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Further properties of 1-sequence-covering maps
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Abstract. Some relationships between 1-sequence-covering maps and weak-open maps
or sequence-covering s-maps are discussed. These results are used to generalize a result
from Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109
(2001), 301-314.
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1. Introduction

To find internal characterizations of certain images of metric spaces is one of
central problems in general topology. Arhangel’skii [1] showed that a space is
an open compact image of a metric space if and only if it has a development
consisting of point-finite open covers. In 1996, Lin [14] introduced the notion of
1-sequence-covering maps and proved that a space is a 1-sequence-covering and
s-image of a metric space if and only if it has a point-countable sn-network, and
a space is a l-sequence-covering, quotient and s-image of a metric space if and
only if it has a point-countable weak base. Then Lin and Yan [16] proved that
every sequence-covering, quotient and s-image of a locally separable metric space
is a local Ng-space. In that paper they also show the following

Theorem 1.1. Every sequence-covering and compact map of a metric space is a
1-sequence-covering map.

Recently, Xia [25] introduced the concept of weak-open maps, and by using it,
certain gf-countable spaces are characterized as images of metric spaces under
various weak-open maps. m-map is an another important map which was intro-
duced by Ponomarev in 1960, and m-images of metric spaces attract attention
again in [7], [11], [23].

The purpose of this paper is to establish some relationships between 1-sequence-
covering maps and weak-open maps or sequence-covering s-maps, and also to give
a generalization of Theorem 1.1.
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We assume that all spaces are To, all maps are continuous and onto, N denotes
the set of all natural numbers, w = NU{0}, and any convergent sequence includes
its limit point. Let f : X — Y be a map and P be a collection of subsets
of X. We denote st(z,P) = J{P € P:2 € P}, UJP =U{P : P € P},
AP =({P:PeP}, f(P)={f(P): PP}

Definition 1.2. Let X be a space and P C X.

(1) A sequence {zy} in X is called eventually in P, if {x,} converges to x,
and there exists m € N such that {z} U{zy, : n >m} C P.

(2) P is called a sequential neighborhood of z in X [4], if whenever {z,} is a
sequence converging to x in X, then {z,} is eventually in P.

(3) X is a sequential space [4], if whenever A is a non closed subset of X,
then there is a sequence in A converging to a point not in A.

Definition 1.3. Let P be a collection of subsets of X.

(1) P is point-countable, if each point z € X belongs to only countably many
members of P.

(2) P is a network at x in X, if x € P for every P € P, and whenever z € U
with U open in X, then x € P C U for some P € P.

Definition 1.4. Let P = [J{Py : z € X} be a cover of a space X. Assume that
P satisfies the following (a) and (b) for every z € X.

(a) Py is a network at .
(b) If Py, Py € Py, then there exists P € P, such that P C P N Ps.

(1) P is a weak base of X [1], if for G C X, G is open in X if and only if for
every ¢ € G, there exists P € P, such that P C G; P, is said to be a
weak neighborhood base at x.

(2) P is an sn-network for X [14], if every element of P, is a sequential
neighborhood of x for every x € X; P, is said to be an sn-network at x.

(3) A space X is gf-countable [1] (resp., snf-countable [6]), if X has a weak
base (resp., sn-network) P = | J{Py : © € X} such that P, is countable
for every z € X.

Remark 1.5 ([5]). (1) Weak base = sn-network, so gf-countable = sn -
countable.
(2) In a sequential space, weak bases <= sn-networks, so g f-countable <
sequential and sn f-countable.

Definition 1.6. Let f: X — Y be a map.

(1) fis a weak-open map [25], if there exists a weak base B = (J{By :y € Y'}
for Y, and for y € Y, there exists zy € f_l(y) such that for each open
neighborhood U of z,, By C f(U) for some By € By.
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(2) fisa l-sequence-covering map [14], if for each y € Y, thereis z, € f~1(y)
such that whenever {y,} is a sequence converging to y in Y, there is a
sequence {zy,} converging to x, in X with z,, € f~1(yy) for every n € N.

(3) f is a sequence-covering map [20], if every convergent sequence of YV is
the image of some convergent sequence of X.

(4) f is a quotient map [3], if whenever f~1(U) is open in X, then U is open
inY.

(5) f is an s-map [8] (vesp., a Lindeldf map [22], a compact map), if f~1(y)
is separable (resp., Lindel6f, compact) for each y € Y.

Definition 1.7. Let f: (X,d) — Y be a map, and (X, d) be a metric space.

(1) f is a mw-map [1], if for each y € Y and its open neighborhood U in Y,

d(f~1(y), X\ f7HU))> .
(2) fis aw-s-map, if f is both m-map and s-map.

Remark 1.8.
(1) 1-sequence-covering map = sequence-covering map.
(2) Sequence-covering map = quotient if Y is a sequential space.
(3) Weak-open map = quotient map.

2. Main results

Lemma 2.1. Let f : X — Y be a weak-open map. If X is first countable, then
Y is gf-countable.

PROOF: Let f be a weak-open map, and X be first countable. Since f is a
weak-open map, there exists a weak base B = (J{By : y € Y} for Y such that
for each y € Y there exists zy € f _1(y) with the property that for every open
neighborhood U of xy, there exists By € By such that B, C f(U). Because X is
first countable, there is a countable neighborhood base P, for every z € X. Now,
for each y € Y, we put

Fy=A{f(P): P € Pu,}, f:U{fy:yEY}.

Since for each y € Y, xy belongs to only countably many members of Pg,. It
implies that Fy is countable for every y € Y. So, we only need to prove that F is
a weak base Y. Indeed,

(1) Note that f is a continuous map, and Py, is a neighborhood base at xy, it
follows that F, is a network at y in Y.

(2) For each y € Y and U,V € Fy, there exist Pi, P> € Py, such that x, €
P1N Py, and f(P1) = U, f(P2) = V. Since Py, is a neighborhood base at xy,
there exists P € P, such that x;, € P C Py N P>. This implies that f(P) € Fy,
and f(P)C f(PLNP)CUNV.
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(3) Suppose that G is open in Y. Then for eachy € G, z, € f~1(G). Since Py,
is a neighborhood base at xy, there exists P € P, such that zy € P C ~Ha).
Thus, f(P) € Fy, and f(P) C G.

Conversely, suppose that G C Y is such that for each y € G, there exists
F € Fy satisfying F' C G. Then there exists P € Py, such that z, € P, and
F = f(P). Since P is an open neighborhood of zy, and f is a weak-open map,
there exists By € By such that B, C f(P). So, for each y € G, there exists
By € By such that By C G. Because B is a weak base, G is an open subset of Y.

By (1), (2), and (3), F is a weak base for Y. Therefore Y is gf-countable. O

Proposition 2.2. Let f : X — Y be a sequence-covering map, and Y be
snf-countable. If (1) or (2) holds, then f is a 1-sequence-covering map.

(1) f is an s-map, and X has a point-countable base.
(2) f is a Lindeléf map, and X is first countable.

PROOF: Let P = |J{Py : y € Y} be an sn-network for Y such that P, is countable
for every y € Y. We can suppose that Py is closed under finite intersections for
every y € Y.

(1) Let f be an s-map, and B a point-countable base of X.

Firstly, we prove that for each y € Y, there exists a point z, € f ~1(y) such
that whenever U is an open neighborhood of z,, there exists P € Py satisfying
P C f(U). Otherwise, there exists y € Y so that for every € f~1(y), there is
an open neighborhood U, of x such that P ¢ f(U;) for every P € P,. Since B
is a base of X, for each z, there exists B, € B such that x € B, C U,. This
implies that for every z € f~1(y), P ¢ f(Bg) whenever P € P,. On the other
hand, because B is a point-countable base and f _l(y) is a separable subset of X,
it follows that { B, : @ € f~1(y)} is countable. Assume that {B, :z € f~1(y)} =
{Bm:meN},and Py ={F, :ne N}. Put Ry ={P, =  F;:neN} It
is easy to see that Ry C Py, and P41 C Py, for every n € N. Hence, for each
m,n € N, there exists zn m € Pp\ f(Bm). For n > m, we denote y = xy m with
k =m+n(n —1)/2. Since Py is a network at y and P41 C P, for each n € N,
{yr} is a sequence converging to y in Y. Because f is a sequence-covering map,
{y} is an image of some sequence {x,} converging to z € f~!(y) in X. Since
z € f~Ny) € U{Bm : m € N}, there exists mg € N such that 2 € By,,. So
{z}U{ap : k > ko} C B, for some kg € N. Thus, {y}U{yg : k> ko} C f(Bmyg)-
But if we take k > ko, then there exists n > mg such that y; = Tpn,mg, and it
implies that @y mg € f(Bmg). This contradicts to Znmg € Pn \ f(Bmy)-

We now prove that f is a 1-sequence-covering map. Suppose that y € Y. By the
above proof there is z; € f~!(y) such that whenever U is an open neighborhood
of zy, there exists P € Py satisfying P C f(U). Denote { B, : n € N} a countable
neighborhood base at  such that By,1 C By, for every n € N. Let {y,} be any
sequence in Y, which converges to y. Now, we choose a sequence {zp} in X as
follows.
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Since By is an open neighborhood of zy, by the above argument, there exists
Py, € Py satisfying P, C f(Bp) for every n € N, and by assumption every
P € Py is a sequential neighborhood. It follows that for each n € N, f(Bj) is a
sequential neighborhood of y in Y. Hence, for each n € N, there exists i, € N
such that y; € f(Bp) for every i > iy,. Assume that 1 < iy, < ipy1 for each n € N.
Then for each j € N, we take

Z_{Zjef_l(yj) if j <,
7 g e fNy) N Br i i <5 < ing1.
Denote S = {z; : j > 1}. Then S converges to zy in X and f(S) = {yn}.

(2) Let f be a Lindel6f map, and X be first countable. Firstly, we prove that
for each y € Y, there exists zy € f _1(y) such that for every neighborhood U of
xy, there exists P € Py satisfying P C f(U). Indeed, if not, there exists y € ¥’
such that for each z € f~1(y), there exists an open neighborhood U, satisfying
P ¢ f(Uy) for every P € Py. Since f is a Lindelof map, and {Uy : = € f~1(y)}
is an open cover of f~1(y), there exists a countable family {U, : n € N} C {U, :
x € f~1(y)} such that f~1(y) C U{Un : n € N}. Now, using the argument from
the proof of (1), this leads to a contradiction. Then, using again the proof of (1),
we obtain that f is a 1-sequence-covering map. ([

Corollary 2.3. Let f: X — Y be a map. If one of the following conditions is
satisfied, then f is a 1-sequence-covering map.
(1) f is a sequence-covering s-map, X has a point-countable base and Y is
g f-countable.
(2) f is a sequence-covering Lindel6f map, X is first countable and Y is gf-
countable.
(3) f is a weak-open map and X is first countable.

PrOOF: It follows from Proposition 2.2 and Remark 1.5 that both (1) and (2)
imply that f is 1-sequence-covering. Assuming (3), because f is a weak-open map
and X is first countable, it follows from Lemma 2.1 that Y is g f-countable. Since
f is a weak-open map, for each y € Y, there exists xy € f_l(y) such that for
every neighborhood U of zy, there exists P € Py satisfying P C f(U). Then
using the proof of Proposition 2.2(1), we have f is 1-sequence-covering,. O

Corollary 2.4 ([14]). Every open map of a first countable space is 1-sequence-
covering.

Theorem 2.5. If f : X — Y is a sequence-covering mw-s-map, then f is a
1-sequence-covering map.

PRroOF: Firstly, we prove that Y is snf-countable. Let f : (X,d) — Y be a
sequence-covering 7-s-map, and (X, d) be a metric space. For each n € N, denote

Fn = {f[B(z%)} :zeX}, with B(z, %) - {yeX:d(z,y) < %}
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It is clear that ;41 refines Fy, for each n € N. Now, for each z € Y, we put
Pr = {st(x,Fn) :n €N}, P=|J{Py:2€Y}. Then,

(i) It is obvious that P, is countable for every z € Y.

(ii) Let U be an open neighborhood of x. Since f is a m-map, there exists
n € N such that d(f~1(z), X \ f~YU)) > 1 . Take m € N such that m > 2n. It
is easy too see that if z € f[B(z, L )] for some z € X, then B(z, —) c 7Y,
so f[B(z, %)] C U. Since

st(z, Fm) = U {f[B(z, %)} :B(z, %) Nl x) # (Z)},

this implies that st(z, Fy,) C U. Therefore Py is a network at x.

(iii) Let Py, P» € Pg. Then there exist m,n € N such that P; = st(x, Fy,), and
Py = st(x, Fp). Pick k € N such that £ > max{m,n} and put P = st(z, Fy). It is
obvious that P € P,. Suppose y € P = st(x, F},); then there exists z; such that
y € f[B(#1, k)] € Fy. Since Fy, refines Fyy, and Fy,, there exist f[B(z2, m)] € Fm
and f[B(z3,2)] € Fy, such that f[B(z1,4)] C f[B(z2, %)), and f[B(z1,1)] C
fIB(z3,)]. Thus y € f[B(z2, )] N f[B(z3,3)], s0 y € st(x, Frm) N st(w, Fn).
Therefore P C P N Ps.

(iv) Suppose P € P, and let {zy,} be any sequence in Y which converges to x
in Y. Because f is a sequence-covering map, {x,} is the image of some sequence
{21} converging to z € f~1(z) in X. Since P € P,, there exists m € N such that

1
P =st(z, Fn) = U{f{B(z,E)} 7 @) B (5, —) 0},

Since {z,} converges to z € f~1(x) and [ J{B(z, %) O )ﬂB(z —) #£0}isa
neighborhood of f~1(z), {zn} is eventually in J{B(z, =) : f~1(z)NB(z, L) # 0}.
This implies that {x,} is eventually in P. Hence, P is a sequential neighborhood
of x in Y. Therefore, Y is sn f-countable.

Then, it follows from Proposition 2.2(1) that f is a 1-sequence-covering map.
O

Remark 2.6. Since every compact map of a metric space is a m-s-map, Theorem 2.5
is a generalization of Theorem 1.1. Furthermore, this generalization is proper.

Example 2.7. There is a sequence-covering m-s-map f : X — Y of a metric
space X which is not a sequence-covering compact map.

ProOOF: Indeed, let R be the real line with usual Euclidean topology. Denote
X =R and Y = (—o0;0]. Now, we define f: X — Y by

[t if e (—o0;0]
f(t)_{o if te [0;+00).
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Then, we have
(1) f is a surjective, continuous s-map. It is obvious.
(2) fis a m-map. Indeed, let y € (—o0; 0] and U be an open neighborhood of y.

If y = 0, then f~1(0) = [0, +00) and there is ¢ > 0 such that 0 € (—¢;0] C U.
Hence, we have

A7) RASHW)) 2 d([0,4+00), R\ F 7 [(—e50]])
= d([O7 +00), (—o0; —5]) >e>0.

If y # 0, then f~1(y) = {y} and there is € > 0 such that (y — e,y +¢) C U. So,

we have

A7) R\ STHO) 2 d({yh R S - sy +9)])

=d(y,(—<>0;y—6] ly+&; 0]) >e>0.

Therefore, f is a m-map.

(3) f is a sequence-covering map. In fact, suppose S = {y, : n € w} is any
sequence converging to yo in Y. Since Y € X, S = {yp : n € w} C X. By
definition of f, we have f(ypn) = yn, for every n € w. Therefore f is a 1-sequence-
covering map.

(4) f is not a compact map. Since f~1(0) = [0,+0c), and [0, +00) is not
compact in R, it follows that f is not compact.

By Corollary 3.6 in [25], Remark 1.8 and Theorem 2.5, we get O

Corollary 2.8. Let f : M — X be a map. If M is a metric space, then the
following are equivalent:

(1) f is a weak-open m-s-map;

(2) f is a 1-sequence-covering, quotient 7-s-map;

(3) f is a sequence-covering, quotient T-s-map.

Corollary 2.9. Let f : M — X be a map. If M is a metric space, then the
following are equivalent:

(1) f is a weak-open compact map;
(2) f is a 1-sequence-covering, quotient compact map;
(3) f is a sequence-covering, quotient compact map.

ProoF: It follows immediately by Corollary 2.8. O
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