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Möbius gyrovector spaces in quantum

information and computation

Abraham A. Ungar

Abstract. Hyperbolic vectors, called gyrovectors, share analogies with vectors in Eu-
clidean geometry. It is emphasized that the Bloch vector of Quantum Information and
Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a
vector. The decomplexification of Möbius addition in the complex open unit disc of a
complex plane into an equivalent real Möbius addition in the open unit ball B

2 of a
Euclidean 2-space R

2 is presented. This decomplexification proves useful, enabling the
resulting real Möbius addition to be generalized into the open unit ball B

n of a Eu-
clidean n-space R

n for all n ≥ 2. Similarly, the decomplexification of the complex 2 × 2
qubit density matrix of QIC, which is parametrized by the real, 3-dimensional Bloch
gyrovector, into an equivalent (in a specified sense) real 4× 4 matrix is presented. As in
the case of Möbius addition, this decomplexification proves useful, enabling the result-
ing real matrix to be generalized into a corresponding matrix parametrized by a real,
n-dimensional Bloch gyrovector, for all n ≥ 2. The applicability of the n-dimensional
Bloch gyrovector with n = 3 to QIC is well known. The problem as to whether the
n-dimensional Bloch gyrovector with n > 3 is applicable to QIC as well remains to be
explored.
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1. Introduction

Hyperbolic vectors, called gyrovectors, share analogies with vectors in Eu-
clidean geometry, as shown in Section 3 for vectors, in Figure 1, and for gyrovec-
tors, in Figure 2.

In the standard model of Euclidean geometry vectors are added by either (i)
ordinary vector addition, or by the (ii) parallelogram addition law, where the two
kinds of addition in (i) and (ii) are identically equal to one another.

In full analogy, in the Poincaré ball model of hyperbolic geometry gyrovectors
are added by either (i) Möbius vector addition, as we show in Section 2, or by
the (ii) hyperbolic parallelogram (gyroparallelogram) addition law, as shown in
[24, Figures 4–5] and [23], [26]. By a remarkable disanalogy, here the two kinds
of addition in (i) and (ii) are different .
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Möbius addition stems from the well-known Möbius transformation of the com-
plex open unit disc of a complex plane, as shown in Section 2. In order to extend
it from the complex open unit disc D of a complex plane to the open unit ball
Bn of a Euclidean n-space Rn, for any n ≥ 2, we decomplexify it in Section 2.
The resulting real Möbius addition turns out to be susceptible of obvious gener-
alization into higher dimensions. Furthermore, the generalized Möbius addition
admits scalar multiplication, giving rise to Möbius gyrovector spaces, presented
in Section 3. Möbius gyrovector spaces are studied in [20], [23], [26] where it is
shown that they form the algebraic setting for the Poincaré ball model of hyper-
bolic geometry just as vector spaces form the algebraic setting for the standard
model of Euclidean geometry.
The 3-dimensional Bloch gyrovector of QIC is presented in Section 4 as the

parameter of the so called qubit density matrix , which is the complex, Hermitian
2×2 matrix (21). In order to extend it from 3 dimensions to n > 3 dimensions
we decomplexify the complex qubit density matrix in Section 5, thus recovering
a real matrix which is susceptible of obvious generalization into higher dimen-
sions, as shown in Section 6. The resulting generalized real qubit density matrix
is parametrized by the n-dimensional Bloch gyrovector, which is regulated by
Möbius addition in the ball Bn of the Euclidean n-space Rn. By discovering
the n-dimensional Bloch gyrovector that parametrizes a generalized qubit density
matrix, and which is regulated algebraically by a Möbius gyrovector space we
have completed the task we face in this paper. It remains to explore whether the
n-dimensional Bloch gyrovector with n > 3 is applicable to QIC by extending the
use of the 3-dimensional Bloch gyrovector in the study of two-level quantum sys-
tems to the use of the n-dimensional Bloch gyrovector in the study of higher-level
quantum systems.

2. Möbius addition in the disc and the ball

Möbius transformations of the disc D,

(1) D = {z ∈ C : |z| < 1}
of the complex plane C offer in [24], [27] an elegant way to introduce the grouplike
loops known as gyrogroups . Ahlfors’ book [1], Conformal Invariants: Topics
in Geometric Function Theory, begins with a presentation of the Möbius self-
transformation of the complex open unit disc D,

(2) z 7→ eiθ a+ z

1 + az
= eiθ(a⊕z),

a, z ∈ D, θ ∈ R, where a is the complex conjugate of a [7, p. 211], [10, p. 185], [18,
pp. 177–178]. Suggestively, the polar decomposition (2) of Möbius transformation
of the disc gives rise to Möbius addition, ⊕,

(3) a⊕z =
a+ z

1 + az
.



Möbius gyrovector spaces in quantum information and computation 343

Möbius addition, ⊕, in the disc D is neither commutative nor associative. It
is, however, both a gyrocommutative and a gyroassociative binary operation that
possesses the grouplike structure known as a gyrocommutative gyrogroup, which
we motivate and define below.
Being noncommutative, Möbius addition gives rise to gyrations gyr[a, b], for all

a, b ∈ D, which are defined by the equation

(4) gyr[a, b] =
a⊕b

b⊕a
=
1 + ab

1 + ab
.

Gyrations, in turn, give rise to the gyrocommutative law of Möbius addition,

(5) a⊕b = gyr[a, b](b⊕a).

Being unimodular complex numbers, gyrations represent rotations of the disc D

about its center. The inverse gyration is, again, a gyration,

(6) (gyr[a, b])−1 = gyr[b, a]

for all a, b ∈ D. Furthermore, gyrations respect Möbius addition in the disc in the
sense that gyrations and Möbius addition are interchangeable,

(7) gyr[a, b](x⊕y) = gyr[a, b]x⊕ gyr[a, b]y

for all a, b, x, y ∈ D.
The gyrocommutative law (5) of Möbius addition is not terribly surprising since

it follows immediately from the gyration definition (4). But, we are not finished.
Coincidentally, the gyrations give rise to the left and right gyroassociative laws
as well,

(8)
a⊕(b⊕c) = (a⊕b)⊕ gyr[a, b]c

(a⊕b)⊕c = a⊕(b⊕ gyr[b, a]c)

for all a, b, c ∈ D, as one can readily check.
Coincidences in mathematics are not accidental. The coincidences in our study

of Möbius addition in the disc lead us to the tip of a giant iceberg, the notion
of gyrogroups and gyrovector spaces. Gyrations endow the Möbius disc groupoid
(D,⊕) with a rich grouplike structure. Furthermore, gyrations possess their own
rich structure, which reveals itself in important gyration identities as, for instance,
the left and right loop properties,

(9)
gyr[a, b] = gyr[a⊕b, b]

gyr[a, b] = gyr[a, b⊕a]
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for all a, b ∈ D, as one can straightforwardly check. Many other gyration identities,
along with their applications, are found in [20], [23], [26].
Thus, we are led by Möbius addition in the disc to the discovery of the gene-

ralized commutative group that we naturally call a gyrocommutative gyrogroup,
in which commutativity and associativity find a natural extension into gyrocom-
mutativity and gyroassociativity by means of special automorphisms called gy-
rations. Taking the key features of Möbius addition in the disc as axioms, the
formal definition of gyrogroups follows.

Definition 1 (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if its binary op-
eration satisfies the following axioms. In G there is at least one element, 0, called
a left identity, satisfying

(G1) 0⊕a = a

for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for each
a ∈ G there is an element ⊖a ∈ G, called a left inverse of a, satisfying

(G2) ⊖a⊕a = 0.

Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such
that the binary operation obeys the left gyroassociative law

(G3) a⊕(b⊕c) = (a⊕b)⊕ gyr[a, b]c.

The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the
groupoid (G,⊕), that is,
(G4) gyr[a, b] ∈ Aut(G,⊕),
and the automorphism gyr[a, b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is
called the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generated by any
a, b ∈ G possesses the left loop property

(G5) gyr[a, b] = gyr[a⊕b, b].

The gyrogroup axioms (G1)–(G5) in Definition 1 are classified into three classes.

(1) The first pair of axioms, (G1) and (G2), is a reminiscent of the group
axioms.

(2) The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms
in (1) and (2).

As in group theory, we use the notation a⊖b = a⊕(⊖b). In full analogy with
groups, gyrogroups are classified into gyrocommutative and non-gyrocommutative
gyrogroups.

Definition 2 (Gyrocommutative Gyrogroups). A gyrogroup (G,⊕) is gyrocom-
mutative if its binary operation obeys the gyrocommutative law

(G6) a ⊕ b = gyr[a, b](b ⊕ a)
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for all a, b ∈ G.

It is shown in [24] that gyrogroups are loops, so that they are of interest in loop
theory. Gyrogroups abound in group theory, as demonstrated in [8], [9], [6]. Some
first gyrogroup theorems, some of which are analogous to group theorems, are
presented in [23, Chapter 2]. Thus, in particular, the gyrogroup left identity and
left inverse are identical with their right counterparts, and the resulting identity
and inverse are unique, as in group theory. Furthermore, the left gyroassociative
law and the left loop property of gyrogroups are associated with corresponding
right counterparts.
Owing to the presence of complex numbers in Möbius addition law (3) in the

complex open unit disc D, Möbius addition in its complex form cannot be extended
into higher dimensions. In contrast, its real counterpart can be extended to higher
dimensions as we will find below. We therefore wish to translate Möbius addition
law (3) into its real counterpart. To obtain the translation we identify complex
numbers of the complex plane C with vectors of the Euclidean plane R

2 in the
usual way,

(10) C ∋ u = u1 + iu2 = (u1, u2) = u ∈ R
2,

i =
√
−1, so that the inner product and the norm in R2 are given by the equations

(11)
u·v = 1

2 (ūv + uv̄),

‖u‖ = |u|.

Accordingly, the translation of Möbius addition from its complex form in (3)
into a real form is obtained by the following chain of equations. For all u, v ∈ D

and all u,v ∈ B we have [13]

(12)

D ∋ u⊕v =
u+ v

1 + ūv

=
(1 + uv̄)(u + v)

(1 + ūv)(1 + uv̄)

=
(1 + ūv + uv̄ + |v|2)u+ (1 − |u|2)v

1 + ūv + uv̄ + |u|2|v|2

=
(1 + 2u·v + ‖v‖2)u+ (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2

= u⊕v ∈ B
2

thus translating Möbius addition, u⊕v, in the complex open unit disc D into
Möbius addition, u⊕v, in the real open unit disc B2 of the Euclidean plane R2.
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The first equation in (12) is a complex number equation. It is therefore re-
stricted to the two dimensions of the disc since complex numbers do not exist
in higher dimensions. The last equation in (12) is a vector equation, so that its
restriction to the disc B2 of the Euclidean two-dimensional space R2 is a mere
artifact. Indeed, it survives unimpaired in higher dimensional balls suggesting
the following definition of Möbius addition in the ball B of any real inner product
space V.

Definition 3 (Möbius addition in the ball). Let V be a real inner product space
[17], and let B be the open unit ball of V,

(13) B = {v ∈ V : ‖v‖ < 1}.
Möbius addition ⊕ in the ball B is a binary operation in B given by the equation

(14) u⊕v = (1 + 2u·v + ‖v‖2)u+ (1 − ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2
,

u,v ∈ B, where · and ‖·‖ are the inner product and norm that the ball B inherits
from its space V.

The binary operation ⊕ in (14) is well-defined in the ball since, following
Cauchy-Schwartz inequality, we have

(15) 1 + 2u·v + ‖u‖2‖v‖2 ≥ (1 + u·v)2 > 0

for all u,v ∈ B.
Remarkably, like the complex Möbius disc groupoid (D,⊕), also the real Möbius

ball groupoid (B,⊕) forms a gyrocommutative gyrogroup [23], [24], [25], [26], [27],
called a Möbius gyrogroup.
We thus see from (12) and Definition 3 that the decomplexification of the

complex Möbius addition u⊕v into its real counterpart u⊕v is rewarding. Unlike
the former, the latter admits a natural generalization into higher dimensions. In
Section 5 we will encounter a decomplexification of a complex density matrix,
which will prove rewarding as well, allowing an extension to higher dimensions.
Möbius addition in the ball B of any real inner product space V satisfies the

gamma identity

(16) γu⊕v = γuγv

√

1 + 2u·v + ‖u‖2‖v‖2

for all u,v ∈ B, where γu is the gamma factor

(17) γv =
1

√

1− ‖v‖2

in the ball B. For any v ∈ V we have the result that v ∈ B if and only if its
gamma factor γv is real. The gamma identity (16), along with inequality (15),
demonstrates that u,v ∈ B ⇒ u⊕v ∈ B as anticipated in Definition 3.



Möbius gyrovector spaces in quantum information and computation 347

3. Möbius scalar multiplication in the ball

Möbius addition in the ball admits scalar multiplication, turning itself into a
gyrovector space according to the following definition.

Definition 4 (Möbius scalar multiplication). Let (B,⊕) be a Möbius gyrogroup.
Then its corresponding Möbius gyrovector space (B,⊕,⊗) involves the Möbius
scalar multiplication r⊗v = v⊗r in B, given by the equation

(18)

r⊗v = (1 + ‖v‖)r − (1− ‖v‖)r
(1 + ‖v‖)r + (1− ‖v‖)r

v

‖v‖

= tanh(r tanh−1 ‖v‖) v‖v‖ ,

where r ∈ R, v ∈ B, v 6= 0; and r⊗0 = 0.

A

B

A′

B′

S(t) = A + (−A + B)t

−A + B = −A′ + B′

d(A,B) = ‖ − A + B‖

◮

◮

Figure 1. Vector space approach to the stan-
dard model of Euclidean geometry in the Eu-
clidean planeR2. Here, the common vector
addition, +, and scalar multiplication are em-
ployed with a vector−A + B from pointA to
pointB.

A

B

A′

B′

S(t) = A⊕(⊖A⊕B)⊗t

⊖A⊕B = ⊖A′⊕B′

d(A,B) = ‖⊖A⊕B‖

◮

◮

Figure 2. Gyrovector space approach to the
Poincaŕe model of hyperbolic geometry. Here,
Möbius gyrovector addition,⊕, and scalar
multiplication, ⊗, in the open unit diskB2

of R
2 are employed with a gyrovector⊖A⊕B

from pointA to pointB.

Gyrovector spaces are studied in [20], [23], [26], where it is shown that they
form the setting for hyperbolic geometry just as vector spaces form the setting for
Euclidean geometry. A gyrovector space approach to hyperbolic geometry, fully
analogous to the common vector space approach to Euclidean geometry [11], is
accordingly presented in [20], [23], [26]. As a striking example we note that the
segment between two points A, B ∈ R

2, A 6= B, of the Euclidean plane consists
of all the points

(19) S(t) = A+ (−A+B)t
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with 0 ≤ t ≤ 1, Figure 1. The directed segment from pointA to point B represents
a vector with value −A+B. Two vectors, −A+B and −A′ +B′ are equivalent
if they have equal values, that is, if −A + B = −A′ + B′, as shown in Figure 1.
Vectors are thus equivalence classes that add according to the parallelogram law.
Two equivalent vectors, like the vectors −A+B and −A′ +B′ in Figure 1, have
the same Euclidean length, ‖ − A+B‖ = ‖ − A′ +B′‖, and they are parallel.
In full analogy, the hyperbolic segment between two points A, B ∈ B2, A 6= B

of the two-dimensional Poincaré disc model of hyperbolic geometry consists of all
the points

(20) S(t) = A⊕(⊖A⊕B)⊗t

with 0 ≤ t ≤ 1, Figure 2, where ⊕ and ⊗ are Möbius addition and scalar multi-
plication in the disc B2. The directed hyperbolic segment from point A to point
B represents a hyperbolic vector, called a gyrovector , with value ⊖A⊕B. Two
gyrovectors, ⊖A⊕B and ⊖A′⊕B′ are equivalent if they have equal values, that
is, if ⊖A⊕B = ⊖A′⊕B′, as shown in Figure 2. Gyrovectors are thus equiva-
lence classes that add according to the gyroparallelogram law as explained, for
instance, in [24] and shown graphically in [24, Figure 8]. Clearly, two equivalent
gyrovectors, like the gyrovectors ⊖A⊕B and ⊖A′⊕B′ in Figure 2, have the same
hyperbolic length, ‖⊖A⊕B‖ = ‖⊖A′⊕B′‖.

4. The Bloch gyrovector of QIC

Is the “Bloch vector” of QIC a vector, illustrated in Figure 1, or a gyrovector,
illustrated in Figure 2? We will find in this paper that the “Bloch vector” of QIC
is actually a gyrovector rather than a vector.

The Bloch vector is well known in the theory of quantum information and
computation (QIC). We will find that, in fact, the Bloch vector is not a vector
but, rather, a gyrovector which is regulated by Möbius addition [4], [21], [22], [24].

A qubit is a two state quantum system completely described by the qubit density
matrix ρv [19],

(21) ρv =
1
2

(
1 + v3 v1 − iv2

v1 + iv2 1− v3

)

parametrized by the vector v = (v1, v2, v3) ∈ B3 in the open unit ball B3 of the
Euclidean 3-space R3. The vector v in the ball is known in QIC as the Bloch
vector. However, various identities that we present below suggest that it would
be more appropriate to consider it as a gyrovector regulated by Möbius addition
rather than a vector. Gyrovectors are the hyperbolic vectors illustrated in Figure 2
and studied in [20], [23], [26].
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The qubit density matrix ρv, v ∈ B3, possesses useful properties which are
important in QIC. For instance, its trace is 1 and its determinant is positive,

(22)

tr(ρv) = 1,

det(ρv) =
1

4γ2
v

=
1

22
(1− ‖v‖2) > 0.

The list of properties of the qubit density matrix ρv which make it useful in QIC
is presented in Section 5.
The product of two qubit density matrices is equivalent to a single qubit density

matrix preceded by a PSU(2) matrix,

(23) ρuρv = ρu⊕vR(u,v),

where

(24) R(u,v) = 1
2

(
1 + u·v + i(u× v)3 (u× v)2 + i(u× v)1

−(u× v)2 + i(u× v)1 1 + u·v − i(u× v)3

)

.

The matrix R(u,v) ∈ PSU(2) is an elegant matrix with parameters u,v ∈ B3

and with a positive determinant,

(25) 4 det(R(u,v)) = (1 + u·v)2 + ‖u× v‖2.

Some decompositions give rise to gyrogroups [8], [9] as, for instance, the polar
decomposition (2) that gives rise in Section 2 to the Möbius gyrocommutative
gyrogroup (D,⊕). Similarly, it follows from the decomposition (23) that the set

(26) D = {ρv : v ∈ B
3}

of all mixed state qubit density matrices forms a gyrocommutative gyrogroup,
with gyrogroup operation given by

(27) ρu⊙ρv = ρu⊕v

for all u,v ∈ B3. Clearly, the resulting gyrocommutative gyrogroup (D,⊙) of
qubit density matrices is isomorphic with Möbius gyrogroup (B3,⊕).
The qubit density matrix “symmetric product” of the four qubit density matri-

ces in the following equation, (28), which are parametrized by two distinct Bloch
vectors u and v, is free of PSU(2) matrices. It can be written as a single qubit
density matrix parametrized by the Bloch vector w, multiplied by the trace of
the matrix product,

(28) ρuρvρvρu = tr[ρuρvρvρu]ρw,
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u,v ∈ B3. Here tr[m] is the trace of a square matrix m, and w,

(29) w := u⊕(2⊗v⊕u) = 2⊗(u⊕v)

is a Bloch gyrovector which is determined by the two Bloch gyrovectors u and v
in terms of Möbius addition ⊕ and Möbius scalar multiplication ⊗. Identity (29)
is verified in [23, Theorem 6.7]. It clearly demonstrates the compatibility of some
qubit density matrix manipulations and the Möbius gyrovector space operations
⊕ and ⊗ in the open unit ball B3 of the Euclidean 3-space R3. The reason why the
qubit density product in (28) is free of PSU(2) matrices, unlike the qubit density
product in (23), will become clear following the definition of a “symmetric sum”
and a “symmetric product” in Definition 5 and its related result in Theorem 6.
The Poincaré ball model of hyperbolic geometry is algebraically regulated by

the Möbius gyrovector space structure of the ball [23], [26]. The link between
the qubit density matrix and the Möbius gyrovector plane thus exposes the link
with the Poincaré ball model of hyperbolic geometry, emphasized by the author
in [21], [22]. Following the author, this link was further emphasized and exploited
by Péter Lévay in [15], [16].
We now wish to identify the features of the qubit density matrix that link it

to the Poincaré ball model of hyperbolic geometry by means of Möbius addition
and scalar multiplication in the ball. For the identification of these features we
need the following definition and theorem, which are accompanied by illustrative
examples.

Definition 5. A symmetric sum of 1 + n elements vk ∈ G, k = 0, 1, . . . , n, of a
gyrogroup (G,⊕) or a gyrovector space (G,⊕,⊗), is given by the equation

(30)

n∑

k=0

⊕ vk = vn⊕((. . .v3⊕((v2⊕((v1⊕(v0⊕v1))⊕v2))⊕v3)) . . .⊕vn).

Note that in this nonassociative symmetric sum, (30), one starts the gyrosum-
mation with the central element v0, which is the only term that appears in the
symmetric sum once (naturally, the central element v0 could be the neutral ele-
ment of G and, hence, be unseen). Then, one gyro-adds v1 to v0 on both right
(first) and left (second). Then, similarly, one gyro-adds v2 to the result on both
right (first) and left (second), etc., as in (30).
A symmetric product of 2n + 1 qubit density matrices parametrized by the

n + 1 Bloch gyrovectors v0,v1,v2, . . . ,vn ∈ B
3, and raised to the respective

powers r0, r1, r2, . . . , rn ∈ R is the matrix product

(31) ρs =

n∏

k=0

⊗ ρrk
vk
= ρrn

vn
ρ
rn−1

vn−1
. . . ρr2

v2
ρr1
v1

ρr0
v0

ρr1
v1

ρr2
v2

. . . ρ
rn−1

vn−1
ρrn

vn
.
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(Naturally, the central qubit density matrix ρr0
v0
could be the identity matrix and,

hence, be unseen.)

Let ρs =
∏n

k=1⊗ ρ
rk
vk
be a symmetric matrix product of qubit density matrices.

Its Bloch gyrovectorw (or, equivalently, the Bloch gyrovectorw that it possesses)
is given by the equation

(32) w =

n∑

k=0

⊕ (rk⊗vk)

in the Möbius gyrovector space (B3,⊕,⊗).
Examples illustrating Definition 5 follow. The matrix product

(33) ρs = ρuρvρu

is symmetric, possessing the Bloch gyrovector

(34) w = u⊕(v⊕u).

Similarly, the matrix product

(35) ρs = ρuρvρvρu

is symmetric, possessing the Bloch gyrovector

(36) w = u⊕(2⊗v⊕u) = 2⊗(u⊕v).

The second identity in (36) results from the Two-Sum Identity in [23, Theorem 6.7,
p. 140].

Theorem 6. Let ρs be a symmetric matrix product of qubit density matrices,

(31), possessing the Bloch gyrovector w ∈ B3, (32). Then

(37) ρs = tr(ρs )ρw.

Theorem 6 follows from [26, Theorem 2.44]. It states that up to a positive

coefficient, tr(ρs ), a symmetric matrix product of qubit density matrices, ρs ,
is equivalent to a single qubit density matrix ρw parametrized by the Bloch gy-
rovector w that it possesses. The latter, in turn, is a gyrovector in the Möbius
gyrovector space (B3,⊕,⊗) generated by the operations ⊕ and ⊗ in B3, as (32)
indicates.
An illustrative example of a result that follows from Theorem 6 is presented

below.
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Example. Let

(38) ρs = ρn
v,

where n is a positive integer. By Definition 5, ρs is a symmetric product, pos-
sessing the Bloch gyrovector, (32),

(39) w =

n terms
︷ ︸︸ ︷

v ⊕ · · · ⊕ v = n⊗v.

Hence, by Theorem 6,

(40) ρn
v = tr(ρ

n
v)ρn⊗v

for all v ∈ B3 and n ∈ R. Remarkably, identity (40) remains valid for any real
n as well, expressing any real power n ∈ R of a qubit density matrix as a qubit
density matrix with a positive coefficient. We may note that this remarkable
result follows readily from the spectral theorem [14].

5. Properties of the complex qubit density matrix

The complex 2×2 qubit density matrix ρv in (21), v ∈ B3, proves useful in
QIC owing to the following five properties that it possesses.

(1) Hermiticity: The matrix ρv is Hermitian, that is,

(41) ρ
†
v = ρv.

(2) Unit trace: The matrix ρv has a unit trace,

(42) tr(ρv) = 1.

(3) Positivity: The matrix ρv has a positive determinant,

(43) det(ρv) > 0.

(4) Idempotency: If v ∈ ∂B3 lies on the boundary ∂B3 of the ball B3, then
ρv is idempotent, that is,

(44) ρ2
v = ρv, (‖v‖ = 1).

(5) Symmetric Product Property: If ρs is a symmetric matrix product of
qubit density matrices, (31), whose Bloch gyrovector is w, (32), then, by
(37) in Theorem 6,

(45) ρs = tr(ρs )ρw.
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Unlike property (5), properties (1)–(4) are well known in the literature. Prop-
erty (5) of the qubit density matrix ρv, discovered in [21], [22], demonstrates
that the natural home of the Bloch vector v ∈ B3 that parametrizes ρv is the
Möbius gyrovector space (B3,⊕,⊗) where, if parallel transported, it experiences
a geometric phase [5], [16], which is the angular defect in hyperbolic geometry as
studied in [20], [23], [26].
The set of all qubit density matrices ρv, v ∈ B

3, which is a set of 2×2 Hermitian
matrices, (21), is initially a four-dimensional real vector space. The condition of
unit trace reduces to a three dimensional submanifold in which one has to locate
the domain of positivity. The qubit density matrix ρv is parametrized by the
Bloch vector v ∈ B3, and it represents two-level quantum systems.
Progress in the quantum spin 1/2 case was triggered by the use of the Bloch

vector v ∈ B
3 as the parameter of the qubit density matrix ρv. Naturally, explor-

ers search for generalized Bloch vectors that can illuminate the study of arbitrary
spins. Owing to its importance, there is an intensive work in the extension of
the qubit density matrices ρv, and their Bloch vectors v ∈ B

3, to higher-level
quantum mechanical systems; see, for instance, [2], [3], [12]. Naturally, attempts
to generalize the qubit density matrix ρv in (21) are guided by its properties.
Thus, for instance, in the extension from two-level quantum mechanical systems,
called qubits, to three-level quantum mechanical systems, called qutrits, Arvind,
Mallesh and Mukunda [3] employed the 3×3 eight Gelmann Hermitian matri-
ces. Further extension is proposed by James, Kwiat, Munro and White [12], who
replace the eight Gelmann matrices by a set of 16 Hermitian 4×4 matrices.
Being complex, and having no geometric interpretation [28], it is difficult to ex-

tend the qubit density matrix ρv into a qubit density matrix that is parametrized
by a generalized Bloch vector v = (v1, v2, . . . , vn) ∈ Bn, n > 3, and that rep-
resents higher-level quantum mechanical systems. We therefore propose in (46)
below a real counterpart, µv, v ∈ B3, of ρv, as a candidate of a real qubit density
matrix. The advantage of replacing the complex qubit density matrix ρv, if pos-
sible, by its real counterpart µv lies on the result that the latter admits a natural
extension from the three-dimensional open unit ball B3 to the n-dimensional open
unit ball Bn of the Euclidean n-space Rn for any n ≥ 2.
For n = 3, let µv = µ3,v be the 4×4 real, symmetric matrix

(46) µv = µ3,v =
1
2












1− 1
2γ2
v

v1 v2 v3

v1
1

2γ2
v

+ v2
1 v1v2 v1v3

v2 v1v2
1

2γ2
v

+ v2
2 v2v3

v3 v1v3 v2v3
1

2γ2
v

+ v2
3












parametrized by the 3-dimensional vector v = (v1, v2, v3) ∈ B3. We will find that
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this vector v is a 3-dimensional gyrovector that possesses all the useful properties
of the Bloch 3-dimensional gyrovector in (21).
Clearly, the matrix µv = µ3,v has trace 1 and positive determinant in the

ball B3,

(47)

tr(µv) = 1,

det(µv) =
1

28
(1 − ‖v‖2)4 > 0.

The similarity between (47) and (22) is remarkable. Furthermore, it can be shown
straightforwardly that the matrix µv = µ3,v possesses properties (1)–(5) of the

qubit density matrix ρv, listed in Section 5, (41)–(45), where v ∈ B3 in (41)–
(45), except for property (4), where v ∈ ∂B3; and where Hermiticity reduces to
symmetry in property (1).
The properties that the complex qubit density matrix ρv, (21), for mixed state

qubits shares with its real counterpart µv, (46)–(47), are enhanced by their trace
equations

(48) tr(ρuρv) =
1

2
(1 + u·v) and tr(µuµv) =

1

4
(1 + u·v)2

for all u,v ∈ B3. The identities in (48) are useful, allowing the inner product of u
and v to be extracted from the trace of the product of their corresponding qubit
density matrices.
Hence, in the study of two-level quantum mechanical systems, one may explore

the possibility of replacing the Hermitian 2×2 qubit density matrix ρv in (21)
by its real counterpart, the symmetric 4×4 matrix µv in (46). The latter, in
turn, has the advantage of being susceptible of obvious generalization into higher
dimensions, as we will see in Section 6.

6. Extending the real density matrix

Let µn,v be the (n+ 1)× (n+ 1) symmetric matrix,

µn,v =
(49)

2γ2
v

(n − 3) + 4γ2
v

















1− 1
2γ2
v

v1 v2 v3 · · · vn

v1
1

2γ2
v

+ v2
1 v1v2 v1v3 · · · v1vn

v2 v1v2
1

2γ2
v

+ v2
2 v2v3 · · · v2vn

v3 v1v3 v2v3
1

2γ2
v

+ v2
3 · · · v3vn

...
...

...
...

. . .
...

vn v1vn v2vn v3vn · · · 1
2γ2
v

+ v2
n
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for any n ≥ 2, parametrized by the gyrovector v = (v1, v2, . . . , vn) ∈ Bn. The
matrix µn,v has trace 1 and positive determinant in the ball B

n,

(50)

tr(µn,v) = 1,

det(µn,v) =

(
1− ‖v‖2

(n+ 1)− (n − 3)‖v‖2

)n+1

> 0.

Clearly, the real qubit density matrix µn,v of (49), n ≥ 2, generalizes the real qubit
density matrix µv = µ3,v of (46), to which it reduces when n = 3. Furthermore,
for any n ≥ 2 the matrix µn,v in (49) possesses properties (1)–(5) in (41)–(45),

where v ∈ Bn, except for property (4), where v ∈ ∂B3; and where, in property
(1), Hermiticity reduces to symmetry. Indeed, if v ∈ ∂Bn lies on the boundary
∂Bn of the ball Bn then ‖v‖ = 1. In this special case the qubit density matrix
ρv and the real density matrices µn,v represent pure states (as opposed to mixed
states that ρv, v ∈ Bn represents) and are idempotent,

(51) ρ2
v = ρv, µ2

n,v = µn,v , (‖v‖ = 1)

for all n ≥ 2. Hence, suggestively, one may explore whether the matrices µn,v

with n > 3 remain useful as generalized qubit density matrices in the study of
higher-level quantum states.
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