Mapping theorems on ℵ-spaces

Masami Sakai

Abstract. In this paper we improve some mapping theorems on \aleph -spaces. For instance we show that an \aleph -space is preserved by a closed and countably bi-quotient map. This is an improvement of Yun Ziqiu's theorem: an \aleph -space is preserved by a closed and open map.

Keywords: X-space, k-network, closed map, countably bi-quotient map

Classification: 54C10, 54E18

1. Preliminaries

In this paper all spaces are regular T_1 and all maps are continuous onto. For $A \subset X$ we denote by ∂A the boundary of A in X.

Definition 1.1. A cover \mathcal{P} of subsets of a space X is a k-network for X [7] if whenever $K \subset U$ with K compact and U open in X, there is a finite subfamily $\mathcal{Q} \subset \mathcal{P}$ such that $K \subset \cup \mathcal{Q} \subset U$. A space is an \aleph -space [7] if it has a σ -locally finite k-network.

The notion of a k-network plays an important role in the theory of generalized metric spaces. For instance, a Fréchet \aleph -space is precisely the closed s-image of a metric space [2], [4].

Definition 1.2. A family $\{A_{\alpha} : \alpha \in I\}$ of subsets of a space X is *hereditarily* closure-preserving (simply, HCP) if $\bigcup \{\overline{B}_{\alpha} : \alpha \in J\} = \overline{\bigcup \{B_{\alpha} : \alpha \in J\}}$, whenever $J \subset I$ and $B_{\alpha} \subset A_{\alpha}$ for each $\alpha \in J$.

Every locally finite family is hereditarily closure-preserving.

The space S_{ω_1} is the space obtained from the topological sum of ω_1 many convergent sequences by identifying all the limit points to a single point. The following is due to Junnila and Ziqiu [3].

Theorem 1.3. Let X be a space with a σ -HCP k-network. Then X is an \aleph -space iff X contains no closed copy of S_{ω_1} .

This work was supported by KAKENHI (No. 19540151).

2. Results

Definition 2.1. A subset A of a space Y is a sequential neighborhood of a point $y \in Y$ if any sequence converging to y is eventually in A. A map $\varphi : X \to Y$ satisfies property (ω_1) if, whenever $y \in Y$ and $\{U_\alpha : \alpha < \omega_1\}$ is an increasing open cover of X, then there is α such that $\varphi(U_\alpha)$ is a sequential neighborhood of y. A map $\varphi : X \to Y$ satisfies property (ω) if, whenever $y \in Y$ and $\{U_n : n \in \omega\}$ is an increasing open cover of X, then there is n such that $\varphi(U_n)$ is a sequential neighborhood of y.

Lemma 2.2. Let A be a countably infinite subset of a space X such that every infinite subset of A is not closed in X. If $x \in \overline{A} \setminus A$ and $\{x\}$ is a G_{δ} -set, then there is a sequence in A converging to x.

PROOF: Let $\{G_n : n \in \omega\}$ be an open family in X satisfying $\{x\} = \bigcap \{G_n : n \in \omega\}$ and $\overline{G}_{n+1} \subset G_n$. For each $n \in \omega$, take a point $x_n \in A \cap G_n$. The set $\{x\} \cup \{x_n : n \in \omega\}$ is closed in X. For every open neighborhood U of x, $\{x_n : n \in \omega\} \setminus U$ is closed in X, hence $\{x_n : n \in \omega\} \setminus U$ is finite. Therefore $\{x_n : n \in \omega\}$ is a convergent sequence to x.

Theorem 2.3. The following hold respectively:

- (1) an \aleph -space is preserved by a closed map with property (ω_1) ;
- (2) an \aleph -space is preserved by a closed map with property (ω).

PROOF: Let $\varphi : X \to Y$ be a closed map with property (ω_1) (or property (ω)) and let X be an \aleph -space. Let $\mathcal{P} = \bigcup_{n \in \omega} \mathcal{P}_n$ be a σ -locally finite k-network for X. Without loss of generality, we may assume that each member of \mathcal{P} is closed in X and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for $n \in \omega$. As noted in the proof of [10, Proposition 1.8(3)], the family $\{\varphi(P) : P \in \mathcal{P}\}$ is a σ -HCP k-network for Y.

Assume that Y is not an \aleph -space. Then by Theorem 1.3, Y has a closed copy of $S_{\omega_1}.$ Let

$$S_{\omega_1} = \{\infty\} \cup \{y_{\alpha,n} : \alpha < \omega_1, n \in \omega\} \subset Y,$$

where $\{y_{\alpha,n} : n \in \omega\}$ is the α -th sequence converging to ∞ .

By induction we show that for each $\alpha < \omega_1$, there are $n_\alpha \in \omega$ and a finite subfamily $\mathcal{F}_\alpha \subset \mathcal{P}$ such that

- (a) $\bigcup \{ \varphi^{-1}(y_{\alpha,n}) : n \ge n_{\alpha} \} \subset \bigcup \mathcal{F}_{\alpha},$
- (b) for each $P \in \mathcal{F}_{\alpha}$, $P \cap (\bigcup \{\varphi^{-1}(y_{\alpha,n}) : n \ge n_{\alpha}\}) \neq \emptyset$,
- (c) $\mathcal{F}_{\alpha} \cap \mathcal{F}_{\beta} = \emptyset$ for $\alpha < \beta < \omega_1$.

Fix an arbitrary $\gamma < \omega_1$ and assume that for each $\alpha < \gamma$ we have already found $n_\alpha \in \omega$ and a finite subfamily $\mathcal{F}_\alpha \subset \mathcal{P}$. For each $\alpha < \gamma$ take a finite set $F_\alpha \subset \bigcup \{\varphi^{-1}(y_{\alpha,n}) : n \ge n_\alpha\}$ such that $F_\alpha \cap P \neq \emptyset$ for any $P \in \mathcal{F}_\alpha$. The set $F = \bigcup \{F_\alpha : \alpha < \gamma\}$ is closed in X. For each $n \in \omega$, let

$$\mathcal{Q}_n = \{ P \in \mathcal{P}_n : P \cap F = \emptyset, P \cap \varphi^{-1}(y_{\gamma,k}) \neq \emptyset \text{ for infinitely many } k \in \omega \}.$$

Obviously $\mathcal{Q}_n \subset \mathcal{Q}_{n+1}$. Assume $P_i \in \mathcal{Q}_n$, $i \in \omega$ and $P_i \neq P_j$ for $i \neq j$. Then we can take a point $x_i \in P_i$ such that $\varphi(\{x_i\}_{i \in \omega})$ is a subsequence of $\{y_{\gamma,n} : n \in \omega\}$. Since \mathcal{Q}_n is locally finite, $\{x_i\}_{i \in \omega}$ is closed in X. Since φ is closed, this is a contradiction. Therefore each \mathcal{Q}_n is finite. Assume for each $n \in \omega$, there are infinitely many $k \in \omega$ with $\varphi^{-1}(y_{\gamma,k}) \setminus (\bigcup \mathcal{Q}_n) \neq \emptyset$. Then there are a sequence $k_0 < k_1 < \cdots$ and a point $x_n \in \varphi^{-1}(y_{\gamma,k_n}) \setminus (\bigcup \mathcal{Q}_n)$. Since φ is closed, no infinite subset of $\{x_n : n \in \omega\}$ is closed in X. Moreover every point of an \aleph -space is a G_{δ} -set. Hence by Lemma 2.2, $\{x_n : n \in \omega\}$ contains a convergent sequence to some point in $\varphi^{-1}(\infty)$. Since \mathcal{P} is a k-network for X, there is $P \in \mathcal{P}$ such that $P \cap F = \emptyset$ and P contains infinitely many x_n 's. Let $P \in \mathcal{P}_l$ for some $l \in \omega$. Then $P \in \mathcal{Q}_l$. Since P contains only finitely many x_n 's, this is a contradiction. Consequently there is $n_{\gamma} \in \omega$ such that $\bigcup \{\varphi^{-1}(y_{\gamma,n}) : n \geq n_{\gamma}\} \subset \bigcup \mathcal{Q}_{n_{\gamma}}$. Let $\mathcal{F}_{\gamma} = \mathcal{Q}_{n_{\gamma}}$. The γ -th step of our induction is complete.

Since each \mathcal{F}_{α} is finite, there are $m \in \omega$ and an uncountable set $I \subset \omega_1$ such that $\mathcal{F}_{\alpha} \subset \mathcal{P}_m$ for any $\alpha \in I$. For each $\alpha \in I$, let $E_{\alpha} = \bigcup \mathcal{F}_{\alpha}$. Since \mathcal{P}_m is locally finite, $\{E_{\alpha} : \alpha \in I\}$ is a locally finite closed family in X.

The case of property (ω_1) . Consider the increasing open cover

$$\{X \setminus \bigcup_{\beta > \alpha} E_{\beta} : \alpha < \omega_1, \beta \in I\}$$

of X. By property (ω_1) , there is α such that $\varphi(X \setminus \bigcup_{\beta > \alpha} E_\beta)$ is a sequential neighborhood of ∞ . But the set obviously fails to be a sequential neighborhood of ∞ . As a result, Y does not have any closed copy of S_{ω_1} , therefore Y is an \aleph -space.

The case of property (ω) . The idea is the same as property (ω_1) . Take an infinite subset $J = \{\alpha_n : n \in \omega\} \subset I$, and consider the increasing open cover $\{X \setminus \bigcup_{m > n} E_{\alpha_m} : n \in \omega\}$ of X.

Definition 2.4. A map $\varphi : X \to Y$ is *countably bi-quotient* [9] if for each $y \in Y$ and each countable increasing open family $\{U_n : n \in \omega\}$ covering $\varphi^{-1}(y)$, there is $n \in \omega$ such that $\varphi(U_n)$ is a neighborhood of y.

S. Lin asked the author whether an \aleph -space is preserved by a closed and countably bi-quotient map. Since a countably bi-quotient map trivially satisfies property (ω), we have a positive answer to the question.

Corollary 2.5. An \aleph -space is preserved by a closed and countably bi-quotient map.

Corollary 2.6. (1) An \aleph -space is preserved by a closed map satisfying that $\partial \varphi^{-1}(y)$ is Lindelöf for any $y \in Y$ [1], [4];

(2) An \aleph -space is preserved by a closed and open map [11].

PROOF: (1) Let $\varphi: X \to Y$ be a closed map satisfying that $\partial \varphi^{-1}(y)$ is Lindelöf for any $y \in Y$. For each $y \in Y$, we define a set A_y as follows: if y is isolated in Y, take an arbitrary point $x_y \in \varphi^{-1}(y)$ and let $A_y = \{x_y\}$; otherwise let $A_y = \partial \varphi^{-1}(y)$. Let $A = \bigcup_{y \in Y} A_y$. Then the restricted map $\varphi|A: A \to Y$ is closed onto and each fiber of this map is Lindelöf. Since $\varphi|A$ satisfies property $(\omega_1), Y$ is an \aleph -space by Theorem 2.3.

(2) Every open map is obviously countably bi-quotient. Apply Corollary 2.5.

 \square

Definition 2.7. A map $\varphi : X \to Y$ is sequence-covering in the sense of Siwiec [8] if, whenever $\{y_n\}_{n\in\omega}$ is a sequence in Y converging to a point $y \in Y$, there are a point $x \in \varphi^{-1}(y)$ and points $x_n \in \varphi^{-1}(y_n)$, $n \in \omega$, such that $\{x_n\}_{n\in\omega}$ converges to x.

C. Liu noted in [5] that an \aleph -space is preserved by a closed and sequencecovering map. This result follows from our theorem.

Proposition 2.8. Let $\varphi : X \to Y$ be a closed and sequence-covering map. If X has a σ -HCP k-network, then φ satisfies property (ω_1) .

PROOF: Let $\mathcal{P} = \bigcup_{n \in \omega} \mathcal{P}_n$ be a σ -HCP k-network for X. For each $n \in \omega$, the family $\{\overline{P} : P \in \mathcal{P}_n\}$ is also hereditarily closure-preserving. Therefore we may assume that each member of \mathcal{P} is closed in X.

Assume that φ does not satisfy property (ω_1) . Then there are a point $y \in Y$ and an increasing open cover $\{U_{\alpha} : \alpha < \omega_1\}$ of X such that each $\varphi(U_{\alpha})$ fails to be a sequential neighborhood of y. For each $\alpha < \omega_1$, take a sequence L_{α} in Y such that L_{α} converges to y and $L_{\alpha} \cap \varphi(U_{\alpha}) = \emptyset$. Since φ is sequence-covering, for each $\alpha \geq 1$, there are a sequence K_{α} in X and a point $x_{\alpha} \in \varphi^{-1}(y)$ such that K_{α} converges to x_{α} and $\varphi(K_{\alpha}) = L_0 \cup L_{\alpha}$. Let $\{A_{\alpha}, B_{\alpha}\}$ be a decomposition of K_{α} with $\varphi(A_{\alpha}) = L_0$ and $\varphi(B_{\alpha}) = L_{\alpha}$. For each $\alpha \geq 1$, take $\gamma_{\alpha} < \omega_1$ with $\{x_{\alpha}\} \cup K_{\alpha} \subset U_{\gamma_{\alpha}}$, and take $P_{\alpha} \in \mathcal{P}$ such that $x_{\alpha} \in P_{\alpha} \subset U_{\gamma_{\alpha}}$ and P_{α} contains infinitely many points in A_{α} .

We note that the family $\{P_{\alpha} : \alpha \geq 1\}$ is uncountable. Since each P_{α} is contained in some member of the open cover, if the family is countable, $\bigcup \{P_{\alpha} : \alpha \geq 1\} \subset U_{\delta}$ for some $\delta < \omega_1$. Because of $L_{\delta} \cap \varphi(U_{\delta}) = \emptyset$, $x_{\delta} \notin U_{\delta}$. This is a contradiction. Thus the family is uncountable. Hence there are $m \in \omega$ and an uncountable set $I \subset \omega_1$ with $\{P_{\alpha} : \alpha \in I\} \subset \mathcal{P}_m$. Take a sequence $\alpha_0 < \alpha_1 < \cdots$ in I, and take a point $x_n \in P_{\alpha_n} \cap A_{\alpha_n}$ such that $\{\varphi(x_n)\}_{n \in \omega}$ converges to y. Since $\{P_{\alpha_n} : n \in \omega\}$ is hereditarily closure-preserving, $\{x_n\}_{n \in \omega}$ is closed in X. This is a contradiction, because φ is a closed map. Consequently φ satisfies property (ω_1) .

By the above proposition and Theorem 2.3, we have the following.

Corollary 2.9 ([5]). An \aleph -space is preserved by a closed and sequence-covering map.

It was proved in [6] that a topological group is an \aleph -space if it is the closed image of an \aleph -space.

References

- Gao Z.M., ℵ-space is invariant under perfect mappings, Questions Answers Gen. Topology 5 (1987), 271–279.
- Gao Z.M., Hattori Y., A characterization of closed s-images of metric spaces, Tsukuba J. Math. 11 (1987), 367–370.
- [3] Junnila H., Ziqiu Y., ℵ-spaces and a space with a σ-hereditarily closure-preserving knetwork, Topology Appl. 44 (1992), 209–215.
- [4] Lin S., Mapping theorems on ℵ-spaces, Topology Appl. 30 (1988), 159–164.
- [5] Liu C., Notes on closed mappings, Houston J. Math. 33 (2007), 249-259.
- [6] Liu C., Sakai M., Tanaka Y., Topological groups with a certain point-countable cover, Topology Appl. 119 (2002), 209–217.
- [7] O'Meara P., On paracompactness in function spaces with the compact open topology, Proc. Amer. Math. Soc. 29 (1971), 183–189.
- [8] Siwiec F., Sequence-covering and countably bi-quotient mappings, General Topology Appl. 1 (1971), 143–154.
- [9] Siwiec F., Mancuso V.J., Relations among certain mappings and conditions for their equivalence, General Topology Appl. 1 (1971), 33–41.
- [10] Tanaka Y., Point-countable covers and k-networks, Topology Proc. 12 (1987), 327–349.
- [11] Ziqiu Y., A new characterization of &-spaces, Topology Proc. 16 (1991), 253-256.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221-8686, JAPAN *E-mail*: sakaim01@kanagawa-u.ac.jp

(Received October 9, 2007)