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A scoop from groups: equational foundations for loops

J.D. Phillips, Petr Vojtěchovský

Abstract. Groups are usually axiomatized as algebras with an associative binary oper-
ation, a two-sided neutral element, and with two-sided inverses. We show in this note
that the same simplicity of axioms can be achieved for some of the most important vari-
eties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying
variety of magmas with two-sided inverses, and obtain “group-like” equational bases for
Moufang, Bol and C-loops. We also discuss the case when the inverses are only one-sided
and/or the neutral element is only one-sided.
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1. Magmas, semigroups, and loops

Figure 1. Two paths from magmas to groups

We call a set with a single binary operation a groupoid , and a groupoid with a
two-sided neutral element a magma.1 There are two natural paths from magmas
to groups, as illustrated in Figure 1. One path leads through the monoids — these
are the associative magmas. The other path leads through the loops — these are
magmas in which every equation x · y = z has a unique solution whenever two of
the elements x, y, z are specified. Since groups are precisely loops that are also
monoids, loops are known colloquially as “nonassociative groups.”

1The definitions of groupoid and magma are often interchanged in the literature.
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The theory of monoids is well-developed and widely known. Loops have a
deep and often elegant, but less well-known theory (see [19] for historical notes
on loop theory, [2] for the first systematic account of loops, and [18] for a modern
introduction to loop theory). This is particularly unfortunate given the deep and
fruitful connections between loops and:

(i) combinatorics (Cayley tables of finite loops are normalized Latin squares
[5]; Steiner loops describe Steiner triple systems [3]),

(ii) group theory (multiplication groups and automorphism groups of loops
often yield classical groups [6], [28]; loops play a role in the construction
of the Monster sporadic group [4]),

(iii) division algebras (nonzero octonions under multiplication form a loop [28]),
(iv) nonassociative algebras (alternative algebras [10], Jordan algebras [25]),
(iv) projective geometry (generalized polygons, Moufang planes [30]),
(v) special relativity (relativistic operations can be described by loops [31],
[11]).

We believe that one of the reasons why loops are not more widely known is that
they cannot be defined equationally in the variety of magmas , since they are not
closed under the taking of homomorphic images. This peculiar property of loops
resurfaces every now and then (most recently in [23]), and it was first observed
by Bates and Kiokemeister [1].

The standard way out of this impasse, due to Evans [7], is to introduce two
additional binary operations \, /, and demand that

(1) x·(x\y) = y, (x/y)·y = x, (x·y)/y = x, x\(x·y) = y, x/x = x\x = 1.

Indeed, we obtain loops, since the axioms (1) imply that x\y is the unique solution
z to the equation x · z = y, and similarly for x/y.

While this approach solves the problem in principle, it is somewhat awkward.
In the end, the three operations ·, \, / can be reconstructed from any one of them!

The purpose of this note is to show that there is a much better solution for
some (but not all) of the most studied varieties of loops. We prove:

Theorem 1.1. Let Q be a magma with two-sided inverses, that is, 1·x = x·1 = x
and x ·x−1 = x−1 ·x = 1 holds for every x ∈ Q. If Q satisfies any of (LB), (M1),
(M2), (C) defined below, then Q is a loop.

This means that Bol loops, Moufang loops and C-loops can be axiomatized in
a manner completely analogous to groups.

We establish stronger (but perhaps less natural) results than Theorem 1.1 upon
looking at groupoids with a one-sided neutral element and/or one-sided inverses.
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1.1 The dot convention. We will write xy instead of x · y, and reserve · to
indicate parentheses and hence the priority of multiplication. For instance, x · yz
stands for x · (y · z). This convention is common in nonassociative algebra.

2. The inverse property

Every element x of a magma M determines two maps M → M : the left
translation Lx : y 7→ xy, and the right translation Rx : y 7→ yx. The equations
ax = b, ya = b have unique solutions x, y in M — that is, M is a loop — if and
only if all translations are bijections of M .

We shall say that a magma M is with inverses (or that it has inverses) if for
every x ∈ M there is y ∈ M satisfying xy = yx = 1. We then call y an inverse of
x, noting that x can have several inverses.

We say that a magmaM has the left inverse property if for every x ∈ M there
is xλ ∈ M such that xλ · xy = y for every y ∈ M . Similarly, M has the right
inverse property if for every x ∈ M there is xρ ∈ M such that yx · xρ = y for
every y ∈ M . An inverse property magma is then a magma that has both the left
inverse property and the right inverse property.

Lemma 2.1. If M is a magma that satisfies the left inverse property, then M is

with inverses, and the unique inverse of x is x−1 = xλ. Moreover, (x−1)−1 = x,
and all left translations are bijections of M .

Proof: For x ∈ M we have 1 = xλ · x1 = xλx. Then x = (xλ)λ · xλx = (xλ)λ

and xxλ = (xλ)λxλ = 1. Thus xλ = x−1 is an inverse of x, and it is unique: if
xx∗ = 1 for some x∗ then x∗ = x−1 · xx∗ = x−1.

If xy = xz, then y = x−1 · xy = x−1 · xz = z. Furthermore, x · x−1y =
(x−1)−1 · x−1y = y. Thus Lx is a bijection of M . �

We can now axiomatize inverse property loops in a manner analogous to groups:

Theorem 2.2. Inverse property loops are exactly inverse property magmas and

can be defined equationally by

x · 1 = 1 · x = x, xλ · xy = y = yx · xρ,

or by

x · 1 = 1 · x = x, x−1 · xy = y = yx · x−1.

Proof: By the inverse properties, we have 1 = xλx and 1 = 1x ·xρ = xxρ. Then,
xλ = xλ1 = xλ · xxρ = xρ. We are done by Lemma 2.1 and its dual. �



282 J.D.Phillips, P. Vojtěchovský

3. Inverses in loops of Bol-Moufang type

Figure 2. The varieties of loops of Bol-Moufang type

Just as the theory of monoids focuses on those monoids satisfying certain identi-
ties, so too for loops. Among the most investigated loops are the so-called loops of
Bol-Moufang type, whose defining identities can be found in Figure 2. The figure
also depicts all inclusions (but not meets and joins) among varieties of loops of
Bol-Moufang type. For more details, see [8] and [21].

Since we are interested in these loops from the viewpoint of magmas with
inverses, let us first settle the question which varieties of loops of Bol-Moufang
type have inverses.

By [24], left Bol loops satisfy the left inverse property. Dually, right Bol loops
satisfy the right inverse property. By [8], LC-loops satisfy the left inverse property.
Dually, RC-loops satisfy the right inverse property. Lemma 2.1 and its dual then
imply that left (right) Bol loops and LC(RC)-loops have inverses. Flexible loops
also have inverses: if x′ satisfies x′x = 1, then (xx′)x = x(x′x) = x, and xx′ = 1
follows by cancellation. On the other hand, consider
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Then Q1 is a left alternative loop without inverses, and Q2 is a left, middle, and
right nuclear square loop without inverses. Hence the loops of Bol-Moufang type
with inverses occupy precisely the top four rows of Figure 2.

Remark 3.1. It is an open question, due to W.D. Smith [29], whether there is a
finite, left alternative and right alternative loop without inverses. For an infinite
example, see [17].

4. Equational bases for Bol, Moufang, and C-loops

Now that we know which loops of Bol-Moufang type have inverses, we proceed
to obtain simple axiomatizations for three varieties: Bol, Moufang, and C-loops.
Let us label the alternative laws by

(LA) x · xy = xx · y,

and

(RA) x · yy = xy · y.

4.1 Bol loops. Left Bol loops with the automorphic inverse property (xy)−1 =
x−1y−1 play an important role in the arithmetic of special relativity [11], [31].
Some of the most outstanding problems in loop theory are concerned with Bol
loops, and several of them were recently solved by G.P. Nagy [16].
Label the left Bol identity as

(LB) (x · yx)z = x(y · xz).

The following theorem and its generalizations have a convoluted history, cf. [11,
pp. 50–51]. It is the first result concerning a variety of loops of Bol-Moufang type
within the variety of magmas with inverses. We believe that it was first observed
by M.K. Kinyon, with a different proof:

Theorem 4.1. A magma with inverses satisfying the left Bol identity (LB) is a
loop. Thus, left Bol loops are defined equationally by

1 · x = x · 1 = x, x · x−1 = x−1 · x = 1, (x · yx)z = x(y · xz).

Proof: Assume that M is a magma with inverses satisfying (LB). By setting
y = 1 in (LB) we see that the left alternative law holds for M .
We now show that M has the left inverse property:

x−1 · x(x · x−1y)
(LA)
= x−1(xx · x−1y)

(LB)
= (x−1 · (xx)x−1)y

(LA)
= y,(2)

x(x−1 · xy)
(LB)
= xy,(3)

x(x · x−1y)
(3)
= x(x−1 · x(x · x−1y))

(2)
= xy,(4)

x−1 · xy
(4)
= x−1 · x(x · x−1y)

(2)
= y.
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By Lemma 2.1, all left translations are bijections of M . When xy = z then

yz · y−1 = (y · xy)y−1
(LB)
= yx,

and thus x = y−1·(yz)y−1. This means that the right translationRy is a bijection.
�

4.2 Moufang loops. These four Moufang identities are equivalent for loops:

(xy · x)z = x(y · xz),(M1)

x(y · zy) = (xy · z)y,(M2)

xy · zx = x(yz · x),(M3)

xy · zx = (x · yz)x.(M4)

Moufang loops occur naturally in division algebras and in projective geometry, as
we have already mentioned in the introduction.
Any of the first two identities can be used to characterize Moufang loops among

magmas with inverses:

Theorem 4.2. A magma with inverses satisfying the Moufang identity (M1) or
(M2) is a Moufang loop. Thus, Moufang loops are defined equationally by

x · 1 = 1 · x = x, x · x−1 = x−1 · x = 1, (xy · x)z = x(y · xz),

or by

x · 1 = 1 · x = x, x · x−1 = x−1 · x = 1, x(y · zy) = (xy · z)y.

Proof: Assume that M is a magma with inverses satisfying (M1). Substituting
z = 1 into (M1) yields the flexible law xy ·x = x ·yx. Then (M1) can be rewritten
as (LB), and Theorem 4.1 shows that M is a Moufang loop.
The case (M2) is similar (let x = 1 in (M2), and use the right Bol identity).

�

But the identities (M3), (M4) do not work! Here is the Cayley table of a
magma with inverses that satisfies both (M3) and (M4) but that clearly is not a
loop:

0 1 2
0 0 1 2
1 1 0 1
2 2 1 0
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4.3 C-loops. Recall the C-identity

(C) x(y · yz) = (xy · y)z.

C-loops were introduced by Fenyves [8]. It is easy to see that every Steiner loop
(i.e., a loop arising from a Steiner triple system) is a C-loop [20]. The standard
Cayley-Dickson process extended beyond octonions (dimension 8) produces C-
loops in every dimension 2n [12]. Although C-loops are not as well known as Bol
and Moufang loops, we expect their prominence to grow.

Theorem 4.3. A magma with inverses satisfying the C-identity (C) is a C-loop.
Thus, C-loops are defined equationally by

x · 1 = 1 · x = x, x · x−1 = x−1 · x = 1, x(y · yz) = (xy · y)z.

Proof: First note that a magma satisfying the C-identity (C) satisfies both
alternative laws. To see this, set x = 1 in (C) to obtain (LA), and z = 1 in (C)
to obtain (RA).
Assume that M is a magma with inverses satisfying (C). Then

x−1 ·xy
(C)
= x−1 ·x−1(x ·xy)

(LA)
= (x−1)2(x ·xy)

(C)
= ((x−1)2x)x ·y

(RA)
= (x−1)2x2 ·y.

Therefore, if M satisfies (x−1)2 = (x2)−1, it has the left inverse property, and
thus the inverse property, since (C) is self-dual. We have

x−1
(LA)
= x−1(x · x(x2)−1)

(C)
= (x−1x)x · (x2)−1 = x(x2)−1,

and hence (x−1)2 is equal to

x−1 · x(x2)−1
(RA)
= x−1 · x(x2 · (x2)−1(x2)−1)

(LA)
= x−1 · x(x(x · (x2)−1(x2)−1))

(C)
= x(x · (x2)−1(x2)−1)

(LA)
= x2 · (x2)−1(x2)−1

(RA)
= (x2)−1.

�

This finishes the proof of Theorem 1.1.

5. Magmas with inverses satisfying an identity of Bol-Moufang type

We have seen many examples of identities of Bol-Moufang type. Here is the
general definition: an identity involving one binary operation · is said to be of
Bol-Moufang type if it contains three distinct variables, if it contains three distinct
variables on each side, if precisely one of the variables occurs twice on each side,
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if all other variables occur once on both sides, and if the variables are ordered in
the same way on both sides.

A systematic notation for identities of Bol-Moufang type was introduced in
[21], according to

A xxyz
B xyxz
C xyyz
D xyzx
E xyzy
F xyzz

1 o(o(oo))
2 o((oo)o)
3 (oo)(oo)
4 (o(oo))o
5 ((oo)o)o

For instance, C25 is the identity x((yy)z) = ((xy)y)z. Any identity Xij (with
i < j) can be dualized to X ′j′i′ (with j′ < i′), following

A′ = F, B′ = E, C′ = C, D′ = D, 1′ = 5, 2′ = 4, 3′ = 3.

The equivalence classes for all identities of Bol-Moufang type in the variety
of loops have essentially been determined already in [8], with the programme
completed in [21]. With respect to this equivalence we can often replace identities
of Bol-Moufang type by shorter identities, for instance x(x · yz) = x(xy · z) is
equivalent to x ·yz = xy ·z. Such short, equivalent identities are used in Figure 2.

However, as we have seen while working with Moufang loops, the equivalence
classes do not carry over to magmas with inverses.

For the sake of completeness, we answer (with one exception) the following
question: Given an identity I of Bol-Moufang type or an identity listed in Fig-
ure 2, is a magma with inverses satisfying I necessarily a loop?

The answer is “yes” for: all identities equivalent to the C-identity, and all
identities equivalent to the left or right Bol identities. (In all three cases the
equivalence class consists of a single identity, and hence this is just a restatement
of the results in Section 4.)

The answer is “no” for: all identities equivalent to the left, middle, or right
nuclear square identities; all identities equivalent to the flexible identity; all iden-
tities equivalent to the left or right alternative identities; all identities equivalent
to the LC- and RC-identities; and, perhaps surprisingly, all identities equivalent
to the extra identity.

There are 4 Moufang identities of Bol-Moufang type, and they behave as de-
scribed in Section 4.

The answer is “yes” for the following identities equivalent to the associative
law: A24, A25, B34, B35, E13, E23, F14, F24.

The answer is “no” for the following identities equivalent to the associative
law: A12, A23, B12, B13, B24, C13, C23, C34, C35, D12, D13, D14, D25, D35,
D45, E24, E35, E45, F34, F45.
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All omitted proofs and counterexamples are easy to obtain with Prover9 and
Mace [15]. Each proof takes only a fraction of a second to find with a 2GHz
processor, and the counterexamples are of order at most 6.
We have accounted for all identities of Bol-Moufang type, except for B25 and

its dual E14, both of which are equivalent to the associative law in the variety of
loops.

Problem 5.1. Is every magma with inverses satisfying x((yx)z) = ((xy)x)z a
group?

We were not able to resolve the problem despite devoting several days of com-
puter search to it. If a counterexample exists, it is of order at least 14. We would
not be surprised to see that the problem holds for all finite magmas but fails in
the infinite case.

6. One-sided neutral element and one-sided inverses

Let Q be a groupoid. An element 1 ∈ Q is said to be a left (right) neutral
element if 1 · x = x (x · 1 = x) holds for every x ∈ Q. Given a possibly one-
sided neutral element 1, we say that x′ is a left (right) inverse of x if x′ · x = 1
(x · x′ = 1).
While defining groups in [9, p. 4], Marshall Hall remarks that associative

groupoids with a right neutral element and with right inverses are already groups.
He points to [14] for a discussion of associative groupoids with a right neutral el-
ement and left inverses that are not groups. Such groupoids are easy to find:

Example 6.1. Define multiplication on Q = {a, b} by xy = x, and note that
Q is associative. Moreover, a is a right neutral element and Q has left inverses
with respect to a. (By symmetry, b is also a right neutral element and Q has left
inverses with respect to b.) But Q does not have a two-sided neutral element and
hence is not a group.
Since associativity implies all identities of Bol-Moufang type, Q also shows

that a groupoid satisfying an identity of Bol-Moufang type with a right neutral
element and left inverses is not necessarily a loop.

It view of Hall’s remark, it is natural to ask whether Theorem 1.1 can be
analogously strengthened. We have:

Theorem 6.2. Let Q be a groupoid with a left neutral element and left inverses
satisfying one of (LB), (M1), (M2), (C). Then Q is a loop.

Proof: Thanks to Theorem 1.1, it suffices to show that Q has a two-sided
neutral element and two-sided inverses. This is once again easily accomplished
with Prover9. Here is a human proof for the identity (M2):
Assume that 1x = x and x′x = 1 for every x ∈ Q. With x = 1, (M2)

yields the flexible law. By (M2) and flexibility, yx = (x′x)y · x = x′ · x(yx) =
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x′ · (xy)x. Using x′ instead of x and x instead of y in the last equality, we deduce
xx′ = x′′ · (x′x)x′ = x′′ · 1x′ = x′′x′ = 1, so the inverses are two-sided. Then
x = 1x = (xx′)x = x(x′x) = x1, and the left neutral element 1 is two-sided, too.

�

Let

(RB) x(yz · y) = (xy · z)y

be the right Bol identity, the dual to (LB). Since (M1) is dual to (M2) and (C)
is self-dual, we have:

Corollary 6.3. Let Q be a groupoid with a right neutral element and right
inverses satisfying one of (RB), (M1), (M2), (C). Then Q is a loop.

The left Bol identity (LB) cannot be added to the list of identities in Corol-
lary 6.3, as the following example shows.

Example 6.4. Consider this groupoid:

0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

It has a right neutral element, two-sided inverses, satisfies (LB), but it is not a
loop.

However, we have:

Theorem 6.5. Let Q be a groupoid with a two-sided neutral element and right
inverses. If Q satisfies (LB) then Q is a loop.

Proof: Let x1 = 1x = x, xx′ = 1 for all x ∈ Q. By (LB), x′x = x′(x1) =
x′(x · x′x′′) = (x′ · xx′)x′′. Now, x′′ = (x′1)′ = (x′ · xx′)′, and thus the previous
equality yields x′x = (x′ · xx′)(x′ · xx′)′ = 1. We are done by Theorem 4.1. �

For related results on left loops, we refer the reader to [26], [27]. As for the
question If a quasigroup satisfies a given identity of Bol-Moufang type, is it a
loop? , see [13] and [22].
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[20] Phillips J.D., Vojtěchovský P., C-loops: An introduction, Publ. Math. Debrecen 2006,
no. 1–2, 115–137.
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