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On loops that are abelian groups over

the nucleus and Buchsteiner loops

Piroska Csörgő

Abstract. We give sufficient and in some cases necessary conditions for the conjugacy
closedness of Q/Z(Q) provided the commutativity of Q/N . We show that if for some
loop Q, Q/N and InnQ are abelian groups, then Q/Z(Q) is a CC loop, consequently
Q has nilpotency class at most three. We give additionally some reasonable conditions
which imply the nilpotency of the multiplication group of class at most three. We
describe the structure of Buchsteiner loops with abelian inner mapping groups.
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1. Introduction

Q is a loop if it is a quasigroup with neutral element 1. The mappings La(x) =
ax (left translation) and Ra(x) = xa (right translation) are permutations of Q
for every a ∈ Q. The permutation group generated by left and right translations
Mlt(Q) = 〈La, Ra | a ∈ Q〉 is called the multiplication group of Q. Denote by
Inn(Q) the stabilizer of the neutral element, and call it the inner mapping group
of the loop Q.
In this paper we generalize the results obtained in [3] concerning the prop-

erties of loops such that the factor loop over the nucleus is an abelian group.
The motivation of [3] was the theory of Buchsteiner loops ([2], [6], [7], [9] and
partly [10]). We give sufficient and in some cases necessary conditions for the
conjugacy closedness of Q/Z(Q) provided the commutativity of Q/N .
Then we study the case of abelian inner mapping group. In 1946 Bruck [1]

proved that if Q is a loop of nilpotency class at most two then InnQ is abelian.
In the nineties Kepka and Niemenmaa [13], [14] showed that a finite loop with
abelian inner mapping group must be nilpotent, but they did not establish an
upper bound on the nilpotency class of the loop. For a long time the prevailing
opinion was that every loop Q with abelian InnQ has nilpotency class at most
two, i.e. that the converse of Bruck’s result is true.
However, in 2004 Csörgő [8] constructed a nilpotent loop of order 128 such that

the inner mapping group is abelian and the nilpotency class is equal to three. In
this loop the nucleus is a normal subloop, and the factor over the nucleus is
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isomorphic to an abelian group. Later Drápal and Vojtěchovský [11] by analyzing
the loop of this example developed a method by which they could construct many
other examples.

In this paper we shall show (Theorem 3.14) that if Q/N is an abelian group
and InnQ is also an abelian group, then Q/Z(Q) is a group and Q is nilpotent
of class at most three. Note that Drápal and Kinyon [9] produced a Buchsteiner
loop of order 128 that is of nilpotency class three and possesses an abelian inner
mapping group. Let us also remark that recently Nagy and Vojtěchovský [12]
constructed a Moufang 2-loop of order 214 of nilpotency class three with abelian
inner mapping group.

We shall also show that some conditions that are satisfied by Buchsteiner loops
imply that the nilpotency class of the multiplication group is at most three. We
shall then apply our results to Buchsteiner loops with abelian inner mapping
groups, giving a structural description for both the loops and their multiplication
groups.

We prove our results by applying the theory of connected transversals. This
concept was introduced by Niemenmaa and Kepka [13]. Using their characteriza-
tion theorem we can transform loop theoretical problems into group theoretical
problems.

2. Basic definitions and results

Let Q be a loop. Set A = {Lc | c ∈ Q}, B = {Rd | d ∈ Q}. Then A
and B are left transversals to InnQ in MltQ, 〈A, B〉 = MltQ, [A, B] ≤ InnQ
and coreMlt(Q) Inn(Q) = 1 (i.e. the largest normal subgroup of MltQ in InnQ is

trivial).

Conversely, consider a group G with the following properties: H is a sub-
group of G, A and B are left transversals to H in G. A and B are H-connected
transversals by definition, if [A, B] ≤ H .

By a result of Kepka and Niemenmaa [13], the above two situations are equiv-
alent:

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if
and only if there is a subgroup H , for which there exist H-connected transversals
A and B such that 〈A, B〉 = G and coreG H = 1.

Let Q be a loop and S be a normal subloop of Q. PutM(S) = 〈Lc, Rc | c ∈ S〉.
ThenM(S) InnQ ≤MltQ (this is a standard fact). Put
C(S) = coreMltQ M(S) InnQ. Denote by f the natural homomorphism of MltQ
onto MltQ/C(S). Then f(A) and f(B) are f(InnQ)-connected transversals in
MltQ/C(S) and Mlt(Q/S) ∼= MltQ/C(S).

The permutation group generated by all left translations is called the left mul-
tiplication group and we shall denote it by L = L(Q). In a similar way the
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right multiplication group R = R(Q) is generated by all right translations. Let
L1 = L ∩ InnQ, and R1 = R∩ InnQ.

Proposition 2.2.

L1 =
〈
Lxy

−1LxLy | x, y ∈ Q
〉

,

R1 =
〈
Ryx

−1RxRy | x, y ∈ Q
〉

,

and InnQ is generated by L1 ∪ R1 ∪ {Tx | x ∈ Q} where Tx = Rx
−1Lx for all

x ∈ Q.

We say that Q is an Al-loop (Ar-loop) if L1 ≤ AutQ (R1 ≤ AutQ). A loop
Q is an Ar,l-loop if it is both an Ar-loop and an Al-loop.
The left , middle and right nucleus of a loop Q are defined, respectively, by

Nλ = Nλ(Q) := {a ∈ Q | a · xy = a · xy for all x, y ∈ Q},

Nµ = Nµ(Q) := {a ∈ Q | x · ay = xa · y for all x, y ∈ Q},

N̺ = N̺(Q) := {a ∈ Q | x · ya = xy · a for all x, y ∈ Q}.

The intersection
N = N(Q) = Nλ ∩ Nµ ∩ N̺

is called the nucleus of Q.

Proposition 2.3. Let Q be a loop. Then

i) CMltQ(R) = {Lc | c ∈ Nλ},
CMltQ(L) = {Rd | d ∈ N̺};

ii) if R EMltQ then CMltQ(R) E MltQ and Nλ E Q;
iii) if L E MltQ then CMltQ(L) E MltQ and N̺ E Q;
iv) A∗A = A, B∗B = B, where A∗ = CMltQ(R), B

∗ = CMltQ(L).

Proof: i), ii), iii): see [6, Lemma 1.7]. iv) is trivial. �

Proposition 2.4. Let Q be a loop and let G0 be the normal closure of InnQ in
MltQ. Suppose that InnQ < K EMltQ. Then

i) MltQ/K is abelian;
ii) MltQ/G0 is abelian, G0 = (MltQ)

′ InnQ;
iii) G0 ≤ K.

Proof: i) Let aK and bK be arbitrary elements of MltQ/K with a ∈ A, b ∈ B.
Our statement follows from [A, B] ≤ InnQ < K.
ii) By i) MltQ/G0 is abelian, whence (MltQ)

′ InnQ ≤ G0. Using
(MltQ)′ InnQ EMltQ, our statement follows.
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iii) We have K ≥ (MltQ)′ by i), whence K ≥ (MltQ)′ InnQ. �

The center of Z(Q) is defined by Z(Q) = {a ∈ N | xa = ax for all x ∈ Q}.
By putting Z0 = 1, Z1 = Z(Q) and Zi/Zi−1 = Z(Q/Zi−1) we obtain a series of
normal subloops of Q. If Zn−1 is a proper subloop of Q but Zn = Q, then Q is
centrally nilpotent of class n.
A loop Q is left conjugacy closed (LCC loop) if the left translations re closed

under the conjugation, i.e. LaLbLa
−1 = Lc for all a, b ∈ Q, respectively, Q is

right conjugacy closed (RCC loop) if RaRbRa
−1 = Rd for all a, b ∈ Q. A loop Q

is conjugacy closed (CC loop) if it is an LCC and an RCC loop.

3. Buchsteiner loops and loops that are abelian modulo the nucleus

Buchsteiner loops are defined by the identity

(B) x \ (xy · z) = (y · zx)/x.

Here a \ b denotes the unique solution x to ax = b, while b/a denotes the unique
solution y to ya = b. We call (B) the Buchsteiner law since Hans-Hennig Buch-
steiner initiated their study in [2].
Rewriting the Buchsteiner law (B) in terms of translations immediately yields

Lemma 3.1. Q is a Buchsteiner loop, the Buchsteiner law is equivalent to each
of the following:

Lx
−1RzLx = Rx

−1Rzx for all x, z ∈ Q,

Rx
−1LyRx = Lx

−1Lxy for all x, y ∈ Q.

Proposition 3.2. Let Q be a Buchsteiner loop. Then the following statements
are true.

i) L = 〈A〉 E MltQ,
R = 〈B〉 E MltQ,
[A, B] = R1 = L1.

ii) The nucleus N E Q and

N = Nλ = Nµ = N̺.

Put A0 = {Lc | c ∈ N}, B0 = {Rd | d ∈ N}. Then

A0 = CMltQ(R), A0 E MltQ,

B0 = CMltQ(L), B0 E MltQ.

iii) Q/N is an abelian group of exponent four (an example in which this
exponent is achieved is constructed in [6]).

iv) Q is an Ar,l-loop.

v) Q/Z(Q) is a CC loop.
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Proof: i) See [6, Corollary 1.3].
ii) See [6, Corollary 1.6, Corollary 1.8].
iii) See [6, Theorem 7.14].
iv) See [6, Corollary 5.4].
v) See [3, Theorem 3.5]. �

Buchsteiner loops are modulo the nucleus abelian groups. We shall now state
their further basic properties.

Lemma 3.3. Let Q be a loop such that N E Q, Q/N is an abelian group. Set
A0 = {Lc | c ∈ N}, B0 = {Rd | d ∈ N}. Let G = MltQ and H = InnQ. Then
the following statements are true.

i) coreG A0H ⊇ [A, B] ∪ (〈A〉 ∩ H) ∪ (〈B〉 ∩ H).
ii) Put G1 = A0H = B0H .
Then G1 E G and G/G1 is abelian.

iii) Z(G1) = Z(G)× (Z(G1) ∩ H).
iv) A0 E G, B0 E G.
v) A0B0 ≤ CG([A, B]).

vi) Suppose h ∈ H ∩ AutQ, a ∈ A, b ∈ B. Then ha = hα0, h
b = hβ0 with

α0 ∈ A0, β0 ∈ B0.
vii) If h ∈ H ∩AutQ, then h ∈ CG([A, B]).

Proof: i) By N E Q, we have A0H ≤ G, B0H ≤ G. Using Q/N is abelian it
follows coreG A0H ⊇ [A, B] ∪ (〈A〉 ∩ H) ∪ (〈B〉 ∩ H).
ii) By i) clearly 〈A〉 ∩ A0H E 〈A〉. Let a ∈ A, b ∈ B ∩ aH . Then us-

ing [A, B] ≤ H we get (a−1b)a
∗

∈ A0H for every a∗ ∈ A, in similar way

(a−1b)b
∗

∈ B0H(= A0H) for every b∗ ∈ B. Since G = 〈A, B〉 and H =〈
a−1b, 〈A〉 ∩ H, 〈B〉 ∩ H | a ∈ A, b ∈ B ∩ aH

〉
by Proposition 2.2 we can con-

clude that G1 E G.
iii) Using Z(G1) ≤ NG(H) and NG(H) = Z(G)×H (see [13, Proposition 2.7])

it follows easily.
iv) By [3, Lemma 1.7] and by i) A0 E 〈A〉. Since A0 ≤ CG(B) (see Proposi-

tion 2.3) and 〈A, B〉 = G it follows A0 E G. In a similar way B0 E G holds.
v) Using A0 E G and A0 ≤ CG(B) we can see easily A0 ≤ CG([A, B]), and

similarly B0 ≤ CG([A, B]).

vi) By [3, Lemma 1.2] ah ∈ A, bh ∈ B. Since G1 E G, A0 E G, B0 E G, and
A0A = A, B0B = B we get our statement.
vii) Using vi) and A0 ≤ CG(〈B〉), B0 ≤ CG(〈A〉) it follows easily. �

The conjugacy closed loops (CC loops) Q satisfy the following properties:

〈A〉 E MltQ, 〈B〉 EMltQ,

Q is an Ar,l-loop, furthermore N E Q, Q/N is an abelian group.
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In [3] we studied the converse of this result, i.e. those loops satisfying these
conditions and we got that they are very close to the CC loops:

Proposition 3.4 ([3, Theorem 3.1]). Let Q be a loop such that N E Q, 〈A〉 E

MltQ, 〈B〉 E MltQ, Q is an Al,r-loop. If Q/N is an abelian group, then Q/Z(Q)
is conjugacy closed.

In fact, we have proved a somewhat stronger result as well:

Proposition 3.5 ([3, Proposition 3.2]). Let Q be an Ar,l-loop in which the nu-

cleus is normal and Q/N is an abelian group. If [A, B] ≤ AutQ, then Q/Z(Q) is
a conjugacy closed loop.

As the Buchsteiner loops satisfy these conditions we get

Corollary 3.6 ([3, Theorem 3.5]). Let Q be a Buchsteiner loop. Then Q/Z(Q)
is a conjugacy closed loop.

In Proposition 3.5 the requirement that Q is an Ar,l-loop seems to be too
strong. In case of [A, B] ≤ AutQ we shall obtain an exact description when
Q/Z(Q) is conjugacy closed. For this aim we need the following subsets for a
loop Q:

LF (Q) =
{
Lz

−1Lx
Ly | Lz

−1Lx
Ly ∈ InnQ, x, y ∈ Q

}
,

RF (Q) =
{
Rw

−1Rx
Ry | Rw

−1Rx
Ry ∈ InnQ, x, y ∈ Q

}
.

In the following statements A0, B0 are defined as in Lemma 3.3.

Proposition 3.7. Let Q be a loop such that N E Q and Q/N is an abelian

group. Suppose [A, B] ≤ AutQ. Then Q/Z(Q) is a CC loop if and only if
LF (Q) ⊆ AutQ and RF (Q) ⊆ AutQ.

Proof: Let G = MltQ, H = InnQ.
Let h∗ ∈ LF (Q) be arbitrary. Lemma 3.3 i), ii) give that there exist α1, α2 ∈ A

such that αα2
1 = α1δh

∗ with δ ∈ A0. Then α
α−1

2

1 = α1((h
∗)−1)α

−1

2 (δ−1)α
−1

2 .

Using A0 E G (see Lemma 3.3 iv)) we get α
α−1

2

1 = α1γ((h
∗)−1)α

−1

2 with γ ∈ A0.

i) First suppose LF (Q) ⊆ AutQ and RF (Q) ⊆ AutQ. Since h∗ ∈ LF (q) it

follows h∗ ∈ AutQ, whence using Lemma 3.3 vi) we can conclude ((h∗)−1)α
−1

2 =

γ0(h
∗)−1 with γ0 ∈ A0, consequently α

α−1

2

1 = α1α0(h
∗)−1 with α0 ∈ A0. Set

h = (h∗)−1, clearly h ∈ AutQ. Let β ∈ B. We have α1
β = α1h1, βα2 = βh0

with h1, h0 ∈ [A, B]. Then α1
β = α1

βα2h−1

0 = α1h1. Thus α1
β = α1

α−1

2
βα2h

−1

0 =

(α1α0h)
βα2h

−1

0 . Using Lemma 3.3 vi), hβ = hβ0 holds with β0 ∈ B0. Hence

α1
β = (α1h1α0hβ0)

α2h
−1

0 = (α1h
hα2
1 β0)

h−1

0 . As h1, h0 ∈ [A, B], Lemma 3.3

vii), v), vi) imply α1
β = α1α

∗h1α
∗∗β0 = α1h1, where α∗, α∗∗ ∈ A0. Using
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Lemma 3.3 v), we can again conclude that β0 ∈ B0 ∩A0. Since A0 ∩B0 ⊆ Z(G),

whence hβ ∈ hZ(G). As α1
α−1

2 = α1α0h and β ∈ B is arbitrary we get h ∈
coreG Z(G)H . Thus Q/Z(Q) is left conjugacy closed. In a similar way Q/Z(Q)
is an RCC loop, consequently Q/Z(Q) is a CC loop.
ii) Suppose Q/Z(Q) is a CC loop. Then RF (Q) ∪ LF (Q) ⊆ coreG Z(G)H .

Since h∗ ∈ LF (Q) we have ((h
∗)−1) ∈ coreG Z(G)H , consequently ((h∗)−1)α

−1

2 =

(h∗)−1h̃z with h̃ ∈ H , z ∈ Z(G)∩ (A0H). Thus α
α−1

2

1 = α1γz(h∗)−1h̃. Put γz =

α0 ∈ A0, h = (h∗)−1h̃, so α
α−1

2

1 = α1α0h. Clearly h ∈ coreG(Z(G))H . Given

β ∈ B, we have α1
β = α1h1, β

α2 = βh0 with h1, h0 ∈ H ∩ [A, B]. Then α1
β =

α1
βα2h−1

0 = α1h1. Let us use the same notation and repeat the steps of part i),

then we get α
β
1 = α1

h−1

0 h1
hα2h

−1

0 (h−1hβ)α2h
−1

0 . Since h−1 ∈ coreG Z(G)H ,

Lemma 3.3 vi) implies hβ = hzh2 with z ∈ Z(G), h2 ∈ H , whence (h−1hβ)α2h
−1

0

= (zh2)
α2h

−1

0 with α01 ∈ A0. As h1 = α1
−1α1

β ∈ [A, B] it follows h1 ∈ AutQ,

using Lemma 3.3 vii) we can conclude h1
h = h1, whence h1

α2h
−1

0 = (h1α̃)
h−1

0 with

α̃ ∈ A0 by Lemma 3.3 vi). Hence α1
β = α1α01h1α̃h2

α2h
−1

0 = α1h1 with α01 ∈

A0. Since A0 E G we can conclude h2 = e, i.e. hβ = hz. As β ∈ B is arbitrary

we get h ∈ AutQ. We have α
α−1

2

1 = α1α0h, whence αα2
1 = α1(h

−1)α2(α−1
0 )

α2 .

Using A0 ⊳ G and h−1 ∈ AutQ ∩ coreG(Z(G))H it follows αα2
1 = α1ξzh−1 with

ξ ∈ A0. On the other hand we have αα2
1 = α1δh

∗, whence h∗ = h−1, and we can
conclude LF (Q) ⊆ AutQ. We can show similarly RF (Q) ⊆ AutQ. �

We give another sufficient condition for the conjugacy closedness of Q/Z(Q).

Proposition 3.8. Let Q be a loop such that N E Q, Q/N is an abelian group.
Suppose LF (Q) ∪ RF (Q) ⊆ Z(InnQ). Then Q/Z(Q) is a CC loop.

Proof: Let G = MltQ and H = InnQ. We have B0 ≤ CG(〈A〉) whence B0 ≤
CG(LF (Q)) whence LF (Q) ⊆ Z(H) implies LF (Q) ⊆ Z(B0H). Since B0H E G
(see Lemma 3.3 i)) it follows Z(B0H) E G. By Lemma 3.3 iii) Z(B0H) =
Z(G)× (Z(B0H)∩H), consequently LF (Q) ⊆ Z(B0H)∩H ≤ coreG Z(G)H , i.e.
Q/Z(Q) is left conjugacy closed. In a similar way we get that Q/Z(Q) is an RCC
loop too. �

In case [A, B] ≤ AutQ the sufficient condition for the conjugacy closedness of
Q/Z(Q) in the previous proposition can be proved to be necessary.

Proposition 3.9. Let Q be a loop such that N E Q, Q/N is abelian group.

Suppose that [A, B] ≤ AutQ. Then Q/Z(Q) is conjugacy closed if and only if
LF (Q) ∪ RF (Q) ⊆ Z(InnQ).

Proof: Let G = MltQ, H = InnQ.
i) Suppose first LF (Q)∪RF (Q) ⊆ Z(InnQ). Then Proposition 3.8 implies our

statement.
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ii) Suppose Q/Z(Q) is a CC loop. Let α1, α2 ∈ A. Then using Lemma 3.3 ii)
we get α1

α2 = α1α0h with α0 ∈ A0, h ∈ H ∩ 〈A〉. Clearly h ∈ LF (Q), since
LF (Q) ⊆ AutQ by Proposition 3.7, it follows ha ∈ hA0 for every a ∈ A (see
Lemma 3.3 vi)). The conjugacy closedness of Q/Z(Q) implies h ∈ coreG Z(G)H ,

whence ha ∈ hZ(G). Similarly hb ∈ hZ(G) for every b ∈ B. As G = 〈A, B〉 we
can conclude h ∈ Z(InnQ), whence clearly LF (Q) ⊆ Z(InnQ). In a similar way
we get RF (Q) ⊆ Z(InnQ). �

In case of Buchsteiner loops we have a necessary and sufficient condition that
Q/Z(Q) is a group:

Proposition 3.10 ([9, Lemma 7.2]). Let Q be a Buchsteiner loop. Then Q/Z(Q)
is a group, i.e. A(Q) ≤ Z(Q) if and only if [A, B] ≤ Z(InnQ).

We generalize this result in the following way:

Proposition 3.11. Let Q be a loop such that N E Q, Q/N is an abelian group
and [A, B] ≤ Z(InnQ). Then Q/Z(Q) is a group, i.e. A(Q) ≤ Z(Q).

Proof: Let G = MltQ, H = InnQ. By Lemma 3.3 ii) G/A0H is abelian. We
show [A, B] ≤ Z(A0H). By Lemma 3.3 v) A0 ≤ CG([A, B]). The condition
[A, B] ≤ Z(H) implies [A, B] ≤ Z(A0H). Since Z(A0H) = (Z(G) ∩ A0) ×
(Z(A0H) ∩ H) and A0H E G, by Lemma 3.3 iii), ii) it follows Z(A0H) E G.
Thus we get Z(A0H) ≤ coreG Z(G)H , consequently Q/Z(Q) is a group. �

In case [A, B] ≤ AutQ the above mentioned sufficient condition can be proved
to be necessary.

Proposition 3.12. Let Q be a loop such that N E Q, Q/N is an abelian group
and [A, B] ≤ AutQ. Then Q/Z(Q) is a group if and only if [A, B] ≤ Z(InnQ).

Proof: Let G = MltQ and H = InnQ.
i) First suppose [A, B] ≤ Z(InnQ). Then our statement follows by Proposi-

tion 3.11.
ii) Suppose Q/Z(Q) is a group. Then [A, B] ≤ coreG Z(G)H . Since [A, B] ≤

AutQ ∩ H , using Lemma 3.3 v) we get ta ∈ tA0 for every t ∈ [A, B] and a ∈ A.

Consequently ta ∈ tZ(G). Similarly we get tb ∈ tZ(G) for every b ∈ B. As
G = 〈A, B〉 we can conclude that t ∈ Z(H), i.e. [A, B] ≤ Z(H). �

In the following we study the case of abelian inner mapping group.

Proposition 3.13. Let Q be a Buchsteiner loop with abelian inner mapping
group. Then

i) Q/Z(Q) is a group;
ii) Q is nilpotent of class at most three.

Proof: i) See Proposition 3.10.
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ii) Since a CC loop with abelian inner mapping group is nilpotent of class at
most two [5, Proposition 2.5], our statement follows. �

We analyze the general case:

Theorem 3.14. Let Q be a loop with abelian inner mapping group such that
N E Q and Q/N is an abelian group. Then the following statements are true.

i) Q/Z(Q) is a group.
ii) Q is nilpotent of class at most three.

Proof: i) See Proposition 3.11.

ii) See the proof of Proposition 3.13 ii). �

In case of abelian inner mapping group under the conditions of Proposition 3.5
we can prove more, namely the nilpotency of class at most three of the multipli-
cation group.
For this aim we need the following

Lemma 3.15. Let Q be a loop with abelian inner mapping group such that
N E Q and Q/N is an abelian group. Let G = MltQ, H = InnQ, and G0 is the
normal closure of H in G. Then

i) ha ∈ h(Z(G) ∩ G0), hb ∈ h(Z(G) ∩ G0) for every h ∈ H ∩ AutQ and
a ∈ A, b ∈ B;

ii) a1
a ∈ a1(Z(G) ∩ G0) for every a1 ∈ A0 ∩ G0, a ∈ A.

Proof: i) Let h ∈ H∩AutQ. Then ha−1

∈ hA0 by Lemma 3.3 vi). Since A0 E G

(see Lemma 3.3 iv)) and G0 E G we get ha−1

∈ hA0 ∩ G0. Clearly A0H ≥ G0,

whence G0 = (A0 ∩ G0)H , consequently ha−1

∈ h(A0 ∩ G0). Let b ∈ B ∩ aH , in

a similar way we can show hb−1 ∈ h(B0 ∩ G0). The commutativity of H implies

ha−1b = h, whence ha−1

= hb−1 ∈ h(A0 ∩ B0). Since A0 ∩ B0 ⊆ Z(G) we get

ha ∈ h(Z(G) ∩ G0), h
b ∈ h(Z(G) ∩ G0) for every a ∈ A, b ∈ B.

ii) By Theorem 3.14 we have that Q/Z(Q) is of nilpotency class at most two.
Hence clearly Q/Z(Q)/Z(Q/Z(Q)) is an abelian group. Let U = coreG Z(G)H .
Then Mlt(Q/Z(Q)) = MltQ/U . Let Z∗ be the inverse image of Z(MltQ/U).
Since Q/Z(Q)/Z(Q/Z(Q)) is an abelian group it follows Z∗ InnQ E MltQ.
By Proposition 2.4 iii), G0 ≤ Z∗ InnQ. Applying Z(MltQ) ⊆ A ∩ B for

Z(MltQ/Z(Q)) we get b−11 a1 ∈ U∩H for every a1 ∈ G0∩A0, b1 ∈ B∩a1H . Thus

(b−11 a1)
a ∈ b−11 a1U for every a ∈ A. We have b1 ∈ G0 ∩ B0 ≤ CG(A), whence

a1
a ∈ a1U . Since U = coreG Z(G)H it follows a1

a = a1z1h1 with z1 ∈ Z(G),
h1 ∈ U ∩ H . As A0 E G (see Lemma 3.3 iv)), a1

a = a1z1 holds. G0 E G implies
z1 ∈ Z(G) ∩ G0. �

We return to our statement.
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Theorem 3.16. Let Q be an Ar,l-loop with abelian InnQ such thatN E Q, Q/N
is an abelian group. Suppose [A, B] ≤ AutQ. Then Q and MltQ are nilpotent of
class at most three.

Proof: By Theorem 3.14 Q is nilpotent of class at most three.
Let G = MltQ, H = InnQ. Let M = 〈A〉[A, B]. We show M E G. Using that

[A, B] ≤ AutQ and that H is abelian, Lemma 3.15 i) implies Z(G)[A, B] E G.
Since Z(G) ≤ 〈A〉 it follows M ≤ G. We have 〈A〉 ∩ H ≤ AutQ, [A, B] ≤ AutQ.
Using 〈A, B〉 = G and Lemma 3.15 i), we get M E G.
Let Z1 = Z(G)∩G0 (G0 is the normal closure ofH inG), D = G0∩M and A1 =

G0 ∩ A0. We show D/Z1 ≤ Z(G/Z1). Using Lemma 3.15 ii), A1 ≤ CG(B) and
G = 〈A, B〉 we can conclude A1Z1/Z1 ≤ Z(G/Z1). As D ∩ H = (〈A〉 ∩ H)[A, B]
and (〈A〉 ∩ H)[A, B] ≤ AutQ, Lemma 3.15 i) implies D/Z1 ≤ Z(G/Z1). Since
G/M ∼= H/H ∩ M it follows G/M is abelian. Using G/G0 is abelian too we get
G′ ≤ M ∩ G0 = D, consequently G/D is abelian. Thus G is nilpotent of class at
most three. �

Using the previous result we describe the structure of Buchsteiner loop with
abelian inner mapping groups. For this aim we need the following:

Proposition 3.17 ([9, Lemma 7.2, Proposition 7.3]). If Q is a Buchsteiner loop
with abelian inner mapping group, then Q/N is an elementary abelian 2-group.

Corollary 3.18. Let Q be a Buchsteiner loop with abelian InnQ, let A0 =
{Lc | c ∈ N}. Then MltQ/A0 InnQ is an elementary abelian 2-group.

Proof: The structure of the multiplication group of the factorloop and Proposi-
tion 3.17 imply this statement. �

Proposition 3.19. Let Q be a Buchsteiner loop with abelian InnQ. Then the
following statements are true.

i) Q and MltQ are nilpotent of class at most three.

ii) aab ∈ A0 for every a ∈ A, b ∈ B ∩ a InnQ, where A0 = {Lc | c ∈ N}.
iii) 〈A〉 ∩ InnQ is an elementary abelian 2-group.

Proof: i) By Theorem 3.14 Q is nilpotent of class at most three. We have Q is
an Ar,l-loop, N E Q, Q/N is an abelian group, [A, B] = 〈A〉∩InnQ = 〈B〉∩InnQ
(see Proposition 3.2) whence [A, B] ≤ AutQ, so we can apply Theorem 3.16.
ii) See the definition of Buchsteiner loops and Corollary 3.18.

iii) By ii) aab ∈ A0 for every a ∈ A, b ∈ B ∩ a InnQ. Let b1 ∈ B be

arbitrary. Clearly ab = ah, ab1 = ah1 with h, h1 ∈ InnQ, whence aab = (aab)b1 =

ah1ah1h
b = a2h1

ah1h
b. Lemma 3.15 i) implies h1

a = h1z1, h
b = hz with z1z ∈

Z(MltQ). Hence (aab)b1 = a2hh1
2z1z = aah. Thus h1

2 = e. �

We give a characterization theorem about the Buchsteiner loops with abelian
inner mapping group.
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Theorem 3.20. Let Q be a loop. Then Q is a Buchsteiner loop with abelian
inner mapping group if and only if Q = Q1 × Q2, where Q1 is a Buchsteiner
loop with abelian inner mapping of order 2t and Q2 is a group of odd order
with abelian inner mapping group. Additionally MltQ = MltQ1 ×MltQ2 where
MltQ1 ∈ Syl2(MltQ).

Proof: i) Clearly, if Q = Q1 × Q2 with the given properties, then Q is a Buch-
steiner loop with abelian InnQ.
ii) Conversely suppose Q is a Buchsteiner loop with abelian InnQ. Let G =

MltQ, H = InnQ. By Proposition 3.19 i) G is nilpotent of class at most three.
So G = S × T , where S ∈ Syl2(G).
First we show S = (S ∩ A)(S ∩ H). Let S1 ∈ Syl2(〈A〉). Since 〈A〉 E G (see

Proposition 3.2) it follows S1 E G. Let S0 ∈ Syl2(H), then S1S0 ≤ G. Using
〈A〉H = G we can conclude S1S0 = S ∈ Syl2(G). As 〈A〉 ∩ H is an elementary
abelian 2-group (see Proposition 3.19 iii)). S ≥ 〈A〉 ∩ H holds, whence S1 =
S∩〈A〉 = (S∩A)(〈A〉∩H). We have S = S1S0, consequently S = (S∩A)(S∩H).
In a similar way S = (S ∩ B)(S ∩ H).
Since G/A0H is an elementary abelian 2-group (see Corollary 3.18) and S ≥

〈A〉 ∩ H we can conclude T ≤ A0H and T1 = T ∩ 〈A〉 ≤ A0. As G is nilpotent
and T is a Hall subgroup of G, by Hall’s theorems T1 E G. We have H = S0×T0
where T0 ≤ T is a Hall subgroup of H . Using T ≤ A0H , A0 ∩H = 1 and A0 E G
it follows T = T1 · T0 = (T ∩ 〈A0〉)(T ∩ H). Similarly T = (T ∩ B0)(T ∩ H).
Let

AS = S ∩ A, AT = T ∩ A0,

BS = S ∩ B, BT = T ∩ B0.

Since A0A = A, B0B = B we have AT AS ⊆ A, BT BS ⊆ B. Clearly |AT AS | =
|AT | |AS |, |BT BS | = |BT | |BS |. Using G = S × T , S = (S ∩ A)(S ∩ H) =
(S ∩ B)(S ∩ H), T = (T ∩ A0)(T ∩ H) = (T ∩ B0)(T ∩ H) we get A = AT AS ,
B = BT BS .
Let

Q1 = {c ∈ Q | Lc ∈ S},

Q2 = {d ∈ Q | Ld ∈ T }.

As SH ≤ G and TH ≤ G we can conclude Q1 and Q2 are normal subloops of Q.
We show MltQ1 = S and MltQ2 = T . By Niemenmaa and Kepka’s theorem [13]
it is enough to show:

i1) 〈S ∩ A, S ∩ B〉 = S, i2) coreS(S ∩ H) = 1, i3) [S ∩ A, S ∩ B] ≤ S ∩ H,

j1) 〈T ∩ A0, T ∩ B0〉 = T, j2) coreT (T ∩ H) = 1, j3) [T ∩ A0, T ∩ B0] ≤ T ∩ H.
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We have 〈A, B〉 = G, since A = AT AS , B = BT BS and G = S × T i1) and j1)
are true.

G = S × T implies coreS(S ∩ H) ≤ S ∩ CG(T ) and coreS(S ∩ H) E G. Using
coreG H = 1 we get coreS(S ∩ H) = 1. In a similar way j2) follows.
i3) and j3) are consequences of [A, B] ≤ H .
Clearly Q1 is a Buchsteiner loop of order 2

t with abelian InnQ1 (= S ∩ H).
Since MltQ2 = (T ∩A0)(T ∩H), T ∩ 〈A〉 ≤ A0, A0 E MltQ it follows that Q2

is a group of odd order with abelian InnQ2 (= T ∩ H). �

Acknowledgment. The author is grateful to the referee for useful comments
and suggestions.

References

[1] Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946),
245–354.

[2] Buchsteiner H.H., O nekotorom klasse binarnych lup, Mat. Issled. 39 (1976), 54–66.
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sétány 1/C, H–1117 Budapest, Hungary

E-mail : ska@cs.elte.hu

(Received October 15, 2007, revised February 12, 2008)


