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A class of commutative loops with

metacyclic inner mapping groups

Aleš Drápal

Abstract. We investigate loops defined upon the product Zm × Zk by the formula
(a, i)(b, j) = ((a + b)/(1 + tf i(0)fj (0)), i + j), where f(x) = (sx + 1)/(tx + 1), for
appropriate parameters s, t ∈ Z

∗

m. Each such loop is coupled to a 2-cocycle (in the
group-theoretical sense) and this connection makes it possible to prove that the loop
possesses a metacyclic inner mapping group. If s = 1, then the loop is an A-loop.
Questions of isotopism and isomorphism are considered in detail.
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Let m ≥ 3 be an integer, and let the operation

(a, i) · (b, j) = ( (−1)ij(a+ b), i+ j)

be defined upon Zm × Z2. The operation yields a commutative loop, say Q, in
which (0, 0) is the unit element.
The middle nucleus Nµ contains every (b, 0) since

(a, i)(b, 0) · (c, j) = ((−1)ij(a+ b+ c), i+ j) = (a, i) · (b, 0)(c, j)

for all a, c ∈ Zm and i, j ∈ Z2. We also have

(b, 0)(0, 1) · (0, 1) = (−b, 0) and (b, 0) · (0, 1)(0, 1) = (b, 0).

The left nucleus Nλ can thus contain (b, 0) only when 2b = 0, and one easily
derives that Nλ = 1 when m is odd. Furthermore, since we assume m ≥ 3, there
exists b ∈ Zm with 2b 6= 0. Hence (0, 1) /∈ Nµ and Nµ = Zm × {0}.

The inner mapping L(x, y) = L−1
xy LxLy is always trivial when y ∈ Nµ. To

characterize all inner mappings of Q it thus suffices to assume x = (a, i) and
y = (b, 1). We obtain mappings

(c, 0) 7→ ((−1)ic, 0), (c, 1) 7→ ((−1)i(c − 2a), 1),
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and hence InnQ, the inner mapping group, is isomorphic to the dihedral
group D2m.

The purpose of this paper is to introduce a class of loops that can be regarded
as a generalization of this initial example. We shall be constructing loops Q in
which Nµ E Q is a cyclic group of order m, Q/Nµ is a cyclic group of order k,
Nλ = Nρ = 1, and the inner mapping group InnQ is metacyclic of order mk (and
embeds into the holomorph Zm ⋉ Z

∗
m).

These loops are defined by formula

(a, i) · (b, j) =

(

a+ b

1 + tf i(0)f j(0)
, i+ j

)

,

where f : x 7→ (sx+ 1)/(tx+ 1) is an appropriate linear fractional mapping.

This formula was discovered while studying loops Q with | InnQ| = pq, where
q < p are primes. Such loops were first investigated by Niemenmaa et al. in a
series of papers [12], [13], [11], [4], [5]. The goal was to show that such loops are
always solvable. That was proved in [6], where there were also established several
structural properties of such loops.

It seems to be possible to exactly describe all centerless loops Q with | InnQ| =
pq. They form several classes, three of which have already obtained a detailed
attention [7], [8], [9]. This paper discusses a fourth class. Preliminary calculations
indicate that this class contains, up to isotopy, all commutative cases, and that
there exist only two further classes.

In the future one can hope to obtain similar results for all centerless loops with
a metacyclic inner mapping group. That is the main reason why in this paper we
do not restrict our attention to the cases m = p and k = q which are presently
the most relevant.

To connect the general formula with our initial example, set s = −1 and t = −2.
Then f(0) = 1, f(1) = 0, and (1− 2f(0)f(0))−1 = −1.

Section 1 presents the key technical result that associates a linear fractional
mapping f with a group-theoretical 2-cocycle. In Section 2 we introduce a general
loop construction that depends upon a cocycle ϑ : G × G → R∗, where R is
a commutative ring, and derive some basic properties of this construction. In
Section 3 we start to investigate loops with operations determined by a linear
fractional mapping. The formula will be used not only for Zm, but for any
moduleM over a commutative ring R. In this broader setting the linear fractional
mapping f : x 7→ (sx+1)/(tx+1), x ∈ R, is assumed to be such that 1+tf i(0)f j(0)
is an invertible element in R for all i, j ∈ Z. The cocycle identity is then used to
show that many required properties of InnQ are true under these more general
assumptions as well.

In Section 4 we explain when different linear fractional mappings yield isomor-
phic loops, and in Sections 5 and 6 we pay attention to the questions of isotopism.
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Section 7 then reiterates the main results for the case when R = Zm. In this sec-
tion we also explain why it is easy to construct examples of the investigated loops.
If s = 1, then the constructed commutative loops are A-loops, i.e. the loops in

which every inner mapping is an automorphism (Theorem 3.6). A-loops were first
studied by Bruck and Paige [3]. Diassociative A-loops are Moufang, by Kinyon,
Kunen and Phillips [10]. It is not known if there exists a nonassociative finite
simple A-loop. In fact, it seems difficult to construct a nontrivial finite A-loop
with a trivial middle nucleus. Our loops are commutative, but not diassociative,
and the factor over the middle nucleus is associative.

1. Cocycles and fractional mappings

Let R be a commutative ring and let f be a partial mapping R → R. We shall
say that f is 0-bijective if

(i) f i(0) is defined for each i ≥ 1;

(ii) for each i ≥ 1 there exists a unique y ∈ R such that f i(y) is defined and
equal to 0; and

(iii) f(0) ∈ R∗.

A partial mapping f : R → R is said to be fractional linear if there exist
a, b, c, d ∈ R such that ad− bc ∈ R∗ and f : x 7→ (ax+ b)/(cx+ d). The mapping
f is regarded as defined at x ∈ R exactly when cx+d ∈ R∗. (There are obviously
more general ways to express that a fraction yields an element of R. They may
turn out to be useful in future.)

Lemma 1.1. Let f be a (partial) linear fractional mapping R → R. Then f is
injective. If f is 0-bijective, then f−1 is a 0-bijective linear fractional mapping
as well, and there exist a, b ∈ R∗ and c ∈ R such that f(x) = (ax + b)/(cx + 1)
whenever f is defined at x. The inverse mapping can be expressed as x 7→
(−x+ b)/(cx − a).

Proof: We assume that f(x), when defined, is equal to (ax+ b)/(cx+ d), where
ad − bc ∈ R∗. If f(x) = f(y), then (ax + b)(cy + d) = (ay + b)(cx + d), (ad −
bc)(x − y) = 0 and x = y. Hence f has to be injective.
We have f(0) = b/d, and so d ∈ R∗, since f is assumed to be defined at 0.

Thus (a, b, c, d) can be replaced by (ad−1, bd−1, cd−1, 1) and we can assume d = 1.
Then b = f(0) ∈ R∗, by the definition of a 0-bijective mapping. There also has
to exist x ∈ R with f(x) = 0, and we see that this takes place if and only if
ax+ b = 0 and cx+ 1 ∈ R∗. Now, ax+ b = 0 and b ∈ R∗ yield a ∈ R∗.
Let us turn our attention to the inverse mapping. The equality y = (ax +

b)/(cx + d) is completely equivalent to x = (−dy + b)/(cy − a) only when both
cx+ d and cy − a belong to R∗. If this is true for cx+ d, then we get

cy − a = c
ax+ b

cx+ d
−

acx+ ad

cx+ d
=

cb − ad

cx+ d
∈ R∗,
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and one can proceed in the converse direction as well. We see that the mapping
x 7→ (−dx+ a)/(cx − a) realizes the inverse of f , and is also 0-bijective. �

Fix now a 0-bijective fractional linear mapping f : x 7→ (ax+ b)/(cx+ 1). We
shall write γ(i) as a shortcut for f i(0), i ∈ Z.

Lemma 1.2. The element b+ cγ(i)γ(j) belongs to R∗ for all i, j ∈ Z, and

γ(i+ j) =
bγ(i) + bγ(j) + (a − 1)γ(i)γ(j)

b+ cγ(i)γ(j)
.

Proof: For j = 0 the statement reduces to b ∈ R∗ and γ(i) = (bγ(i))/b, which
is clearly true. We shall proceed by induction on j ≥ 0.

By the definition of γ and by the induction assumption,

γ(i+ j + 1) =
aγ(i+ j) + b

cγ(i+ j) + 1

=
abγ(i) + abγ(j) + (a2 − a)γ(i)γ(j) + b2 + bcγ(i)γ(j)

cbγ(i) + cbγ(j) + (ac − c)γ(i)γ(j) + b+ cγ(i)γ(j)
,

where the denominator belongs to R∗. We also have cγ(j) + 1 ∈ R∗, and hence
the fraction can be also written as

bγ(i)(cγ(j) + 1) + (aγ(j) + b)(b + (a − 1)γ(i))

b(cγ(j) + 1) + γ(i)c(aγ(j) + b)

=
bγ(i) +

aγ(j)+b
cγ(j)+1

(b+ (a − 1)γ(i))

b+
aγ(j)+b
cγ(j)+1

γ(i)c
=

bγ(i) + bγ(j + 1) + (a − 1)γ(i)γ(j + 1)

b+ cγ(i)γ(j + 1)
,

where all of the denominators belong to R∗.

For j ≤ 0 one can use the mapping g(x) = f−1(x) = (a−1x−a−1b)/(a−1c+1),
by Lemma 1.1. The preceding part of the proof yields

γ(i+ j) = g−i−j(0) =
−a−1bg−i(0)− a−1bg−j(0) + (a−1 − 1)g−i(0)g−j(0)

−a−1b − a−1cg−i(0)g−j(0)

=
bγ(i) + bγ(j) + (a − 1)γ(i)γ(j)

b+ cγ(i)γ(j)
,

for all j ≤ 0 and i ∈ Z, and hence the statement holds for all i, j ∈ Z. �
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Lemma 1.3. For all i, j, k ∈ Z

cγ(i+ j)γ(i)γ(j)γ(k) + bγ(i)γ(j) + bγ(i+ j)γ(k)

= cγ(i)γ(j)γ(k)γ(j + k) + bγ(j)γ(k) + bγ(i)γ(j + k).

Proof: We shall proceed by induction on k ≥ 0. The case k = 0 is clear. The
induction step rests in proving A1(i, j, k) = 0 under the assumption that the
equality holds for i, j and k, where

A1(i, j, k) = cγ(i+ j)γ(i)γ(j)γ(k + 1)

+ bγ(i)γ(j) + bγ(i+ j)γ(k + 1)

− cγ(i)γ(j)γ(k + 1)γ(j + k + 1)

− bγ(j)γ(k + 1)− bγ(i)γ(j + k + 1).

Substitute

γ(k + 1) =
aγ(k) + b

cγ(k) + 1
and γ(j + k + 1) =

aγ(j + k) + b

cγ(j + k) + 1
,

and multiply A1(i, j, k) by the product of cγ(k) + 1 and cγ(j + k) + 1. The
condition A1(i, j, k) = 0 is then equivalent to A2(i, j, k) = 0, where

A2(i, j, k) = cγ(i+ j)γ(i)γ(j)(aγ(k) + b)(cγ(j + k) + 1)

+ bγ(i)γ(j)(cγ(k) + 1)(cγ(j + k) + 1)

+ bγ(i+ j)(aγ(k) + b)(cγ(j + k) + 1)

− cγ(i)γ(j)(aγ(k) + b)(aγ(j + k) + b)

− bγ(j)(aγ(k) + b)(cγ(j + k) + 1)

− bγ(i)(cγ(k) + 1)(aγ(j + k) + b).

Express now A2(i, j, k) as aA3(i, j, k) + bA4(i, j, k) in such a way that A4(i, j, k)
has no term containing the parameter a. Then

A3(i, j, k) = cγ(i+ j)γ(i)γ(j)γ(k) + bγ(i+ j)γ(k)− bγ(j)γ(k)− bγ(i)γ(j + k)

+ cγ(j + k) (cγ(i+ j)γ(i)γ(j)γ(k) + bγ(i+ j)γ(k)− bγ(j)γ(k))

− bcγ(i) (γ(j)γ(j + k) + γ(j)γ(k) + γ(k)γ(j + k))

− acγ(i)γ(j)γ(k)γ(j + k) = (by the induction assumption)

= cγ(i)γ(j)γ(k)γ(j + k)− bγ(i)γ(j)

+ cγ(j + k) (cγ(i)γ(j)γ(k)γ(j + k) + bγ(i)γ(j + k)− bγ(i)γ(j))

− bcγ(i) (γ(j)γ(j + k) + γ(j)γ(k) + γ(k)γ(j + k))
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− acγ(i)γ(j)γ(j + k)γ(k).

We can thus write A3(i, j, k) as γ(i)A5(i, j, k), where

A5(i, j, k) = γ(j + k)(b + cγ(j)γ(k))− bγ(j + k)− bγ(j)

+ c(γ(j + k))2(b + cγ(j)γ(k))

− bc (2γ(j + k)γ(j) + γ(k)γ(j + k) + γ(j)γ(k))

− acγ(j)γ(j + k)γ(k).

Replacing γ(j + k)(b + cγ(j)γ(k)) with bγ(j) + bγ(k) + aγ(j)γ(k) − γ(j)γ(k) is
possible by Lemma 1.2. By doing so we get

A5(i, j, k) = bγ(k) + aγ(j)γ(k)− γ(j)γ(k)− bγ(j + k)

+ cγ(j + k)(bγ(j) + bγ(k)− γ(j)γ(k))

− bc (2γ(j)γ(j + k) + γ(k)γ(j + k) + γ(j)γ(k))

= bγ(k) + aγ(k)γ(j)− γ(k)γ(j)− γ(j + k)(b + cγ(j)γ(k))

− bcγ(j)γ(j + k)− bcγ(j)γ(k)

= γ(k)(b+ (a − 1)γ(j))− bγ(j)− bγ(k) + (1− a)γ(j)γ(k)

− bcγ(j)(γ(j + k) + γ(k))

= − bγ(j)(1 + c(γ(j + k) + γ(k))).

Thus aA3(i, j, k) = −abγ(i)γ(j)(1 + c(γ(k) + γ(j + k))), while A4(i, j, k) is equal
to

(cγ(i+ j)γ(i)γ(j)+ cγ(i)γ(j)γ(k)+γ(i)γ(j)+ bγ(i+ j)− bγ(j)) · (1+ cγ(j+k))

− bγ(i)(cγ(k) + 1)− bcγ(i)γ(j).

We have cγ(i+ j)γ(i)γ(j) + bγ(i+ j) = bγ(i) + bγ(j) + aγ(i)γ(j)− γ(i)γ(j), by
Lemma 1.2. Hence A4(i, j, k) = γ(i)A6(i, j, k), where

A6(i, j, k) = (1 + cγ(j + k)) · (cγ(j)γ(k) + b+ aγ(j))

− bcγ(k)− b − bcγ(j)

= cγ(j + k)(cγ(j)γ(k) + b)

+ cγ(j + k)aγ(j) + cγ(j)γ(k) + aγ(j)− bcγ(j)− bcγ(k).

Setting γ(j + k)(cγ(j)γ(k) + b) = bγ(j) + bγ(k) + aγ(j)γ(k)− γ(j)γ(k) yields

A6(i, j, k) = aγ(j)(1 + c(γ(k) + γ(j + k))).
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Therefore A2(i, j, k) = aA3(i, j, k) + bγ(i)A6(i, j, k) = 0. This finishes the induc-
tion step. We have proved that the equality of the lemma holds for all i, j ∈ Z

and all k ≥ 0.
For such integers the equality also holds when the mapping γ : h 7→ fh(0) is

replaced by the mapping h 7→ f−h(0), by Lemma 1.1, and that allows an easy
verification of the case k < 0. �

We shall be considering group-theoretical cocycles only for the case of central
extensions. If H and G are groups, with H being commutative, then all 2-cocycles
form the group Γ 2(G, H), where σ : G×G → H belongs to Γ 2(G, H) if σ(x, 1) =
σ(1, x) = 1 for all x ∈ G and if the equality σ(x, y)σ(xy, z) = σ(x, yz)σ(y, z) holds
for all x, y, z ∈ G. We shall be often working with the case when G is an abelian
group with the operation written additively. The cocycle identity then takes the
form

σ(x, y)σ(x + y, z) = σ(x, y + z)σ(y, z).

The cocycle σ is said to be commutative if σ(x, y) = σ(y, x) for all x, y ∈ G.

Proposition 1.4. Let R be a commutative ring and let f be a 0-bijective linear
fractional mapping R → R, f(x) = (ax+ b)/(cx+ 1). For all i, j ∈ Z put

σ(i, j) =
c

b
f i(0)f j(0) + 1.

Then σ ∈ Γ 2(Z, R∗) is a commutative 2-cocycle.

Proof: Clearly, σ(0, i) = σ(i, 0) = 1 for all i ∈ Z. To verify the cocycle identity
(with i, j, k in place of x, y, z) it suffices to verify the same equality for σ′(i, j) =
b + cγ(i)γ(j) = bσ(i, j). Define λ(i, j, k) and ρ(i, j, k) by σ′(i, j)σ′(i + j, k) =
(b + cγ(i)γ(j))(b + cγ(i + j)γ(k)) = b2 + cλ(i, j, k) and σ′(i, j + k)σ′(j, k) =
(b+ cγ(i)γ(j + k))(b+ cγ(j)γ(k)) = b2+ cρ(i, j, k). It is easy to see that λ(i, j, k)
and ρ(i, j, k) are in fact shortcuts for the left and right hand sides in the equality
of Lemma 1.3. Hence λ(i, j, k) = ρ(i, j, k), and nothing more is needed. �

If f : x 7→ (ax + b)/(cx+ d) is a 0-bijective linear fractional mapping R → R,
then we can assume d = 1, by Lemma 1.1. We shall now observe that in fact it
suffices to investigate mappings f with b = d = 1.

Lemma 1.5. Let R be a commutative ring and let f be a 0-bijective linear
fractional mapping R → R, f(x) = (ax+b)/(cx+1). Set g(x) = (ax+1)/(bcx+1).
Then g is a 0-bijective linear fractional mapping as well, and f i(0) = bgi(0) for
all i ∈ Z.

Proof: For i = 0 there is nothing to solve. Assume f i(0) = bgi(0), where i ≥ 0.
Then

bgi+1(0) =
abgi(0) + b

cbgi(0) + 1
=

af i(0) + b

cf i(0) + 1
= f i+1(0).
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To get the equality for i < 0 one can consider the inverse mapping. The rest is
clear. �

Similar effects can be achieved when f(x) is replaced by (ab−1x+ 1)/(cx+1).
The referee pointed out that this fractional mapping can be used in all instances
in place of the mapping g(x) from Lemma 1.5 and that working with this mapping
is conceptually easier. This is true — the preference given to g(x) is based only
upon the fact that the definition of g(x) does not require inverse elements in
coefficients, which might be useful in the future.

2. Loops from cocycles

Some calculations are more transparent when done in an adequately general
environment, and that is the reason why we start from a construction that in-
volves only the notion of cocycle. Proposition 1.4 gives the reason why the main
construction of this paper can be regarded as a special case.

Proposition 2.1. Let M be a (left) module over a commutative ring R and
let G(·) be a group. Suppose that ϑ ∈ Γ 2(G, R∗) is a 2-cocycle. Define a loop
Q = [M, G, ϑ] on M × G by

(a, g) · (b, h) = (ϑ(g, h)(a+ b), gh).

Put ϕ = L(x, y), where x = (a, g) and y = (b, h). Then

ϕ : (c, k) 7→
(

ϑ(g, h)
(

(ϑ(h, k)−1 − 1)a+ c
)

, k
)

for all (c, k) ∈ M × G. Furthermore, every (b, 0) belongs to the middle nucleus.

Proof: We have (a, g)·(b, h)(c, k)=(ϑ(g, hk)a+ϑ(g, hk)ϑ(h, k)b+ϑ(g, hk)ϑ(h, k)c,
ghk), while

(ϑ(g, h)(a+ b), gh) · (ϑ(g, h)((ϑ(h, k)−1 − 1)a+ c), k) = (x, gh),

where x = ϑ(g, h)ϑ(gh, k)(a+ b+ (ϑ(h, k)−1 − 1)a+ c) = ϑ(g, hk)ϑ(h, k)(b + c+
ϑ(h, k)−1a). This verifies the formula for ϕ. If h = 0, then ϑ(g, h) = ϑ(h, k) = 1,
ϕ is trivial, and (b, 0) ∈ Nµ. �

We shall be investigating loops Q = [M, G, ϑ] introduced by Proposition 2.1
for the rest of this section. The meaning of R, M , G, ϑ will be always the same
as in the proposition.
In loops xy = 1 does not necessarily imply yx = 1. We write y = x−1 only

when both yx = 1 and xy = 1 are true.
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Lemma 2.2. If x = (a, g) ∈ Q, then x−1 = (−a, g−1) and x · xx = xx · x. On
the other hand, xx · x−1 = x if an only if 2a = (ϑ(g, g−1)−1 + ϑ(g, g)−1)a.

Proof: Set ϕ = L(x, x). Our task is to investigate the equalities ϕ(x) = x and
ϕ(x−1) = x−1. From Proposition 2.1 we know that ϕ maps each z = (c, k) to
(d, k), where d = ϑ(g, g)((ϑ(g, k)−1 − 1)a+ c). We obtain d = a if z = (a, g), and
d = ϑ(g, g)(ϑ(g, g−1)−1 − 2)a if z = (−a, g−1). �

A loop element is said to be power associative if the subloop generated by this
element is associative (i.e. it is a group). The equality x · xx = xx · x implies
power-associativity of x in some classes of loops, but not generally. We see that
Lemma 2.2 provides a plenty of examples for the general behaviour.

Lemma 2.3. Let A be a submodule of M . Define an equivalence on Q by

(a, g) ∼A (b, h) ⇔ a − b ∈ A and g = h.

Put M̄ =M/A, and suppose that a 7→ ā denotes the natural projectionM → M̄ .
Then (ā, g)(b̄, h) = (ϑ(g, h)(ā+ b̄), gh) defines a loop Q̄ upon M̄ ×G, and (a, g) 7→
(ā, g) yields a surjective homomorphism Q → Q̄. The equivalence ∼A is equal to

the kernel of this homomorphism.

Proof: Indeed, Q̄ fulfils the assumptions of Proposition 2.1, and so it forms a
loop. The rest is also easy. �

Let S be the subring of R generated (as a ring) by all ϑ(g, h). We can, clearly,
regard ϑ as an element of Γ 2(G, S∗). Hence R can be always replaced by S,
whenever needed.
Let I be the ideal of R that annihilates M . The restriction of the natural

projection R → R/I to R∗ yields a group isomorphism R∗ ∼= (R/I)∗, and hence ϑ
can be regarded as an element of Γ 2(G, (R/I)∗). Thus R can be always replaced
by R/I, and we can restrict our attention, when needed, only to faithful modules.
Note however that a factorization as in Lemma 2.3 can change a faithful module
to a module with nontrivial annihilator.

Proposition 2.4. Suppose that R is generated (as a ring) by all ϑ(g, h), where
g, h ∈ G. Then A 7→ A × 1 gives a one-to-one correspondence between the
submodules of M and those normal subloops of Q = [M, G, ϑ] that are contained
in M × 1.

Proof: The route from a submodule to a normal subloop follows fromLemma 2.3.
For the other direction consider a normal subloop P E Q, P = A × 1 for some
A ⊆ M . It is clear that A(+) is a subgroup of M(+). Since A × 1 is normal in
Q, it has to remain invariant under the permutations L(x, y). That means, by
Proposition 2.1, that ϑ(g, h)a = a for all a ∈ A and g, h ∈ G. In other words, A
has to be a submodule of M . �
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Proposition 2.5. Put Tρ = {g ∈ G; ϑ(h, g)a = a for all (a, h) ∈ M × G},
Tλ = {g ∈ G; ϑ(g, h)a = a for all (a, h) ∈ M ×G}, and A = {a ∈ M ; ϑ(g, h)a = a
for all g, h ∈ G}. Then Nλ = A × Tλ, Nρ = A × Tρ and Nµ =M × (Tλ ∩ Tρ).

Proof: Choose x, y, z ∈ Q in such a way that x = (a, g), y = (b, h) and z = (c, k).
We shall use the formula for L(x, y) from Proposition 2.1.
The element y belongs to Nµ if and only if L(x, y) = idQ for all x ∈ Q. This

can be reduced to (ϑ(h, k)−1 − 1)a = 0 for all a ∈ M and all k ∈ G, and, further,
to ϑ(g, h)c = c for all c ∈ M and g ∈ G. However, that means h ∈ Tλ ∩ Tρ.
The element z belongs to Nρ exactly when L(x, y) fixes z for all x, y ∈ Q.

Choosing a = 0 yields c ∈ A, and choosing g = 1 yields (ϑ(h, k)−1 − 1)a = 0.
Therefore k ∈ Tρ. The converse direction is clear.
Finally, x ∈ Nλ whenever L(x, y) = idQ for all y ∈ Q. We obtain g ∈ Tλ by

choosing k = 1. If g ∈ Tλ, then the term ϑ(g, h) can be ignored, and the condition
reduces to (ϑ(h, k)−1 − 1)a = 0, for all h, k ∈ G. �

Note that Tλ = {g ∈ G; ϑ(g, h) = 1 for all h ∈ G} if the module M is faithful.
For Tρ one can make a mirror observation. In this paper we are mainly interested
in the case of commutative Q, Z(Q) = 1. In that case we have T = Tλ = Tρ and
Z(Q) = A× T . Therefore the assumption Nλ = Nρ = 1 implies Z(Q) = 1 if Q is
commutative.
The set 0×G is a subgroup ofQ that complementsM×1 E Q. For classification

purposes it is useful to know how many such complements exist and how they
interact. Each of them has the form {(τ(g), g); g ∈ G}, where τ : G → M is a
mapping, τ(1) = 0. If this set is a subgroup, then L(x, y) always fixes z when
x = (τ(g), g), y = (τ(h), h) and z = (τ(k), k), for all g, h, k ∈ G.
By Proposition 2.1 this reduces to (ϑ(h, k)−1 − 1)τ(g) + τ(k) = ϑ(g, h)−1τ(k).

We can hence state

Lemma 2.6. Let τ : G → M be a mapping, τ(1) = 0. The set {(τ(g), g); g ∈ G}
is a subgroup of Q if and only if the equalities

τ(k) − τ(g) = ϑ(g, h)−1τ(k) − ϑ(h, k)−1τ(g), and

τ(g) + τ(h) = ϑ(g, h)−1τ(gh)

hold for all g, h, k ∈ G.

We now turn to questions of isomorphisms. More exactly, we shall mention
those few facts that can be easily stated on this general level.

Lemma 2.7. Let Q = [M, G, ϑ]. If α is an automorphism of the R-module M ,
then (a, g) 7→ (α(a), g) is an automorphism of Q.

Proof: Indeed, (α(a), g)(α(b), h) = (ϑ(g, h)(α(a) + α(b)), gh) = (α(ϑ(g, h)(a +
b)), gh), for all g, h ∈ G and a, b ∈ M . �
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Lemma 2.8. Let Qi = [Mi, Gi, ϑi] for i ∈ {1, 2}. An isomorphism Q1 ∼= Q2 that
maps 0 × G1 upon 0 × G2 and M1 × 1 upon M2 × 1 exists if and only if there
exist group isomorphisms α :M1(+) ∼=M2(+) and β : G1(·) ∼= G2(·) such that

α(ϑ1(g, h)a) = ϑ2(β(g), β(h))α(a) for all a ∈ M1 and g, h ∈ G1.

Proof: This is a direct translation of the isomorphism condition. �

By coupling Lemmas 2.7 and 2.8 we obtain

Corollary 2.9. Let Qi = [Mi, Gi, ϑi] for i ∈ {1, 2}, and suppose that M1 and
M2 coincide as groups and that the group AutM1(+) is abelian. An isomorphism
Q1 ∼= Q2 that maps 0 × G1 upon 0 × G2 and M1 × 1 upon M2 × 1 exists if and
only if there exists a group isomorphism β : G1(·) ∼= G2(·) such that ϑ1(g, h)a =
ϑ2(β(g), β(h))a, for all g, h ∈ G1 and a ∈ M1.

3. Loops from fractional mappings

Start by assuming that Q = [M, G, ϑ] is the loop of Proposition 2.1, with ϑ
being commutative. Then all L(x, y) generate InnQ, and InnQ has a normal
subgroup, say S, that is generated by mappings

(c, k) 7→ (c+ (ϑ(h, k)−1 − 1)a, k).

It is not difficult to see that the structure of S is influenced by the behaviour of the
ratio mappings k 7→ (ϑ(h, k)−1 − 1)/(ϑ(h′, k)−1 − 1), where h, h′ are constants
that run through G. These mappings have to have a specific form when the
structure of S should also be specific — say cyclic. This is, roughly speaking, the
reason why our further investigations here are limited to what seems to be a rather
special form for mappings ϑ. Detailed arguments why no other cocycles need to
be considered will appear in future classification papers dealing with the situation
of | InnQ| = pq, and with the (more general) situation of InnQ metacyclic.
For ϑ : G × G → R∗ and h, k ∈ G set ϑ−1(h, k) = (ϑ(h, k))−1. Clearly ϑ ∈

Γ 2(G, R∗) if and only if ϑ−1 ∈ Γ 2(G, R∗). We shall be applying the construction
of Proposition 2.1 to ϑ = σ−1, where σ is a 2-cocycle derived from Proposition 1.4
in the following way.
Let f(x) = (sx+ r)/(tx+1) be a 0-bijective linear fractional mapping R → R,

where R is a commutative ring. Let k be the size of the set {f i(0); i ∈ Z}. We shall
call k the 0-order of f . By Proposition 1.4 the mapping (i, j) 7→ 1+tr−1f i(0)f j(0)
is a 2-cocycle from Γ 2(Z, R∗). Regard now the mapping γ, γ(i) = f i(0) as a
mapping Zk′ → R, where k′ ≥ 0 is a multiple of k (including the case k′ = ∞).
It is clear that

σ(i, j) = 1 + tr−1γ(i)γ(j)
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yields a 2-cocycle from Γ 2(Zk′ , R∗). Put g(x) = (sx+ 1)/(rtx+ 1). Then

σ(i, j) = 1 + trr−1f i(0)r−1f j(0) = 1 + trgi(0)gj(0),

by Lemma 1.5. We see that the for the loop constructions we can consider only
the case r = 1, without loss of generality.
If k′ > k, then σ(k, j) = σ(j, k) = 1, for all j ∈ Zk′ . In such a case k 6= 0,

and hence Z(Q) 6= 1, by Lemma 2.5. Since we are interested chiefly in centerless
loops, we shall assume k′ = k from here on.

Proposition 3.1. Let M be a module over a commutative ring R, and let f :
R → R be a 0-bijective fractional linear mapping of 0-order k, f(x) = (sx +
1)/(tx+ 1). Define a loop Q =M [s, t] on M × Zk by

(a, i) · (b, j) =

(

a+ b

1 + tf i(0)f j(0)
, i+ j

)

.

If δ ∈ M and λ ∈ R∗, then τδ : (b, j) 7→ (b + f j(0)δ, j) and µλ : (b, j) 7→ (λb, j)
are permutations of Q, and InnQ is the semidirect product of groups {τδ; δ ∈
tM} E InnQ and {µλ; λ ∈ G}, where G = 〈1 + tf i(0)f j(0); i, j ∈ Z〉 ≤ R∗.

The operation (δ, λ)(δ′, λ′) = (δ + λδ′, λλ′) defines a group upon tM × G, and
this group can be mapped homomorphically upon InnQ by (δ, λ) 7→ τδµλ. The

homomorphism becomes an isomorphism when the submodule tM is faithful.

Proof: We have already observed that the loop Q is constructed by the method
of Proposition 2.1, with ϑ(i, j)−1 = 1 + tγ(i)γ(j). The loop is commutative, and
hence InnQ is generated by mappings

(c, h) 7→

(

tγ(j)γ(h)a+ c

1 + tγ(i)γ(j)
, h

)

,

again by Proposition 2.1. This mapping can be expressed as µλτδ, where δ =
tγ(j)a and λ = (1 + tγ(i)γ(j))−1. If i = 0, then µλ is trivial, and any element of

R can be in place of δ since t is invertible and γ(1) = 1. The mapping µλτδµ
−1
λ

clearly sends each (c, h) to (λ(δγ(h) + λ−1c), h) = τλδ(c, h), and the rest is easy.
�

Let Q = M [s, t] be the loop of Proposition 3.1, with k > 1. Suppose that
j ∈ Zk satisfies tf i(0)f j(0)+1 = 1 for all i ∈ Zk. This is equivalent to tf j(0) = 0
since f(0) = 1. From Lemma 2.5 we immediately derive the following description
of the nuclei and the center.

Proposition 3.2. Let Q = M [s, t], where M is a faithful module over a com-

mutative ring R. Then Nλ = Nρ = Z(Q) = A × T and Nµ = M × T , where

A = {a ∈ M ; ta = 0} and T = {j ∈ Zk; tf
j(0) = 0}.



A class of commutative loops with metacyclic inner mapping groups 369

Proposition 3.3. Let Q = M [s, t], where M is a faithful module over a com-

mutative ring R. If t ∈ R∗, then Nλ = Nρ = Z(Q) = 1, Nµ = M × 1, and
Z(InnQ) = 1. On the other hand if tM is finite and Z(Q) = 1, then t ∈ R∗.

Proof: Most of the claims follow immediately from Proposition 3.2. Suppose
that tM is finite and Z(Q) = 1. The group endomorphism a 7→ ta of M is
assumed, by Proposition 3.2, to possess a trivial kernel, and hence M has to be
finite as well. If ta = tb for some a, b ∈ M , then t(a − b) = 0, a − b ∈ Z(Q) and
a = b. The scalar multiplication by t thus permutes M , and there exists m ≥ 1
such that tma = a for all a ∈ A. That means tm = 1 since M is assumed to be
faithful, and thus t ∈ R∗.
Assume t ∈ R∗. It remains to prove that then Z(InnQ) = 1. We have InnQ ∼=

H , where H is the semidirect product M(+) ⋊ G, (a, g)(b, h) = (a + gb, gh), by
Proposition 3.1. If gb = b for all g ∈ G, then (1 + t)b = b and b = 0 since t ∈ G.
If gb = b for all b ∈ M , then g = 1 since M is assumed to be faithful. �

We are mainly interested in finite loops with metacyclic inner mapping groups
that have a trivial center. Therefore we shall be usually assuming t ∈ R∗.
Let us have Q = M [s, t], where t ∈ R∗. We shall investigate the existence of

group complements to M × 1. The first equality of Lemma 2.6 can be written
as tγ(h)(γ(i)τ(j) − γ(j)τ(i)) = 0, where γ(i) stands, as usual, for f i(0). Since
γ(1) = 1 and t ∈ R∗, this equality yields γ(i)τ(j) − γ(j)τ(i) = 0, and thus the
choice i = 1 supplies a definition of τ by means of d = τ(1) and of γ, namely

τ(j) = γ(j)d for all j ∈ Z.

The second formula of Lemma 2.6 turns into the equality

τ(i) + τ(j)− τ(i+ j) = tγ(i)γ(j)τ(i+ j),

which we shall now investigate. Lemma 1.2 can be used to express τ(i + j) as
d(i, j)(γ(i) + γ(j) + (s − 1)γ(i)γ(j)), where d(i, j) = d/(1 + tγ(i)γ(j)). The left
hand side is equal to

d(i, j)γ(i)γ(j)(tγ(i) + tγ(j)− (s − 1)),

and the right hand side to

d(i, j)γ(i)γ(j)(tγ(i) + tγ(j) + t(s − 1)γ(i)γ(j)).

The equality therefore holds for all i, j ∈ Z if and only if

d(s − 1)γ(i)γ(j)(1 + tγ(i)γ(j)) = 0.

The element 1+tγ(i)γ(j) is always invertible, and γ(1) = 1. The equality is hence
true if and only if d(s − 1) = 0. We can state
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Proposition 3.4. Let Q =M [s, t], whereM is a faithful module over a commu-

tative ring R and s, t ∈ R∗. Then every group complement to Nµ =M×{0} is de-

termined by d ∈ M such that (s−1)d = 0 and equals {(i, f i(0)d); i ∈ Zk}, where k
is the 0-order of the 0-bijective linear fractional mapping f : x 7→ (sx+1)/(tx+1).

Proposition 3.5. Let Q = M [s, t], where M is a faithful module over a com-

mutative ring R and s, t ∈ R∗. If H1 and H2 are two group complements to Nµ,

then there exists α ∈ AutQ such that α(x) = x for all x ∈ Nµ, α(xNµ) = xNµ

for all x ∈ Q and α(H1) = H2.

Proof: The group complement has the form {(γ(i)d, i); i ∈ Zk}, d(s − 1) = 0,
by Proposition 3.4. Let it be the group H2. We can assume that H1 = 0 × Zk.
Define α : Q → Q by (a, i) 7→ (a+ γ(i)d, i).
Choose a, b ∈ M and i, j ∈ Zk, and set u = (1 + tγ(i)γ(j))−1. We wish to

verify that (a+ γ(i)d, i)(b+ γ(j)d, j) = (u(a+ b+ γ(i)d+ γ(j)d), i+ j) coincides
with (u(a+ b)+ γ(i+ j)d, i+ j). By Lemma 1.2, dγ(i+ j) = ud(γ(i)+ γ(j)+ (s−
1)γ(i)γ(j)). This equals u(dγ(i) + dγ(j)) since d(s − 1) = 0, by Proposition 3.4.

�

Let us return once more to Proposition 3.1. The mappings µλ are automor-
phisms of Q, by Lemma 2.7. The mapping τδ is an automorphism if γ(i +
j)(1 + tγ(i)γ(j))δ = (γ(i) + γ(j))δ, for all i, j ∈ Zk. This is equivalent to
(s − 1)γ(i)γ(j)δ = 0, by Lemma 1.2, and thus to (s − 1)δ = 0. We can state

Theorem 3.6. Let Q =M [s, t], whereM is a module over a commutative ring R.
If s = 1, then Q is an A-loop. If t ∈ R∗, the module M is faithful and Q is an
A-loop, then s = 1.

4. The question of isomorphism

In the first part of this section we adopt notational conventions of Section 1.
By f we shall denote a 0-bijective linear fractional mapping R → R, f(x) =
(ax+ b)/(cx+ 1). Recall that a, b ∈ R∗, by Lemma 1.1.
We shall assume that f is of a finite 0-order k, and that r, r̄ ∈ Zk satisfy

rr̄ ≡ 1 mod k. Our aim is to prove that there exists a 0-bijective linear fractional
mapping g such that gi(0) = fri(0).
Put d = fr(0). Our candidate for g will be the partial mapping R → R,

x 7→
(b + da − d)x + db

cdx+ b

that is considered as defined when cdx + b ∈ R∗. We shall denote this mapping
by g and we shall prove that it satisfies all of the required properties.

Lemma 4.1. The value gi(0) is defined for all i ≥ 0, with gi(0) = fri(0) for all
i ≥ 0.
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Proof: We shall proceed by induction. The case i = 0 is trivial. Lemma 1.2 can
be used to prove the induction step since d = fr(0):

gi+1(0) = g(fri(0)) =
(b + da − d)fri(0) + bd

cdfri(0) + b

=
bfr(0) + bfri(0) + (a − 1)fr(0)fri(0)

b+ cfr(0)fri(0)
= fr+ri(0) = fr(i+1)(0).

�

Lemma 4.2. The element gi(0) belongs to dR, for every i ≥ 0.

Proof: Proceed by induction on i ≥ 0. If gi(0) = dy, then gi+1(0) = d((b+da−
d)y + b)/u, where u = cdgi(0) + b is invertible, by Lemma 4.1. �

The above two lemmas hold for all r ∈ Zk. If r is coprime to k, which we
assume, then b = f(0) = gr̄(0) is a multiple of d, by Lemma 4.2, and hence
d = fr(0) = g(0) ∈ R∗. To show that g is a 0-bijective linear fractional mapping,
it thus remains to prove the invertibility of g, i.e. the invertibility of b(b + da −
d)− (cd)(db).
By Lemma 1.1, f−1(x) = (a−1x − ba−1)/(−ca−1x + 1). By Lemma 4.1,

f−ri(0) = hr(0), where h is defined as

x 7→
(−b+ d′ − d′a)x − d′b

−cd′x − b
=
(b + d′a − d′)x+ d′b

cd′x+ b
,

where d′ = f−r(0) ∈ R∗. Furthermore, f0(0) = fr−r(0), and hence b(d+d′)+(a−
1)dd′ = 0, by Lemma 1.2. Thus −bd = d′((a − 1)d + b) ∈ R∗, (a − 1)d+ b ∈ R∗

and d′ = −bd((a − 1)d + b)−1. The fraction used when computing g(d′) gives
cdd′ + b ∈ R∗, and by substituting for d′ we obtain −bcd2 + b2 + b(a − 1)d =
b(b + da − d) − (cd)(bd) ∈ R∗. Thus g is really a linear fractional mapping. We
have proved

Proposition 4.3. Let R be a commutative ring and let f : R → R be a 0-
bijective linear fractional mapping of a finite 0-order k. Suppose that r < k is a
positive integer coprime to k, and put d = fr(0). Then d ∈ R∗ and

g : x 7→
(b + da − d)x + db

cdx+ b

defines a 0-bijective linear fractional mapping such that gi(0) = fri(0) for all
i ∈ Z.

We shall now show how Proposition 4.3 can be used to establish isomorphisms
between loops of the form M [s, t].
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Lemma 4.4. Let Q =M [s, t], where M is a module over a commutative ring R,
and s, t ∈ R∗. Let k < ∞ be the 0-order of the linear fractional mapping f : x 7→
(sx + 1)/(tx + 1), and let r be coprime to k, 1 ≤ r < k. Then d = fr(0) ∈ R∗,

and there exists a loop M [s̄, t̄] with parameters s̄ = 1 + ds − d and t̄ = td2.
Furthermore, (a, i) 7→ (a, ri) maps this loop isomorphically upon Q =M [s, t].

Proof: From Proposition 4.3 and Lemma 1.5 we see that

h : x 7→
(1 + ds − d)x+ 1

td2x+ 1

defines a 0-bijective linear fractional mapping such that hi(0) = d−1fri(0) for all
i ∈ Z.

The product of (a, i) and (b, j) inM [1+ds−d, td2] is equal to ((a+b)/u, i+j),
where u = 1+ td2hi(0)hj(0) = 1+ tfri(0)frj(0), while the product of (a, ri) and
(b, rj) in M [s, t] is equal to ((a+ b)/u, r(i+ j)). The rest is clear. �

Let us now ask when Q = M [s, t] and Q̄ = M [s̄, t̄] are isomorphic, where M
is a faithful module over a commutative ring R, and s, t, s̄, t̄ ∈ R∗. An isomor-
phism has to map Nµ(Q) upon Nµ(Q̄), and therefore we may assume that M × 0
is mapped upon itself, by Proposition 3.3. We shall assume that the 0-order k
is finite. An isomorphism may be composed with an automorphism of Propo-
sition 3.5, and therefore we may assume that 0 × Zk is mapped upon itself as
well. This mapping has to have the form i 7→ r̄i, where r̄r ≡ 1 mod k for some
r, r̄ ∈ Zk. Let us have f(x) = (sx + 1)/(tx + 1) and h(x) = (s̄x + 1)/(t̄x + 1),
where s, t, s̄, t̄ ∈ R∗. The condition of Lemma 2.8 takes the form

α

(

a

1 + tfri(0)frj(0)

)

=
α(a)

1 + t̄hi(0)hj(0)
.

If α is an isomorphism of modules, then this can be further reduced to

tfri(0)frj(0) = t̄hi(0)hj(0) for all i, j ∈ Z

since M is assumed to be faithful. Such a reduction can be always done when
M(+) is a cyclic group, by Corollary 2.9. Let us hence assume that the equality
holds.

The choice i = j = 1 yields td2 = t̄, where d = fr(0), and the choice j = 1
gives hi(0) = d−1fri(0). Such a definition of h fulfils the equality above, and we
see from Lemma 4.4 that s̄ = 1 + ds − d when α is the identity mapping. (The
values s̄ and t̄ can be deduced from the operation of M [s̄, t̄], and hence they are
uniquely defined.) Using Lemma 2.7 we can thus state
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Proposition 4.5. Let M be a faithful module over a commutative ring R. Let
s, t, s̄, t̄ ∈ R∗ be such that both mappings x 7→ (sx + 1)/(tx + 1) and x 7→
(s̄x + 1)/(t̄x + 1) are 0-bijective of the same finite 0-order k. An isomorphism
M [s, t] ∼= M [s̄, t̄] which restricts to the identity upon Nµ = M × 0 exists if and

only if t̄ = td2 and s̄ = 1 + ds − d for some d = fr(0), where 1 ≤ r < k, r ∈ Z
∗

k.

If M(+) is a cyclic group, then this is a sufficient and necessary condition for the
existence of any isomorphism M [s, t] ∼=M [s̄, t̄].

Let us briefly discuss whether M [s, t] and M̄ [s̄, t̄] can be isomorphic when M
is a ring over R and M̄ is a ring over R̄. Suppose that the corresponding loops
are finite and with trivial centre. Then M(+) and M̄(+) have to be isomorphic
as groups since they yield the middle nucleus, by Proposition 3.3. We can hence
assume that M(+) = M̄(+). The complement 0× Zk can be regarded to be the
same as well, by Proposition 3.5. Furthermore, one of the loops can be replaced
by an isomorphic copy (with possibly different parameters) in such a way that the
isomorphism is identical on 0 × Zk, by Lemma 4.4. Another observation follows
from the fact that both R and R̄ can be regarded as generated by elements
a = (1+ tf i(0)f j(0))−1 and ā = (1 + t̄f̄ i(0)f̄ j(0))−1. By Lemma 2.8 there exists
α ∈ AutM(+) such that α(aα−1(c)) = āc for all c ∈ M . Since M and M̄ are
assumed to be faithful modules, we see that R ∼= R̄. We can hence consider only
the situation when R = R̄, and M and M̄ are two R-modules, with the same
underlying set and the same addition.
In such a situation one can replace α ∈ AutM(+) by the identity mapping if

α is a module homomorphism, by Lemma 2.7. This always applies, as we have
already remarked, to the case whenM(+) ∼= Zm(+), which is the principal object
of our interest in this paper. The general case has been reduced to possible loop
isomorphisms (a, i) 7→ (α(a), i), where α ∈ AutM(+), but α /∈ HomR(M, M̄).
Further investigations go beyond the scope of this paper.

5. Questions of isotopism

Let Q be a loop. For each a ∈ Q denote by L(Q, a) the loop on Q with
operation a\(ax ·y). Similarly, R(Q, a) denotes the loop with operation (x ·ya)/a.
These operations were introduced by Bruck and Paige [3], and studied extensively
by Belousov [1], [2] who called them derived and developed a compact notational
system that covers both them and the isotopes (we do not use it here). Note that
La maps L(Q, a) isomorphically upon the principal isotope x · (a\y) of Q, and Ra

connects R(Q, a) with the operation (x/a) · y. Some further standard facts are
formulated in the following lemma, which is stated without a proof.

Lemma 5.1. Let Q be a loop, and let a and b be elements of Q. Then:

(i) L(L(Q, a), b) = L(Q, ab) and R(R(Q, b), a) = R(Q, ab); and
(ii) LbRa maps isomorphically L(R(Q, a), b) upon the principal isotope of Q
with operation (x/a) · (b\y), and RaLb is an isomorphism of R(L(Q, b), a)
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upon the same principal isotope.

We shall also need some easy properties that involve the middle nucleus:

Lemma 5.2. Let Q be a loop and let a be an element of Q. Then the middle
nucleus of both L(Q, a) and R(Q, a) coincides with that of Q. Furthermore, if
a ∈ Nµ, then L(Q, a) (or R(Q, a)) is commutative if and only if Q is commutative.
In such a case L(Q, a) = R(Q, a).

Proof: Denote by ◦ the operation of L(Q, a). Then x◦ (y ◦z) = a\((ax) · (a\(ay ·
z))) and (x◦y)◦z = a\((ax·y)·z). If y ∈ Nµ, then a\(ay ·z) = yz, and the equality
x ◦ (y ◦ z) = (x ◦ y) ◦ z clearly holds. If the equality holds, then a\(ay · z) = yz
follows from the choice x = a\1, and thus y ∈ Nµ.
Suppose now that a ∈ Nµ. The operation of L(Q, a) is commutative if and

only if the operation (x, y) 7→ xay is commutative. If that is true, then by setting
y = a−1x we obtain x2 = (a−1x)ax, which gives x = (a−1x)a and xa−1 = a−1x,
for all x ∈ Q. Hence xy = (xa−1)ay = ya(xa−1) = y(a · a−1x) = yx, for all
x, y ∈ Q. If Q is commutative, then xay = xa · y = y · xa = y · ax = yax. �

Lemma 5.3. Let Q be a loop in which Nµ is a normal subloop.

(i) If x, y ∈ Q and a ∈ Nµ, then there exists b ∈ Nµ such that

L(R(L(Q, x), y), a) ∼= L(L(R(Q, y), x), b).

(ii) If Q = NµC, where C is a subloop, then every loop isotope of Q is
isomorphic to some

L(R(L(R(Q, u), v), a), b) where u, v ∈ C and a, b ∈ Nµ.

(iii) LetQ = NµC, where C is a subloop. If u, v ∈ C and a ∈ Nµ, then the loop

isotope L(L(R(Q, u), v), a) is commutative if and only if L(R(Q, u), v) is
commutative. Furthermore, each commutative loop isotope of Q can be
expressed in the former form.

Proof: To prove point (i) first note that ϕ = [Ry , Lx] is an isomorphism of
R(L(Q, x), y) and L(R(Q, y), x), by Lemma 5.1. The mapping ϕ also serves as
an isomorphism for the corresponding derived operations, where b = ϕ(a) corre-
sponds to a. Now, Nµ is an invariant of derived operations, by Lemma 5.2, and
b = ϕ(a) belongs to Nµ since Nµ E Q and ϕ ∈ InnQ.
To prove point (ii) consider u, v ∈ C and a, b ∈ Nµ, and note that v ∗ b = vb,

where ∗ means the operation of R(Q, au). Thus L(R(Q, au), vb) is isomorphic to
L(L(R(R(Q, u), a, ), v), b), by Lemma 5.1. The exchange of the middle terms can
be done by using point (i).
The commutativity does not depend upon appending an element of the mid-

dle nucleus, by Lemma 5.2. If Q̄ = L(R(Q, u), v) is a commutative loop, then
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Lemma 5.1 yields L(R(Q̄, a), b) = L(L(Q̄, a), b) = L(Q̄, ab) since Q̄ and Q coin-
cide upon Nµ. Point (iii) thus follows from point (ii). �

Let us turn again to the loops Q = M [s, t] as introduced in Proposition 3.1.
We thus have γ(i) = f i(0), where f(x) = (sx + 1)/(tx + 1), and (a, i)(b, j) =
((1 + tγ(i)γ(j))−1(a + b), i+ j). Our intention is to study the cases where each
commutative isotope of Q is isomorphic to some M [s̄, t̄].
From Lemma 5.3 we see that we can concentrate upon the loops L(Q, (c, 0))

and L(R(Q, (0, g)), (0, h)).
Denote first by ◦ the operation of L(Q, (c, 0)). This operation is always com-

mutative, by Lemma 5.2 and Proposition 3.2. In fact, it is easy to give an exact
formula, and we obtain

(a, i) ◦ (b, j) =

(

a+ b − tγ(i)γ(j)c

1 + tγ(i)γ(j)
, i+ j

)

.

To find in Q(◦) a group complement toM×0 we shall proceed as in Lemma 2.2,
i.e. we shall try to identify those x = (a, i) for which the triple (x, x, x−1) is
associative. We see that the inverse to (a, i) in Q(◦) is equal to (tγ(i)γ(−i)c −
a,−i), and that

(a, i) ◦ (a, i) =

(

2a − ty2c

1 + ty2
, 2i

)

, where y = γ(i).

There exists b ∈ M such that

((a, i) ◦ (a, i)) ◦ (tγ(i)γ(−i)c− a,−i) = (b, i).

Our intention is to evaluate b and to give conditions under which a = b. Set
s′ = s − 1 and y = γ(i). We shall need

Lemma 5.4. The element 1 + s′γ(i) is invertible for every i ∈ Z.

Proof: By Lemma 1.2, 0 = γ(−i)+γ(i)+s′γ(i)γ(−i). Therefore (1+s′γ(i))(1+
s′γ(−i)) = 1 + s′(γ(i) + γ(−i) + s′γ(i)γ(−i)) = 1. �

From Lemma 1.2 and Lemma 5.4 we easily obtain

γ(−i) =
−y

1 + s′y
and γ(2i) =

2y + s′y2

1 + ty2
. Thus

b = (1 + tγ(−i)γ(2i))−1
(

−ty2

1 + s′y
c − a+

2a − ty2c

1 + ty2
− tγ(−i)γ(2i)c

)

,

γ(−i)γ(2i) = −y2(s′y + 2)(1 + s′y)−1(1 + ty2)−1 and

(1 + tγ(−i)γ(2i))−1 = (1 + s′y)(1 + ty2)e−1,

where e = (1 + s′y)(1 + ty2)− ty2(s′y + 2) = 1 + s′y − ty2.
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Hence b = e−1b′, where b′ = (1+ ty2)(−ty2)c− (1+s′y)(1+ ty2)a+(1+s′y)(2a−
ty2c) + ty2(s′y+ 2)c = (1 + s′y)(1− ty2)a− t2y4c. The equality a = b thus leads
to

(1 + s′y)(1 − ty2)a − t2y4c = (1 + s′y − ty2)a.

After subtracting (1+s′y)a−ty2a from both sides we cancel t (c.f. Proposition 3.3).
We get s′y3a + ty4c = 0. Now, y = f i(0) has to be invertible in many cases,
c.f. Lemma 4.4. If it is invertible, then s′a = −tf i(0)c and c ∈ s′M . This is
a necessary condition for the existence of a group complement to Nµ in Q(◦) if
t ∈ R∗. By the next statement, Q(◦) ∼= Q(·) if c ∈ s′M , and so this condition is
also sufficient.

Proposition 5.5. Assume Q =M [s, t], whereM is a module over a commutative
ring R. Denote by f the linear fractional mapping x 7→ (sx + 1)/(tx + 1), and
assume that c = (s−1)d for come c, d ∈ M . Then (a, i) 7→ (−tf i(0)d+a, i) yields
an isomorphism Q ∼= L(Q, (c, 0)). On the other hand, if c /∈ (s−1)M , and t ∈ R∗,

then the middle nucleus of L(Q, (c, 0)) possesses no group complement.

Proof: We need only to prove that the described mapping is an isomorphism.
Note that −tγ(i + j)d is equal to the product of −t(γ(i) + γ(j))d − tγ(i)γ(j)
with (1+ tγ(i)γ(j))−1, by Lemma 1.2. Hence the product of (−tγ(i)d+ a, i) and
(−tγ(j)d+ b, j) in L(Q, (c, 0)) is equal to

(

−t(γ(i) + γ(j))d − tγ(i)γ(j)c+ a+ b

1 + tγ(i)γ(j)
, i+ j

)

=

(

−tγ(i+ j)d+
a+ b

1 + tγ(i)γ(j)
, i+ j

)

.

�

6. Isotopes and fractional mappings

Our aim is to describe all commutative isotopes of Q = M [s, t] that possess a
group complement to Nµ. By Lemma 5.3 we need now to find the commutative
isotopes of the form L(R(Q, (0, g)), (0, h)).

Proposition 6.1. Assume Q = M [s, t], where M is a faithful module over a

commutative ring R, and s, t ∈ R∗. Denote by k the 0-order of the 0-bijective
fractional linear mapping f : x 7→ (sx + 1)/(tx + 1). The principal isotope of Q
with operation

(a, i) ◦ (b, j) = ((a, i)/(0, g)) · ((0, h)\(b, j))

is commutative if and only if g = h, for all g, h ∈ Zk.

Proof: We have (a, i)/(0, g) = (0, g)\(a, i) = ((1 + tγ(i − g)γ(g))a, i − g), and
therefore (a, i) ◦ (b, j) is the product (in Q) of ((1 + tγ(i − g)γ(g))a, i − g) and
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((1 + tγ(j − h)γ(h))b, j − h), while (b, j) ◦ (a, i) equals the product of ((1 + tγ(i−
h)γ(h))a, i − h) and ((1 + tγ(j − g)γ(g))b, j − g). By analyzing the case b = 0 we
see that the commutativity of ◦ implies

1 + tγ(i − g)γ(g)

1 + tγ(i − g)γ(j − h)
=
1 + tγ(i − h)γ(h)

1 + tγ(i − h)γ(j − g)
.

If i = g, then γ(g − h)γ(h) = γ(g − h)γ(j − g), and by setting j = g we obtain
γ(g−h)γ(h) = 0. Thus γ(g−h)γ(j−g) = 0 for all j ∈ Z, and the choice j = g+1
brings γ(g − h) = 0. Therefore the commutativity of Q(◦) implies g = h. �

To be able to analyze the loops of Proposition 6.1, we need several auxiliary
statements that involve 0-bijective fractional linear mappings. Let f : (sx +
1)/(tx + 1) be such a mapping, and let k be the 0-order of f . As elsewhere, we
often write γ(i) in place of f i(0) and s′ in place of s − 1.

Lemma 6.2. The element 1 + s′γ(i)− tγ(i)γ(j) is invertible for all i, j ∈ Z.

Proof: We have γ(−i) = −γ(i)/(1+s′γ(i)), by Lemmas 1.2 and 5.4. The element
1 + tγ(−i)γ(j) is invertible, by Lemma 1.2. Our result thus follows immediately
after making the substitution for γ(−i). �

Lemma 6.3. Fix g ∈ Z. Then the mapping

ϕ : x 7→
(s − tγ(g))x+ s′γ(g) + 1− tγ(g)2

tx+ tγ(g) + 1

is a 0-bijective linear fractional mapping that satisfies ϕi(0) = γ(i+ g)− γ(g) for
every i ∈ Z.

Proof: First note that (s− tγ(g))(tγ(g)+1)− t(s′γ(g)+1− tγ(g)2) = s− t ∈ R∗.
Thus ϕ fulfils our definition of a fractional linear mapping, and as such it is
injective. The element ϕ(0) is invertible, by Lemmas 6.2 and 1.2. To finish the
proof it therefore suffices to show the formula for ϕi(0). We shall assume i ≥ 0,
which suffices for the case of finite 0-order k. (The proof for i < 0 can be obtained
either directly, or by considering the mapping f−1.)
We have ϕ(0) = (1 + s′γ(g)− tγ(g)2)/(1 + tγ(g)) = γ(g + 1)− γ(g). By using

induction, we obtain

γ(i+ g + 1)− γ(g) =
sγ(i+ g) + 1

tγ(i+ g) + 1
− γ(g)

=
(s − tγ(g))(γ(i+ g)− γ(g)) + s′γ(g) + 1− tγ(g)2

t(γ(i+ g)− γ(g)) + tγ(g) + 1

= ϕ(γ(i+ g)− γ(g)) = ϕ(ϕi(0)) = ϕi+1(0).

�



378 A.Drápal

Corollary 6.4. Fix g ∈ Z and put sg = (s − tγ(g))/(tγ(g) + 1) and tg = t(1 +

s′γ(g) − tγ(g)2)/(tγ(g) + 1)2, where s′ = s − 1. Then the mapping fg : x 7→
(sgx+ 1)/(tgx+ 1) is a 0-bijective linear fractional mapping such that

γg(i) = f i
g(0) =

1 + tγ(g)

1 + s′γ(g)− tγ(g)2
(γ(i+ g)− γ(g)), for all i ∈ Z.

Proof: This follows directly from Lemmas 6.3 and 1.5. �

From Proposition 6.1 we know that to understand the commutative isotopes of
M [s, t], it remains to investigate the operation ((a, i)/(0, g)) · ((0, g)\(b, j)), where
g ∈ Zk. There exist various isomorphic copies of this operation, and the next
lemma describes the one that we shall use in further calculations.

Lemma 6.5. Fix g ∈ Z and define operation ∗g upon Q by

(a, i) ∗g (b, j) =

(

a+ b+ tγ(g)(γ(i)a+ γ(j)b)

1 + tγ(i)γ(j)
, i+ j − g

)

.

Then Q(∗g) is a loop and (a, i) 7→ (a, i + g) gives an isomorphism between this
loop and the isotope of Q with operation ((a, i)/(0, g)) · ((0, g)\(b, j)).

Proof: Recall that (a, i)/(0, g) = (0, g)\(a, i) = ((1 + tγ(i − g)γ(g))a, i − g), for
all (a, i) ∈ Q. The product of (a, i+ g) and (b, j + g) in the isotope is thus equal
to (c, i+ j), where (1 + tγ(i)γ(j))c = a+ b+ tγ(g)(γ(i)a+ γ(j)b). We also obtain
(a, i) ∗g (b, j) = (c, i+ j − g), and the rest is clear. �

We shall now perform the crucial calculations of this section.

Lemma 6.6. The mapping (a, i) 7→ ((1 + tγ(i + g)γ(g))−1a, i + g) yields an
isomorphism M [sg, tg] ∼= Q(∗g), for any g ∈ Z.

Proof: We need to prove the equality

((1 + tγ(i+ j + g)γ(g))−1(1 + tgγg(i)γg(j))
−1(a+ b), i+ j + g)

= ((1 + tγ(i+ g)γ(j + g))−1(a+ b), i+ j + g),

which we will obtain as a consequence of

1 + tγ(i+ g)γ(j + g) = (1 + tγ(i+ j + g)γ(g))(1 + tgγg(i)γg(j)).

Substitutions i 7→ i − g and j 7→ j − g transform the latter equality to

1 + tγ(i)γ(j) = (1 + tγ(i+ j − g)γ(g))(1 + tgγg(i − g)γg(j − g)),
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and that is the equality we shall be proving. We first need to express the term
constructed from fg. From Corollary 6.4 we easily derive that

tgγg(i − g)γg(j − g) =
t(γ(i)− γ(g))(γ(j)− γ(g))

1 + s′γ(g)− tγ(g)2
.

It thus suffices to show that

(1 + tγ(i)γ(j))(1 + s′γ(g)− tγ(g)2)

= (1 + tγ(i+ j − g)γ(g))(1 + s′γ(g) + t(γ(i)γ(j)− γ(g)(γ(i) + γ(j)))).

After multiplying, subtracting, and then removing tγ(g) from all remaining sum-
mands, we see that the latter equality holds when

− γ(g) + s′γ(i)γ(j)− tγ(g)γ(i)γ(j)

= −γ(i)− γ(j) + γ(i+ j − g)(1 + s′γ(g) + t(γ(i)γ(j)− γ(g)(γ(i) + γ(j)))).

Since γ(i)γ(j)(s′ − tγ(g)) − γ(g) + γ(i) + γ(j) can be expressed, by Lemma 1.2,
as γ(i+ j)(1+ tγ(i)γ(j))− tγ(i)γ(j)γ(g)− γ(g) = (γ(i+ j)− γ(g))(1+ tγ(i)γ(j)),
we are asking, in fact, if the latter term equals

γ(i+ j − g)(1 + tγ(i)γ(j) + s′γ(g)− tγ(g)(γ(i) + γ(j))).

For a moment denote i + j by h = (h − g) + g. From Lemma 1.2 we obtain
γ(h)(1 + tγ(h − g)γ(g)) = γ(h − g) + γ(g) + s′γ(h − g)γ(g), and thus

γ(i+ j − g) =
γ(i+ j)− γ(g)

1 + s′γ(g)− tγ(i+ j)γ(g)
,

by Lemma 6.2. Our equality can be thus presented as

(γ(i+ j)− γ(g))(1 + tγ(i)γ(j))(1 + s′γ(g)− tγ(i+ j)γ(g))

= (γ(i+ j)− γ(g))(1 + tγ(i)γ(j) + s′γ(g)− tγ(g)(γ(i) + γ(j))).

That clearly holds if

−tγ(i+ j)γ(g) + tγ(i)γ(j)(s′γ(g)− tγ(i+ j)γ(g)) = −tγ(g)(γ(i) + γ(j)).

This equality will be true if

γ(i+ j)(1 + tγ(i)γ(j)) = s′γ(i)γ(j) + γ(i) + γ(j).

However, that is exactly the statement of Lemma 1.2. �

By putting together Lemma 5.3, Proposition 5.5, Corollary 6.4, Lemma 6.5
and Lemma 6.6 we obtain
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Theorem 6.7. LetQ =M [s, t], whereM is a faithful module over a commutative
ring R, and s, t ∈ R∗. Let f be the linear fractional mapping x 7→ (sx+1)/(tx+1).
For each i ∈ Z put

si =
s − tf i(0)

1 + tf i(0)
and ti = t

1 + (s − 1)f i(0)− t(f i(0))2

(1 + tf i(0))2
.

ThenM [si, ti] is a commutative loop isotope of Q, and si, ti ∈ R∗. Every commu-

tative loop isotope of Q in which the middle nucleus possesses a group complement
is isomorphic to such a loop. If si − 1 ∈ R∗ for all i ∈ Z, then there exist, up to

isomorphism, no other commutative loop isotopes.

Let us remark that in this section we have preferred to work with the oper-
ation (a, i)/(0, g) · (0, g)\(b, j) rather then with L(R(Q, (0, g)), (0, g)). Reasons
are computational. However, the operation of the latter loop is not completely
inaccessible. For any commutative loop Q and any u ∈ Q, one can express the
operation of R(L(Q, u), u) as L−2

u (ux · uy). We have

(1 + tγ(g)γ(h+ g))(1 + tγ(g)γ(h)) = 1 + tγ(g)(2γ(h) + γ(g) + s′γ(h)γ(g)),

for all g, h ∈ Z, by Lemma 1.2. This can be used to establish that the product of
(a, i) and (b, j) in L(R(Q, (0, g)), (0, g)) is (c, i+ j), where c is equal to

1 + tγ(g)(2γ(i+ j) + γ(g) + s′γ(i+ j)γ(g))

1 + tγ(i+ g)γ(j + g)

(

a

1 + tγ(i)γ(g)
+

b

1 + tγ(j)γ(g)

)

.

Further simplifications are possible, again by means of Lemma 1.2. One finally
obtains that the product of (a, i) and (b, j) in L(R(Q, (0, g)), (0, g)) is equal to

(

a+ b+ tfg(0)(f j(0)a+ f i(0)b)

1 + tf i(0)f j(0)
, i+ j

)

.

7. Cyclic groups and loops

In this section we shall abandon the more general approach of the preceding
sections, and will concentrate upon the case when InnQ is a centerless metacyclic
group, Q = M [s, t], Z(Q) = 1. Set m = |M | and let k > 1 be the 0-order of the
0-bijective linear fractional mapping f : x 7→ (sx+ 1)/(tx+ 1).
Suppose first that InnQ is infinite. Then InnQ has to be an infinite dihedral

group, and tM(+) ∼= Z(+), by Proposition 3.1. The kernel of the homomorphism
a 7→ ta has to be trivial, by Proposition 3.2, and henceM(+) has to be isomorphic
to Z(+) as well. We can assume that the ring R is faithful, and thus, by standard
reasoning, we can assume that M = R = Z. Let it be the case. There are then
not very many choices for s and t. Since t + 1 should be invertible and since
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t 6= 0, we get t = −2, and so k = 2. Therefore s = −1, and we get the operation
(a, i)(b, j) = ((−1)ij(a+ b), i+ j) with which we started this paper. The infinite
case thus brings nothing new and we can turn our attention to the finite case.
The group InnQ can be expressed as the semidirect product Zm(+)⋊G(·) that

naturally embeds into the holomorph of Zm(+), by Propositions 3.1 and 3.3. We
assume that M = Zm(+) is a faithful R-module and that G ≤ R∗ is generated
by all 1 + tf i(0)f j(0). If m is even, then Zm(+) ∼= (InnQ)′ contains exactly
one involution, and this involution belongs to the center of InnQ. We assume
Z(InnQ) = 1, and therefore m has to be odd. We also see that R has to be
isomorphic to Zm as a ring, and so we may assume R = Zm. We may thus
investigate only loops Q = Zm[s, t], where f is considered to be a linear fractional
mapping Zm → Zm.

Theorem 7.1. Form > 1 consider s, t, k ∈ Zm such that f : x 7→ (sx+1)/(tx+1)
is a 0-bijective fractional linear mapping Zm → Zm of 0-order k. Suppose that
(a, i)(b, j) = ((a + b)/(1 + tf i(0)f j(0)), i + j) defines a loop Q = Zm[s, t] upon
Zm × Zk with Z(Q) = 1 and Z(InnQ) = 1. Then m is odd, s, t ∈ Z

∗
m, InnQ

embeds into the holomorph of Zm(+), and InnQ ∼= Zm(+)⋊G(·), where G ≤ Z
∗
m

is generated by all 1 + tf i(0)f j(0). The middle nucleus of Q is equal to Zm × 0,
and Q[s, t] ∼= Q[s′, t′] if and only if there exists r ∈ Z

∗
m such that s′ = 1 + ds − d

and t′ = td2, where d = fr(0).

Proof: The statement sums up the earlier results, in particular Lemma 1.1 and
Propositions 3.1, 3.3 and 4.5. �

Recall that Theorem 6.7 describes all commutative isotopes of loops Zm[s, t]
that possess a group complement to the middle nucleus.
Up to now we did not exhibit any examples except those with k = 2. Given

an integer m there seems to be no immediate way how to enumerate all s and
t for which x 7→ (sx + 1)/(tx + 1) yields a 0-bijective fractional linear mapping.
However, one can build an unlimited number of examples by using a ‘sieving
technique’: Consider first a mapping x 7→ (sx + 1)/(tx + 1) as a function on
rational numbers. Starting from 0 we get a sequence of integer fractions ai/bi.
Choose an odd ak such that b1, . . . , bk are coprime to ak and such that s − t is
coprime to ak as well. By setting m = ak and interpreting ai/bi in Zm we get a
0-bijective fractional linear mapping Zm → Zm of 0-order k.
To get concrete examples, consider first the sequence induced by (s, t) = (1, 2).

The sequence ai/bi, 0 ≤ i ≤ 7, is equal to

0

1
,
1

1
,
2

3
,
5

7
,
12

17
,
29

41
,
70

99
and

169

239
.

The choices k = 3, 5, 7 fulfil our conditions and we obtain A-loops of orders
5 · 3 = 15, 29 · 5 = 145 and 169 · 7 = 1183, respectively.



382 A.Drápal

For (s, t) = (2, 3), 0 ≤ i ≤ 7 we get

0

1
,
1

1
,
3

4
,
10

13
,
33

43
,
109

142
,
360

469
and

1189

1549
.

The choices k ∈ {2, 4, 5, 7} obviously yield loops of form Zm[s, t]. However, one
can also use the case k = 3 since instead of ak one can consider any of its proper
odd divisors. For k = 3 the only choice is m = 5 and that yields a loop of order
15. Note also that for k ∈ {2, 4} we do not have t ∈ Z

∗
m. For k = 4 this can be

rectified by setting m = 11.
Let us finally remark that our treatment of fractional linear mappings did not

rely upon matrix computation. If
(

s 1
t 1

)i (

0
1

)

=

(

a
b

)

,

then f i(0) = a/b, where f : x 7→ (sx + 1)/(tx + 1). An efficient computation of
the matrix powers, either by eigenvalues or recursive polynomial formulas, could
simplify some of our proofs and provide explicit formulas for the loop operation.
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[7] Drápal A., Structural interactions of conjugacy closed loops, Trans. Amer. Math. Soc. 360
(2008), 671–689.
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