A. LEIDERMAN, I.V. PROTASOV

Abstract. Given a discrete group G, we consider the set $\mathcal{L}(G)$ of all subgroups of G endowed with topology of pointwise convergence arising from the standard embedding of $\mathcal{L}(G)$ into the Cantor cube $\{0,1\}^G$. We show that the cellularity $c(\mathcal{L}(G)) \leq \aleph_0$ for every abelian group G, and, for every infinite cardinal τ , we construct a group G with $c(\mathcal{L}(G)) = \tau$.

Keywords: space of subgroups, cellularity, Shanin number Classification: 54B20, 54A25

Let G be a discrete group and $\exp G$ the set of all subsets of G. We identify $\exp G$ with the Cantor cube $\{0,1\}^G$ and consider the set $\mathcal{L}(G)$ of all subgroups of G as a subspace of $\{0,1\}^G$. Let $\mathcal{F}(G)$ be the family of all finite subsets of G. Given any $F, H \in \mathcal{F}(G)$, we put

$$[F, G \setminus H] = \{ A \in \mathcal{L}(G) : F \subseteq A \subseteq G \setminus H \}.$$

Then the family $\{[F, G \setminus H] : F, H \in \mathcal{F}(G)\}$ forms a base of the topology in $\mathcal{L}(G)$. It is easy to see that $\mathcal{L}(G)$ is a zero-dimensional compact space.

We denote by c(X) the *cellularity* of a topological space X. Remind that c(X) is the supremum of cardinalities of disjoint families of open subsets of X.

We say that a topological space X has Shanin number ω (see [4] or [1, Problem 2.7.11]) if any uncountable family \mathcal{U} of non-empty open subsets of X has an uncountable subfamily $\mathcal{V} \subseteq \mathcal{U}$ with $\bigcap \mathcal{V} \neq \emptyset$. Evidently, if a space X has Shanin number ω then $c(X) \leq \aleph_0$.

Given any topological group G, we denote by L(G) the space of all closed subgroups of G endowed with the Vietoris topology. By [3, Theorem 2], $c(L(G)) \leq \aleph_0$ for every compact group G.

Theorem 1. For every discrete abelian group G, the space $\mathcal{L}(G)$ has Shanin number ω , in particular, $c(\mathcal{L}(G)) \leq \aleph_0$.

PROOF: By [6, Theorem 24.1], G is a subgroup of some divisible group D. By [6, Theorem 23.1], D is a direct sum $\bigoplus_{\alpha \in I} G_{\alpha}$ of some family of countable groups.

The first author was partially supported by the Israel Science Foundation Grant no. 508/06.

Thus we suppose that G is a subgroup of $\bigoplus_{\alpha \in I} G_{\alpha}$. Let $\{U_{\beta} : \beta \in J\}$ be an uncountable family of non-empty open subsets of $\mathcal{L}(G)$. For every $\beta \in J$, we pick finite subsets F_{β} , H_{β} of G such that $\emptyset \neq [F_{\beta}, G \setminus H_{\beta}] \subseteq U_{\beta}$, and put

$$K_{\beta} = \{ \alpha \in I : \operatorname{pr}_{\alpha} g \neq 0 \text{ for some } g \in F_{\beta} \cup H_{\beta} \}.$$

Then $\{K_{\beta} : \beta \in J\}$ is an uncountable family of finite subsets of I. By the Δ -Lemma, there exist an uncountable subset $J_1 \subseteq J$ and a finite subset $K \subseteq I$ such that $K_{\beta} \cap K_{\gamma} = K$ for all distinct $\beta, \gamma \in J_1$. We put

$$G_K = \{g \in G : \operatorname{pr}_{\alpha} g = 0 \text{ for every } \alpha \notin K\}.$$

For every subset X of G, we denote by $\langle X \rangle$ the subgroup of G generated by X. Every subgroup of a finitely generated abelian group is finitely generated, hence it follows that for every $\beta \in J_1$, the subgroup $\langle F_\beta \rangle \cap G_K$ is finitely generated. Since G_K is a countable group, there are countably many finitely generated subgroups of G_K , and therefore there exist an uncountable subset $J_2 \subseteq J_1$ and a subgroup $A \subseteq G_K$ such that $\langle F_\beta \rangle \cap G_K = A$ for every $\beta \in J_2$. We put $S = \langle \bigcup_{\beta \in J_2} F_\beta \rangle$ and prove that $S \in \bigcap_{\beta \in J_2} [F_\beta, G \setminus H_\beta]$. It suffices to show that $H_\beta \cap S = \emptyset$ for every $\beta \in J_2$.

Pick any element $g \in S$ and fix $\beta \in J_2$. Clearly, if g = 0 then $g \notin H_\beta$ because of $0 \in \langle F_\beta \rangle$ and $\emptyset \neq [F_\beta, G \setminus H_\beta]$. If $g \neq 0$, we can write g as

$$g = g_{\alpha_1} + \dots + g_{\alpha_n},$$

where $g_{\alpha_i} \in G_{\alpha_i} \setminus \{0\}$ for every $i \in \{1, \ldots, n\}$. If $\alpha_i \notin K_\beta$ for some $i \in \{1, \ldots, n\}$ then, by definition of K_β , we have $g \notin H_\beta$.

Now consider the possibility of $\{\alpha_1, \ldots, \alpha_n\} \subseteq K_\beta$. We claim that in this case $g \in \langle F_\beta \rangle$. Let us assume the contrary, $g \notin \langle F_\beta \rangle$.

By the choice of J_2 , we have $\langle F_\beta \rangle \cap G_K = \langle F_\gamma \rangle \cap G_K$ for every distinct $\beta, \gamma \in J_2$, therefore by definition of S, there exist $\gamma \in J_2 \setminus \{\beta\}$ and $j \in \{1, \ldots, n\}$ such that $\alpha_j \in K_\gamma \setminus K$. On the other hand, $K_\beta \cap K_\gamma = K$, hence $\alpha_j \notin K_\beta$, and we get a contradiction with $\{\alpha_1, \ldots, \alpha_n\} \subseteq K_\beta$. So, $g \in \langle F_\beta \rangle$ which implies that $g \notin H_\beta$.

Remind that a Hausdorff compact space X is called *dyadic* if X is a continuous image of some Cantor cube. If G is a compact abelian group, by [5, Theorems 3, 4], the space L(G) is dyadic if and only if the weight $w(G) \leq \aleph_1$. A natural question arises to characterize discrete groups G for which $\mathcal{L}(G)$ is a dyadic space.

Theorem 2. For a discrete abelian group G, the space $\mathcal{L}(G)$ is dyadic if and only if $|G| \leq \aleph_1$.

PROOF: By [2, Theorem 3], for every compact abelian group G the space L(G) is homeomorphic to $\mathcal{L}(\hat{G})$, where \hat{G} is the dual group to G. Therefore, by Pontryagin's duality and by above-mentioned [5, Theorems 3, 4], the space $\mathcal{L}(G)$ is dyadic if and only if $|G| \leq \aleph_1$.

Our last theorem shows that, in contrast to Theorem 1, there are non-abelian groups G with arbitrary large cellularity $c(\mathcal{L}(G))$.

Theorem 3. For every infinite cardinal τ there exists a discrete group G such that $c(\mathcal{L}(G)) = |G| = \tau$.

PROOF: Let F be a free group generated by the set $\{x_{\alpha}, y_{\alpha} : \alpha < \tau\}$ of free generators. We shall define a group G as the quotient G = F/N, where N is a certain normal subgroup of the free group F containing all the words $x_{\alpha}^2, y_{\alpha}^2, x_{\beta}x_{\alpha}x_{\beta}y_{\alpha}, \alpha < \beta < \tau$.

We fix $\alpha < \tau$ and put

$$A = \langle a_{\alpha} \rangle \times \langle b_{\alpha} \rangle, \ B = \otimes_{\alpha < \beta \tau} \langle c_{\beta} \rangle,$$

where $\langle a_{\alpha} \rangle$, $\langle b_{\alpha} \rangle$, $\langle c_{\beta} \rangle$ are the cyclic subgroups of order 2. Then we define a group G_{α} as the semidirect product $G_{\alpha} = A \times B$ with $c_{\beta}a_{\alpha}c_{\beta} = b_{\alpha}$ for all $\alpha < \beta < \tau$. Let $f_{\alpha} : F \to G_{\alpha}$ be a homomorphism defined by the rule

$$f_{\alpha}(x_{\lambda}) = f_{\alpha}(y_{\lambda}) = 1 \text{ for all } \lambda < \alpha,$$

$$f_{\alpha}(x_{\alpha}) = a_{\alpha}, \quad f_{\alpha}(y_{\alpha}) = b_{\alpha},$$

$$f_{\alpha}(x_{\beta}) = f_{\alpha}(y_{\beta}) = c_{\beta} \text{ for all } \alpha < \beta < \tau$$

Finally, we define

$$N = \bigcap \{ \text{Ker } f_{\alpha} : \alpha < \tau \}, \text{ and } G = F/N.$$

Clearly, $f_{\alpha}(x_{\lambda}^2) = f_{\alpha}(y_{\lambda}^2) = 1$ for every $\lambda < \tau$, and it easily could be seen that $f_{\alpha}(x_{\beta}x_{\lambda}x_{\beta}) = f_{\alpha}(y_{\lambda})$ for all $\lambda < \beta < \tau$. Hence, N is a normal subgroup of the free group F containing all the words x_{α}^2 , y_{α}^2 , $x_{\beta}x_{\alpha}x_{\beta}y_{\alpha}$, $\alpha < \beta < \tau$, but $x_{\alpha}, y_{\alpha}, x_{\alpha}y_{\alpha}^{-1} \notin N$. It follows that $x_{\alpha}N \neq 1$, $y_{\alpha}N \neq 1$, $x_{\alpha}N \neq y_{\alpha}N$ in the quotient group G = F/N. In the sequel we denote the cosets wN, i.e. the elements of the group G, simply by w.

In order to finish the proof of Theorem 3 we show that $c(\mathcal{L}(G)) = |G| = \tau$. Let us consider the family $\{[\{x_{\alpha}\}, G \setminus \{y_{\alpha}\}] : \alpha < \tau\}$ of non-empty open subsets of $\mathcal{L}(G)$, and show that this family is disjoint. We assume the contrary and choose α, β such that $\alpha < \beta < \tau$ and

$$[\{x_{\alpha}\}, G \setminus \{y_{\alpha}\}] \cap [\{x_{\beta}\}, G \setminus \{y_{\beta}\}] \neq \emptyset.$$

Then the subgroup $\langle x_{\alpha}, x_{\beta} \rangle$ generated by x_{α}, x_{β} is in the above intersection. On the other hand, $y_{\alpha} = x_{\beta} x_{\alpha} x_{\beta}$, so

$$y_{\alpha} \in \langle x_{\alpha}, x_{\beta} \rangle, \langle x_{\alpha}, x_{\beta} \rangle \in [\{x_{\beta}\}, G \setminus \{y_{\alpha}\}]$$

and we get a contradiction.

Question. Does there exist a nilpotent group G such that $c(\mathcal{L}(G)) > \aleph_0$?

References

- [1] Engelking R., General Topology, PWN, Warszawa, 1985.
- [2] Protasov I.V., Dualisms of topological Abelian groups, Ukrain. Mat. Zh. 31 (1979), 207–211; English translation: Ukrainian Math. J. 31 (1979), 164–166.
- [3] Protasov I.V., The Suslin number of a space of subgroups of a locally compact group, Ukrain. Mat. Zh. 40 (1988), 654–658; English translation: Ukrainian Math. J. 40 (1988), 559–562.
- [4] Shanin N.A., On product of topological spaces, Trudy Mat. Inst. Akad. Nauk SSSR 24 (1948), 1–112 (in Russian).
- [5] Tsybenko Yu.V., Dyadicity of a space of subgroups of a topological group, Ukrain. Mat. Zh. 38 (1986), 635-639.
- [6] Fuchs L., Infinite Abelian Groups, Vol. 1, Academic Press, New York and London, 1970.

DEPARTMENT OF MATHEMATICS, BEN GURION UNIVERSITY OF THE NEGEV, BEER SHEVA, ISRAEL

E-mail: arkady@math.bgu.ac.il

TARAS SHEVCHENKO KYIV NATIONAL UNIVERSITY, UKRAINE

E-mail: protasov@unicyb.kiev.ua

(Received September 20, 2007, revised March 21, 2008)