fractional transformations, so that we may write

γz =
az + b

cz + d

for z ∈ H and γ =
(
a b
c d

)
∈ SL(2,R). Let Γ ⊂ SL(2,R) be a Fuchsian group of

the first kind, that is, a discrete subgroup such that the quotient space Γ\H∗ is
compact, where H∗ denotes the union of H and the set of cusps of Γ (see e.g. [4]).

Let ρ : Γ→ GL(ℓ,C) be a representation of Γ in the complex vector space C
ℓ for

some positive integer ℓ.

Definition 2.1. Let k be an integer, and consider meromorphic functions f :
H → C and Ψ : H → Cℓ. Then f is a meromorphic modular form of weight k
for Γ and Ψ is a vector-valued meromorphic modular form of weight k for Γ with
respect to ρ if they are meromorphic at the cusps and satisfy

f(γz) = (cz + d)kf(z), Ψ(γz) = (cz + d)kρ(γ)Ψ(z)

for all z ∈ H and γ =
(
a b
c d

)
∈ Γ. We shall denote by Mk(Γ) and Mk(Γ, ρ) the

space of modular forms of weight k for Γ and the space of vector-valued modular
forms of weight k for Γ with respect to ρ, respectively.

If m is a positive integer, we denote by ρm : SL(2,R)→ GL(m+1,C) the m-th
symmetric tensor power of the standard representation of SL(2,R) in C2. Thus,

if γ =
(
a b
c d

)
∈ SL(2,R), then we have

ρm(γ)(u
m, um−1v, . . . , uvm−1, vm)T

= ((au+ bv)m, (au+ bv)m−1(cu+ dv), . . .

. . . , (au+ bv)(cu+ dv)m−1, (cu+ dv)m)T

for all
( u
v

)
∈ C2, where (·)T denotes the transpose of the row vector (·). By

restricting ρm to Γ we obtain a representation of Γ in Cm+1, which we also
denote by ρm.
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Definition 2.2. Given a positive integerm, we define the matrix-valued function
ρ̂m : H → GL(m+ 1,C) on H associated to ρm by

ρ̂m(z) = ρm

((
1 z
0 1

))

for all z ∈ H.

Let α and β be even integers with α > 0 and

(2.1) −(α− 2) ≤ β ≤ α+ 2.

We set

δ =
α+ 2− β

2
,

and for each nonnegative integer k ≤ δ denote by ηk,α,β the rational number
defined by

(2.2) ηk,α,β =

{
0 if k < 1− β;
(k+α−δ)!
k!(β+k−1)!

if k ≥ 1− β.

Given a meromorphic function f : H → C, we use its derivatives of various orders
as well as the numbers ηk,α,β to define the finite sequence {φℓ,α,β}

α
ℓ=0 of functions

on H by

φℓ,α,β(z) =

{
0 if ℓ < α− δ;

ηℓ−α+δ,α,βf
(ℓ−α+δ)(z) if ℓ ≥ α− δ

for z ∈ H and 0 ≤ ℓ ≤ α.

Definition 2.3. We define the vector-valued function Φf : H → Cα+1 associated
to a meromorphic function f : H → C by

(2.3) Φf (z) = ρ̂α(z)(φ0,α,β(z), φ1,α,β(z), . . . , φα,α,β(z))
T

for all z ∈ H.

Theorem 2.4. If f ∈Mβ(Γ), then the associatedCα+1-valued function Φf given
by (2.3) is a vector-valued meromorphic modular form belonging to M2(Γ, ρα).

Proof: This follows from [3, Theorem 3]. �

Remark 2.5. Let Ψ : H → Cα+1 be a vector-valued meromorphic function
which can be written in the form

Ψ(z) = f(z)(zα, zα−1, . . . , z, 1)T

for all z ∈ H, where f is a meromorphic function on H. Then it can be easily
shown that Ψ is a vector-valued modular form belonging toM2(Γ, ρα) if and only
if f is a modular form belonging to Mα+2(Γ).
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3. Differential equations and modular forms

In this section we review connections between meromorphic modular forms of
one variable and a certain class of linear ordinary differential equations following
closely the work of Stiller in [6]. We use the method of Kuga and Shimura [3] to
construct vector-valued modular forms of weight two determined by solutions of
such differential equations.
Let Γ ⊂ SL(2,R) be a Fuchsian group of the first kind as in Section 2, and fix a

meromorphic modular form ϕ ∈M1(Γ) of weight one for Γ. Then the associated
compact Riemann surface X = Γ\H∗ may be considered as an algebraic curve
over C. We denote by K(X) the function field of the algebraic curve X , and
choose a nonconstant element x of K(X). If the functions ϕ(z) and zϕ(z) on H
are regarded as functions on X , they satisfy a second order homogeneous linear
ordinary differential equation Dϕ,Xf = 0 on X with

(3.1) Dϕ,X =
d2

dx2
+ PX (x)

d

dx
+QX(x)

that has regular singular points, where PX (x) and QX(x) are elements of K(X).
Given an element f ∈ K(X), we see easily that

df

dx
=
df

dz

dz

dx
,

d2f

dx2
=

[
d2f

dz2
−
df

dz
·
d

dz
log

dx

dz

](
dz

dx

)2
,

where z is the standard coordinate in C. Using this, we can pull the differential
operator (3.1) back via the natural projection H∗ → X = Γ\H∗. Then the
homogeneous equation Dϕ,Xf = 0 on X is equivalent to the equation Dϕf = 0
on H with

(3.2) Dϕ =
d2

dz2
+ P (z)

d

dz
+Q(z),

where P (z) and Q(z) are meromorphic functions on H given by

P (z) = PX(x(z))
dx

dz
−

d

dz
log

dx

dz
, Q(z) = QX(x(z))

(
dx

dz

)2

(see [6, p. 63]). Thus the functions zϕ(z) and ϕ(z) for z ∈ H are linearly indepen-
dent solutions of the associated homogeneous equation Dϕf = 0, and the regular
singular points of Dϕ coincide with the cusps of Γ (see [6] for details). If m is a
positive integer, we denote by SmDϕ the linear ordinary differential operator of
order m + 1 such that the solutions of the corresponding homogeneous equation
SmDϕf = 0 are of the form

(3.3) f(z) =
m∑

i=0

ci(zϕ(z))
m−i(ϕ(z))i =

m∑

i=0

ciz
m−iϕ(z)m
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for some constants ci ∈ C.
We now consider a more general linear ordinary differential operator of order

n of the form

D =
dn

dxn
+ Pn−1

dn−1

dxn−1
+ · · ·+ P1

d

dx
+ P0,

where Pi ∈ K(X) for 0 ≤ i ≤ n − 1. Let S ⊂ X be the set of singular points
of P0, . . . , Pn−1, and let X0 = X − S. We choose a base point x0 ∈ X0 and let
ω1, . . . , ωn be a basis for the space of local solutions of Df = 0 near x0. Then
the Wronskian

(3.4) WD = detMD,

is the determinant of the n×n matrixMD = (d
j−1ωi/dx

j−1) whose (i, j) entry is
dj−1ωi/dx

j−1 for 1 ≤ i, j ≤ n. Given x ∈ X , let η = {η1, . . . , ηn−1} be the set of
n− 1 local solutions of Df = 0 near x, and let Aη be the (n− 1)× (n− 1) matrix

whose (i, j) entry is dj−1ηi/dx
j−1 for 1 ≤ i, j ≤ n − 1. Then a function ψ ∈

K(X) is said to satisfy the residue conditions with respect to D if the differential
(Aηψ/W )dx has zero residue at every x ∈ X0 = X − S for each set η of n − 1
local solutions of Df = 0 near x.

Definition 3.1. An element ψ ∈ K(X) is said to satisfy the parabolic residue
conditions with respect to D if it satisfies the residue conditions and if for each
η the differential (Aηψ/W )dx has zero residue at every singular point x ∈ S
whenever Aη is single-valued.

Theorem 3.2. Let n and ν be integers with 1 ≤ ν ≤ n. Let ψ ∈ K(X) satisfy the
parabolic residue conditions with respect to S2νDϕ, and let S(ψ) be a solution

of the differential equation S2νDϕf = ψ. We define a vector-valued function

Φ : H → C2n+1 by

Φ(z) = ρ̂2n(z)(φ0(z), φ1(z), . . . , φ2n(z))
T

for all z ∈ H, where

(3.5) φℓ =

{
0 if ℓ < n+ ν
ℓ!(ϕ−2νS(ψ))(ν+1+ℓ−n)

(ℓ−n−ν)!(ℓ+ν−n+1)!
if ℓ ≥ n+ ν.

Then Φ is a vector-valued meromorphic modular form belonging to M2(Γ, ρ2n).

Proof: Given a solution S(ψ) of the differential equation S2νDϕf = ψ, if we set

(3.6) Ξν,ϕ(ψ) =
d2ν+1

dz2ν+1

(
S(ψ)

ϕ2ν

)
,
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we see easily that Ξν,ϕ(ψ) is independent of the choice of the solution S(ψ).
Furthermore, it is known that Ξν,ϕ(ψ) is a meromorphic modular form belonging
to M2ν+2(Γ) (see [6]). We now apply Theorem 2.4 for α = 2n, β = 2ν + 2, and
f = Ξν,ϕ(ψ). Thus we have

δ = (α+ 2− (2ν + 2))/2 = (2n− 2ν)/2 = n− ν.

We set

φℓ =

{
0 if ℓ < n+ ν

ηℓ−n−νf
(ℓ−n−ν) if ℓ ≥ n+ ν,

where

ηk =
(k + n+ ν)!

k!(2ν + k + 1)!

for each k ≥ 0. Here we have

(3.7)

f (ℓ−n−ν) =

(
S(ψ)

ϕ2ν

)(2ν+1+ℓ−n−ν)
=

(
S(ψ)

ϕ2ν

)(ν+1+ℓ−n)
,

ηℓ−n−ν =
(ℓ− n− ν + n+ ν)!

(ℓ− n− ν)!(2ν + ℓ− n− ν + 1)!

=
ℓ!

(ℓ− n− ν)!(ℓ+ ν − n+ 1)!
,

Ξν,ϕ(ψ) =
d2ν+1

dz2ν+1

(
S(ψ)

ϕ2ν

)
.

Thus we obtain a sequence {φℓ}
2n
ℓ=0, where φℓ is given by (3.5). �

Example 3.3. We consider the case where n = 3 and ν = 1. From (3.5) we
obtain

φℓ =

{
0 if ℓ < 4

ℓ
(ℓ−4)!

(ϕ−2S(ψ))(ℓ−1) if ℓ ≥ 4.

On the other hand, we see that ρ̂6(z) = (ak,ℓ(z)) is a 7× 7 matrix with

ak,ℓ(z) =

(
7− k

ℓ− k

)
zℓ−k

for all z ∈ H and 1 ≤ k, ℓ ≤ 7, assuming that
(u
0

)
= 1 and

(u
v

)
= 0 for all u ≥ 0

and v < 0. Thus if we set

ψk(z) = 2(7− k)(6− k)z5−k
(

S(ψ)

ϕ2

)(3)

+ 5(7− k)z6−k
(

S(ψ)

ϕ2

)(4)
+ 3z7−k

(
S(ψ)

ϕ2

)(5)
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for k = 5, 6, 7, then the function Φ : H → C7 given by

Φ(z) = (0, 0, 0, 0, ψ5(z), ψ6(z), ψ7(z))
T

for all z ∈H is a vector-valuedmeromorphic modular form belonging toM2(Γ, ρ6).
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