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Ternary quasigroups and the modular group

JONATHAN D.H. SMITH

Abstract. For a positive integer n, the usual definitions of n-quasigroups are rather
complicated: either by combinatorial conditions that effectively amount to Latin n-
cubes, or by 2n identities on n + 1 different n-ary operations. In this paper, a more
symmetrical approach to the specification of n-quasigroups is considered. In particular,
ternary quasigroups arise from actions of the modular group.
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1. Quasigroups

For a positive integer n, a (combinatorial) n-quasigroup is a set @ equipped
with an n-ary multiplication operation

Q" — Q5 (Tn,...,T1) = Tn ... 21N
such that, for an (n + 1)-tuple
(1.1) (Tn, ..., 21,70)

of elements of @) required to satisfy the condition

(1.2) Ty .. T = TQ,

specification of any n coordinates of (1.1) determines the remaining one uniquely.
Note that a combinatorial 1-quasigroup is just a set () with a permutation (self-
bijection) p : Q@ — @, or in other words a dynamical system with state space @
and invertible transition operator p.

For each index 1 < i < n, and for each choice zp, ..., %41, %;—1,. .., 21 of fixed
elements of an n-quasigroup @, a translation

(1.3) Ti(Xpy e ooy Tt 1, Tty -3 21) : Q — Q5 Ty — Xy ... T

is defined. The combinatorial definition of an n-quasigroup means precisely that
each translation is a permutation of the underlying set Q.
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The combinatorial definition of n-quasigroups may be reformulated in algebraic
terms of operations and identities. An (equational) n-quasigroup (Q, p, u*, ..., u™)
is a set Q equipped with n-ary operations p, ul, ..., u" satisfying the identities

(1.4) Tn ... Tig1 (Tn ... xlu)xi_l...xlui:xi

and

(1.5) Tn o Tl (Tn - eiph) iy .. mp =y

for each 1 < i < n. The operations p!,...,u" are described as divisions. Note

that the identity (1.4) gives the injectivity of the translation (1.3), while (1.5)
gives its surjectivity. Thus each equational n-quasigroup (Q, 1, b, ..., u™) yields
a combinatorial n-quasigroup (@, ). Conversely, a combinatorial n-quasigroup
(Q, i) yields an equational n-quasigroup (Q, p1, b, ..., ™), defining

Ty o oo Tig1TTi—1 ... T1U" = Ty

if and only if (1.2) holds.

2. Groups
For a positive integer n, consider the group M,, presented as
(0,7 | o™ =72 =1).
In other words, My, is the free product of two cyclic groups, one (o) of order n,
and one (1) of order 2.
Example 2.1. For n =1, M; is just the cyclic group (7) of order 2.

Example 2.2. For n = 2, Ms is the infinite dihedral group ([2, p.133]). Recall
that the dihedral group Dy of degree d and order 2d (the group of symmetries of
the regular d-gon) may be presented as

(2.1) (o,7 | o?=7%= (O'T)d =1)

(12, (1.53))).

Example 2.3. For n = 3, M3 is the modular group SLa(Z)/{£I2} ([8, p.128]).
For each element
a b
a=[e ]

of SLy(Z), a matrix of determinant 1 with integral entries, write the corresponding
coset {£A} in M3 as
a b
{r o)
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{0 -1 nd .o JO -1
7711 1 711 o0 [

one has 03 = 72 = 1, and SLo(Z)/{+1I2} is generated freely by o and 7, subject
to these order relations ([2, (7.25)], [8, p. 131]).

Setting

Lemma 2.4. Consider the symmetric group Sp4+1 = {0,1,...,n}
(a) Forn > 1, the group Sp+1 is a quotient of M),.
(b) S3= (0,7 |02 =712=(01)% =1).
(¢) Sy=(o,7|03=712=(o1)* =1).

PRrROOF: (a): Apply the First Isomorphism Theorem to the surjective homomor-
phism

(2.2) r:Mp— Spy1; 0~ (12 ... n), 7— (01).

(b): This is the case d = 3 of (2.1).

(c): See [2, (1.59)]. O
3. Spaces

For a positive integer n, an n-ary space (G, 0, 7) is a set G equipped with maps

(3.1) c:G—G; g—og
and
(3.2) 7T:G—G; g—Tg

satisfying 0™ = 72 = 1. The map o is known as the shift, while the map 7 is
known as the inversion. Note that n-ary spaces are left M,,-sets.

Example 3.1. For each positive integer n, each set G furnishes a trivial n-ary
space, on which both ¢ and 7 are the identity map idg.

Example 3.2. For n=1, each group G provides a unary space, with 7g = ¢g~1

for g in G.

Example 3.3. For n=2, the binary spaces are the reflerion-inversion spaces
of [9], the shift being described as reflezion in this case.

(a) For a field F, take G = F ~ {0,1}. Then G is a binary space, with
0g=1—gand 7g = g~ for points g of G ([9, Example 3.3]).

(b) The symmetric group Ss is a binary space. Taking o = (12) and 7 = (0 1),
the maps (3.1) and (3.2) are interpreted as left multiplications within S
— compare Lemma 2.4(b).
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Example 3.4. The symmetric group Sy is a ternary space. Taking o = (1 2 3)
and 7 = (0 1), the maps (3.1) and (3.2) are interpreted as left multiplications
within Sy — compare Lemma 2.4(c).

Example 3.5. Let R be a unital ring, and let U be a group of units in R. For a
positive integer n, consider G = U™. Define

o(tn, .. u2,u1) = (Up—1,-..,U1,Up)
and
_ -1 -1 -1
T(Un,y ... u2,u1) = (—upuy™ ~,. .., —ugul ,ul
for a point (up,...,u1) of G. Then G becomes an n-ary space.

4. Hyperquasigroups

For a positive integer n, an n-hyperquasigroup (or n-ary hyperquasigroup) is a
pair (Q,G) consisting of a set ) and an n-ary space G, with an n-ary action

(4.1) Q"xG— Q; (Tn,---,71,9) — Tn ... T1g

of G on Q, such that the (n-)hypercommutative law
(4.2) Tp... L2210 = Tp_1... T1Tp0g
and the (n-)hypercancellation law

(4.3) Tp ... 22(Tp ... T19)Tg = 71

are satisfied for all z1,...,2y in @ and g in G.

Remark 4.1. A hyperquasigroup (Q,G) may be construed as a two-sorted or
heterogeneous algebra ([4], [6]), with the n-ary space operations o and 7 on the
sort G, and (4.1) as a third operation.

Example 4.2. For each positive integer n, and for each n-ary space G, the empty
set forms an n-hyperquasigroup (0, G). The actions (4.1) reduce to idy.

Example 4.3. For each positive integer n, consider the trivial n-ary space ) as in
Example 3.1. Let Q be a set. Then (Q, ?) forms an n-hyperquasigroup, with (4.1)
as the insertion ) — Q. The hypercommutativity (4.2) and hypercancellation
(4.3) are vacuously satisfied.

Example 4.4. Forn =1, let G be a group, construed as a unary space according
to Example 3.2. Consider a right G-set ). For g in G and z in @, define the unary
action xg = xg. The hypercommutativity is trivial, while the hypercancellation

is just (zg)g~! = 2. Thus (Q,G) is a unary hyperquasigroup.
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Example 4.5. For each positive integer n, consider the trivial n-ary space {1}.

(a) For n =1, each set @ forms a unary hyperquasigroup (@, {1}) as a {1}-set
for the trivial group {1}, according to Example 4.4.

(b) For n = 2, a binary hyperquasigroup (@, {1}) is just a totally symmetric
quasigroup, with multiplication zjxo1.

(¢) For any positive n, let ) be an abelian group of exponent 2. Then (Q, {1})
forms an n-hyperquasigroup with

T1T2... Tpl =T122... Tn
for z1,...,xy in Q.
Example 4.6. For n = 2, binary hyperquasigroups reduce to hyperquasigroups

in the sense of [9].

(a) For a field F, consider the binary space G = F ~ {0, 1} of Example 3.3(a).
For a vector space @Q over F', define the binary action

Q*x G — Q; (z2,71,9) — x2(1 — g) + 719

Then (Q, G) forms a binary hyperquasigroup ([9, Proposition 5.1]).

(b) Let (@,-,/,\) be a (binary) quasigroup, and let G = S3, construed as
a binary space according to Example 3.3(b). Then (Q,G) is a binary
hyperquasigroup under the operations

wyl=z-y,  ayoro=u/y, Ty = z\y,
o=y, wyro=y/x,  wyor =y\z
([9, Proposition 5.2]).
Example 4.7. For a positive integer n and a unital ring R, consider the n-ary
space G of Example 3.5. Let () be a unital right R-module. Define the n-ary
action
Ty oo @1 (Upy ey U1) = Tpun + ... + x1U1

for z; in @ and (up,...,u1) in G. Then (Q, G) is an n-ary hyperquasigroup.

The meaning of hypercommutativity in an n-hyperquasigroup is immediate.
The significance of hypercancellation is interpreted as follows (compare [5], [9] for
the binary case).

Proposition 4.8. Let (Q,G) be an n-hyperquasigroup. For each point g in G,
define

§:Q" = Q" (xn,...,12,21) = (Tn,...,T2,Tn ... 219).
Then 7g is the two-sided inverse of ¢ in the semigroup of selfmaps on the set Q™.
PrROOF: The equation §7g = idgn is immediate from (4.3), while 7gg = idgn
follows from (4.3) with g replaced by 7g, recalling 77g = g. O
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Remark 4.9. For an n-ary operation
Q" — Q; (Tn,...,T1) > Tpn ... TIW
on a set ), the invertibility of the map
W:Q" = Q" (tn,...,x2,x1) — (Tpn,..., T2, Ty ... TIW)

does not mean that (Q,w) is a (combinatorial) n-quasigroup. For example, the
binary projection

m Q% — Q; (zg,71) — 11

has 71 = idgs.

5. From hyperquasigroups to quasigroups

By Proposition 4.5 and Remark 4.9, hypercancellativity alone is insufficient
for a quasigroup. The following theorem shows that quasigroups are obtained
from the combination of hypercommutativity and hypercancellativity. The binary
case appeared as [9, Theorem 6.1]. The proof of the general case given here is
conceptually simpler, although the details are more complex.

Theorem 5.1. For a positive integer n, let (Q,G) be an n-hyperquasigroup.
Then for each element g of the n-ary space G, there is an equational n-quasigroup

1—4

(Q,g,ﬂ,... Lot ol g ,U"_lTal_"g)

1

with multiplication g and divisions 0%~ Tal_ig forl1 <i<n.

PRrROOF: The identities (1.4) and (1.5) must be established for 1 < i < n, with

p = g and pt =o'~ Lrgl=ig. Consider the hypercancellativity

(5.1) Tn... 32 (Tn...219) T =21

as in (4.3). Applying hypercommutativity ¢ — 1 times to the inner operation of
(5.1) yields

i—1
Tn...T9 (In—(i—l) . T9X1 Ty - - - xn_(i_z)al g) Tg=11.

Applying hypercommutativity ¢ — 1 times to the outer operation then gives

Ty (j—1)--- T2 (:Cn_(i_l) ce 22X T - - - :En_(i_z)ai_lg) T .-

i—1
Ty (i-9) 0T =7T1.
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Replacing z;. by

Tht(i—1) for 1<k<n-—(i—1),
Tpy(i-1)—n for n—(i—2)<k<n
yields

(5.2) Ty oo Tigl (xn Y ai_lg) Ti1...210 rg = 15

Replace g in (5.2) by o'~ %g to obtain

11
Tn.. gl (... 319) Ty ... 210 T0 g =4,

1—

which is (1.4). Finally, replace g in (5.2) by 701 %g to obtain

1 1l
Ty oo Tigl (xn...xlol TO Zg)xi_l...xlgzxi,

which is (1.5). O

Corollary 5.2. For a positive integer n, let (Q,G) be an n-hyperquasigroup.
Then each point g of the n-ary space G yields a combinatorial n-quasigroup

(Q,9)-

6. The structure theorem

Let n be a positive integer. In the symmetric group Sp4+1 = {0,1,...,n}!
consider the involution
(2 n)(3 0 (% "TH), n even,;
a=2n)B3n-1)...
(”T'H "T"'?’), n odd

Define a surjective homomorphism
(6.1) My, — Spq1; T— T

by concatenating the surjective homomorphism r of (2.2) with conjugation by the
permutation « in Sy, 1. In particular,

(6.2) t=(12...n)%=(1n ... 2)
and

(6.3) F=(01)*=(01).

315
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Lemma 6.1. Let (Q,G) be an n-hyperquasigroup. Then
(6.4) Tp ... T2T1g =T0 & Tpm-.. V2xT1RTY = Tow

for each element w of M, point g in G, and elements xg, ...,z of Q.

PROOF: The equivalence (6.4) holds trivially for 7 = 1. Suppose that it holds for
a certain element 7 of M,,. Then

Tpg -+ L2xT1xg TG = LO7
= x(n—l)ﬁ e TNF 7 O = TO7

<~  Tpoxw--- L2267 Llow 079 = T0om

by the hypercommutativity (4.2) and (6.2). Thus the equivalence (6.4) holds for
om in My,. Again,

Ipw ... L2xX1g TG = TO7
< Tpg..- LQFTOz TG = 17

= TpFm--- TormXlrm T = TOo7m

by the hypercancellativity (4.3) and (6.3) Thus the equivalence (6.4) holds for 77
in My,. By induction, it follows that the equivalence (6.4) holds for each element
of M,,. O

Let (Q,G) be an n-hyperquasigroup. Set

G={g9:Q"—=QlgeG}
By Lemma 6.1, the action

Mp — Gl m— (g 7g)

factorizes through the homomorphism (6.1) to S,4+1. Thus the set G of n-ary
operations on @ is an Sy, 1-set. For a point ¢ in the space G, Corollary 5.2 yields
n-quasigroups (@, 7g) given by the Sy 1-orbit of g. The various n-quasigroups
in a given orbit are described as mutual conjugates or parastrophes. For binary
quasigroups, these concepts are well known ([1, Example 11.6.1], [7]). For unary
quasigroups, as invertible dynamical systems, conjugation corresponds to time
reversal.

The structure of (@, G) may now be summarized as follows (compare [9, The-
orem 6.7] for the binary case).

Theorem 6.2. Let n be a positive integer. Then each n-hyperquasigroup (Q, G)
yields an algebra structure (Q, G ) consisting of the union of mutually disjoint sets
of conjugate n-quasigroup operations.
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Remark 6.3. Let (Q, @, @', ..., ¢") be an n-quasigroup. Consider M,, as an
n-ary space (My, o, 7) given by the free left My,-set, so that the actions (3.1) and
(3.2) are the left multiplications by ¢ and 7 in the group M,,. Use the specification

Tp ... o211l =2p ... 22210

together with (6.4) to define an n-ary action of M, on Q. A comparison with
Theorem 5.1 and its proof shows that

for 1 < i < n. One then obtains (Q, M) as a hyperquasigroup. Within this
hyperquasigroup, the n-quasigroup (@,1) yielded by Theorem 5.1 realizes the
given n-quasigroup (Q, ¢). By Theorem 6.2, the n-quasigroups (Q, g) for g in M),
are the conjugates of (Q, ). B
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