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How sensitive is Cp(X, Y ) to changes in X and/or Y ?

Raushan Z. Buzyakova

Abstract. We investigate how the Lindelöf property of the function space Cp(X, Y ) is
influenced by slight changes in X and/or Y .
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1. Introduction

Consider the statement: “If X has property P, then Cp(X) has property Q.”
This statement always suggests the question: “Does Cp(X)

ω have Q?” It is a
classical fact [ARH] that Cp(X)

ω is homeomorphic to Cp(⊕nX). If P is preserved
by countable free sums, then the answer is obviously affirmative. However many
nice properties are not so. For example, compactness is not preserved by countable
free sums. To explain motivation of the proposed study, assume this statement:
“If X is compact, then Cp(X) has property Q.” Let Y = (⊕nX) ∪ {∞} be a
one-point compactification of ⊕nX . Since Y is compact, Cp(Y ) ∈ Q. Thus the
question whether Cp(X)

ω ∈ Q leads to the question whether Cp(Y \ {∞}) ∈
Q. This example shows a natural relation between countable productivity of a
property in function spaces and a single point alteration of the domain space.
Motivated by this example we suggest to study how adding or/and removing
points to/from X affect the function space. In this paper we will direct our
efforts at the following problem.

Problem. Suppose Cp(X, Z) is Lindelöf and Y is a subspace or a superspace
of X . Under what conditions is Cp(Y, Z) Lindelöf?

In notation and terminology we will follow [ENG] and [ARH]. All spaces are
assumed to be Tychonoff. The study of the suggested topic will begin in Section 3.
In Section 2, we will prove modifications of classical facts to be used in our study.

2. Cp(X) if Ind(X) = 0

In this section we will repeat (with some changes) the argument in [ARH] to
show that Cp(X, ωω) admits a continuous map onto Cp(X) if Ind(X) = 0.
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Lemma 2.1 (A version of Mardešić Factorization Theorem [MAR]). Let X be
locally compact and Lindelöf and ind(X) = 0. Let f : X → R be continuous.
Then there exist continuous g : X → ωω and continuous h : ωω → R such that
f = h ◦ g.

Proof: Let B be a countable base for the topology of R. For each B ∈ B, fix
a countable family OB of clopen sets in X such that f−1(B) =

⋃
OB. Fix a

countable family O∞ of clopen compact sets whose union is X . Let O = {O :
O ∈ O∞ or O ∈ OB, B ∈ B}.

For each O ∈ O, define gO : X → ω by letting gO(O) = {0} and gO(X \ O) =
{1}. The function G1 = ∆{gO : O ∈ O} is a continuous function from X to ωω.
Due to the presence of elements of O∞ in O, G1 is a perfect map. Hence, G1(X)
is locally compact. Therefore, there exists a homeomorphism G2 of G1(X) onto
a closed subset of ωω . Put g = G2 ◦ G1.

Define H : g(X)→ R as follows. For each y ∈ g(X), put H(y) = f(x), where
g(x) = y. Let us show that g is well defined. Let x1 6= x2 and y = g(x1) = g(x2).
We need to show that f(x1) = f(x2). Since g(x1) = g(x2), the family O does
not separate x1 from x2. Therefore, f does not separate them either. To show
continuity of g, fix B ∈ B. By the definition of H , H−1(B) = g(f−1(B)). By
the definition of g, g(O) is open for all O ∈ O. Since f−1(B) =

⋃
OB, where

OB ⊂ O, the set g(f−1(B)) is open. Since g(X) is closed in ωω, there exists
continuous h : ωω → R that coincides with H on g(X). Clearly, f = h ◦ g. �

Next two lemmas are analogous to Lemma IV.3.6 and Lemma IV.3.7 in [ARH].
We will follow both the proofs and notations.

Lemma 2.2. Let X be a Tychonoff space and Ind(X) = 0. Then there exists
a continuous map φ : ωω → R such that for every continuous f ∈ Cp(X) there
exists continuous gf ∈ Cp(X, ωω) such that f = φ ◦ gf .

Proof: For every f ∈ Cp(X) letXf = X×{f} and let ef be the homeomorphism
of X with Xf defined by ef (x) = (x, f). Let Z = ⊕{Xf : f ∈ Cp(X)}. It is clear
that Ind(Z) = 0 and Ind(βZ) = 0.

Consider h : Z → R, where h(x, f) = f(x) for all x ∈ X and f ∈ Cp(X). The

map h is continuous. Let h̃ : βZ → βR be the continuous extension of h to the
Čech-Stone compactifications. Let Z ′ = h̃−1(R) and let h′ be the restriction of h̃
to Z ′. Clearly, Z ′ is locally compact, Lindelöf, and ind(Z ′) = 0.

By Lemma 2.1, there exist continuous s : Z ′ → ωω and continuous φ : ωω → R
such that h′ = φ ◦ s.

Let us show that φ is as desired. Take any f ∈ Cp(X). Put gf = s ◦ ef : X →
ωω. Then φ ◦ gf = f . �

Lemma 2.3. Let X be a Tychonoff space and Ind(X) = 0. Then Cp(X) is a
continuous image of Cp(X, ωω).
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Proof: Fix φ that satisfies the conclusion of Lemma 2.2. Define p : Cp(X, ωω)→
Cp(X) by letting p(g) = φ ◦ g. By Lemma 2.2, p is “onto”. Continuity of p is
clear. �

Theorem 2.4. Let X be a Tychonoff space and Ind(X) = 0. If Cp(X, ωω) is
Lindelöf then so is Cp(X)

ω .

Proof: The space Cp(X, ωω) is homeomorphic to Cp(X, (ωω)ω). The latter is
homeomorphic to Cp(X, ωω)ω , which, by Lemma 2.3, admits a continuous map
onto Cp(X)

ω. �

According to Theorem 2.4, if the answer to the following question is “Yes” then
the Lindelöf property is preserved by countable powers in the class of function
spaces over spaces X with Ind(X) = 0.

Question 2.5. Let Cp(X) be Lindelöf and Ind(X) = 0. Is Cp(X, ωω) Lindelöf?

3. Study

In [D&S], A. Dow and P. Simon constructed a consistent example of a countably
tight compactum Y = X ∪ {p} such that X is first-countable, p has countable
tightness in Y , Cp(X) is Lindelöf, and Cp(Y ) is not Lindelöf. That is, adding
a countably tight point to the domain space destroys Lindelöf property in the
resulting function space. This example prompts the following question.

Question 3.1. Let Cp(X) be Lindelöf. Suppose p has countable character in
Y = X ∪ {p}. Is Cp(Y ) Lindelöf?

We do not know an answer to this question. However, if we replace Cp(X)
with Cp(X, Z), where Z is a discrete countable space, then the answer is “Yes”.

Theorem 3.2. Let Cp(X, Z) be Lindelöf, where Z is a discrete countable space.
If p has countable character in Y = X ∪ {p}, then Cp(Y, Z) is Lindelöf.

Proof: Enumerate elements of Z as {zn : n ∈ ω}. Fix a countable base {Bn}n

at p in Y . Define Sn,m ⊂ Cp(X, Z) as follows: f ∈ Sn,m iff f(Bn \ {p}) = {zm}.
It is clear that Sn,m is closed in Cp(X, Z) for any n, m ∈ ω, and therefore, is
Lindelöf.
Define φn,m : Sn,m → Cp(Y, Z) as follows: φ(f) = fn,m, where fn,m coincides

with f on X and fn,m(p) = zm. Clearly, fn,m is a continuous function of Y to Z.
Let us show that φn,m is continuous. Fix f ∈ Sn,m and open V ⊂ Cp(Y, Z) that
contains fn,m. We may assume that V = V1 ∩ V2, where V1 = {g ∈ Cp(Y, Z) :
g(p) = fn,m(p)} and V2 = {g ∈ Cp(Y, Z) : g(a) = fn,m(a)}, where a is a fixed
element of X . Put U = {h ∈ Sn,m : h(a) = f(a)}. Since a ∈ X , hn,m(a) =
h(a) = fn,m(a). Thus, hn,m ∈ V2. Since h ∈ Sn,m, hn,m(p) = zm = fn,m(p).
Thus, hn,m ∈ V1.



660 R.Z.Buzyakova

Observe that Cp(Y, Z) is equal to
⋃
{φn,m(Sn,m) : n, m ∈ ω}. Since each term

in the union is a continuous image of a Lindelöf space, the union is Lindelöf as
well. �

Remark. Observe that the argument of the proof of Theorem 3.2 proves more
than promised in the statement. Namely, the Lindelöf property in the statement
of the theorem can be replaced by any property that is preserved by countable
unions and continuous maps.

In connection with this result, it is interesting to know what happens to Cp(X)
if we remove one point from X . It is known that removing a point of countable
tightness from a zero-dimensional compactum may destroy the Lindelöf property
of a function space. For example, let X = D ∪ {∞} be the one-point compact-
ification of an uncountable discrete space D. It is known that X is an Eberlein
compactum. Therefore, Cp(X) is Lindelöf [TAL]. The space Cp(D) is not Lin-

delöf because it is homeomorphic to RD. It turns out, however, that removing
a point of countable character from a zero-dimensional compactum does not af-
fect the Lindelöf property of the function space. To prove this result we will
make a repeated use of the fact that Cp(⊕nX, Y ), Cp(X, Y ω), and Cp(X, Y )ω are
homeomorphic (see Propositions 0.3.3 and 0.3.4 in [ARH]).

Theorem 3.3. Let X be a zero-dimensional compactum and let p ∈ X have

countable character in X . If Cp(X) is Lindelöf, then so is Cp(X \ {p}).

Proof: If p is isolated, then Cp(X) is homeomorphic to Cp(X \{p})×R. Assume
p is a limit point for X . Since X is zero-dimensional and χ(p, X) = ω we can
write X \{p} as ⊕i∈ωXi, where Xi is compact for all i. Clearly, Ind(X \{p}) = 0.
Since Cp(X) is Lindelöf and X is a zero-dimensional compactum we have

Cp(X)
ω is Lindelöf (see [POL1] or [ARH]). Since Cp(X)

ω is homeomorphic to
Cp(X, Rω) the latter is Lindelöf. Since ω embeds in R as a closed subspace,
we have Cp(X, ωω) is Lindelöf. Therefore, Cp(X, (ωω)ω) is Lindelöf. Therefore,
Cp(⊕i∈ωX, ωω) is Lindelöf.
Since X \ {p} = ⊕i∈ωXi is a clopen subspace of ⊕i∈ωX , any continuous func-

tion from ⊕i∈ωXi to ωω can be continuously extended to a continuous func-
tion of ⊕i∈ωX to ωω. Therefore, Cp(X \ {p}, ωω) is a continuous image of
Cp(⊕i∈ωX, ωω). Therefore, the former is Lindelöf as well. By Theorem 2.4,
Cp(X \ {p})ω is Lindelöf. �

Question 3.4. Let X be a compactum and χ(p, X) = ω. Suppose Cp(X) is
Lindelöf. Is Cp(X \ {p}) Lindelöf? What if the requirement on compactness of
X is replaced by some other compact-type property or simply dropped?

It is interesting that Theorem 3.3 does not hold if Cp(X) is replaced with
Cp(X, 2). To describe an example, we need one technical statement about the
following classical structure.
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Definition of Structure F (⊕iXi): Let Xi be a topological space for all i ∈ ω
and∞ /∈

⋃
i Xi. The space F (⊕iXi) consists of points of {∞}∪ (⊕iXi). Each Xi

is clopen in F (⊕iXi) and keeps its original topology. The base neighborhoods at
∞ are in form {∞} ∪ (⊕i>nXi).

The proof of the next technical statement is similar to that of Theorem 3.2.

Proposition 3.5. Let Z be a countable discrete space. Suppose Cp(⊕i<nXi, Z)
is Lindelöf for all n. Then Cp(F (⊕iXi), Z) is Lindelöf.

Proof: Enumerate elements of Z as {zm : m ∈ ω}. Define a function φn,m

from Cp(⊕i<nXi, Z) to Cp(F (⊕iXi), Z) as follows: φn,m(f) = fn,m, where fn,m

coincides with f on ⊕i<nXi and fn,m({∞} ∪ (⊕i≥nXi)) = {zm}. Since ⊕i<nXi

is clopen in F (⊕iXi), fn,m is continuous.
Let us show that φn,m is continuous. Fix f ∈ Cp(⊕i<nXi, Z) and open V ⊂

Cp(F (⊕iXi), Z) that contains fn,m = φn,m(f). We may assume that V = V1 ∩
V2, where V1 = {g : g(p) = fn,m(p)} with p ∈ ⊕i<nXi fixed, and V2 = {g :
g(q) = fn,m(q)}, where q is a fixed element of {∞} ∪ (⊕i≥nXi). Put U = {h ∈
Cp(⊕i<nXi, Z) : h(p) = f(p)}. Fix h ∈ U . We need to show that hn,m ∈ V .
Since p ∈ ⊕i<nXi, hn,m(p) = h(p) = fn,m(p). Thus, hn,m ∈ V1. By definition of
φn,m, hn,m(q) = zm = fn,m(q). Thus, hn,m ∈ V2.
Since the domain of φn,m is Lindelöf, its image is Lindelöf as well. Ac-

cording to the definition of F (⊕iXi), the sequence of sets (Xi) converges to
∞ in F (⊕iXi). Therefore, for any f ∈ Cp(F (⊕iXi), Z) there exists n such
that f is constant on {∞} ∪ (⊕i>nXi). Therefore, Cp(F (⊕iXi), Z) is equal to⋃
{φn,m(Cp(⊕i<nXi, Z)) : n, m ∈ ω}. Thus, Cp(F (⊕iXi), Z) is Lindelöf as the
union of countably many Lindelöf subspaces. �

Example 3.6. Assume Continuum Hypothesis. Then there exists a compactum

X and p ∈ X of countable character such that Cp(X, 2) is Lindelöf while Cp(X \
{p}, 2) is not.

Proof: In [POL2], R. Pol constructed (under CH) a compactum Y with the
following properties:

1. Cp(Y, 2)n is Lindelöf for all n; and
2. Cp(Y, 2)ω is not Lindelöf.

Put Xi = Y for all i ∈ ω. Let X = F (⊕iXi). Clearly X is compact and p = ∞
has countable character in X . By property 1, Cp(⊕i<nXi, 2) is Lindelöf for all
n ∈ ω. By Proposition 3.5, Cp(X, 2) is Lindelöf. Recall that X \ {p} = ⊕i∈ωY .
By property 2, Cp(X \ {p}, 2) is not Lindelöf. �

In the construction of Example 3.6, if we replace Y from [POL2] by any space
that meets properties 1 and 2, then we get a space Z with Cp(Z, 2) Lindelöf and
Cp(Z \ {∞}, 2) not Lindelöf. It is shown in [HST] that there exists a consistent
example of a maximal almost disjoint family A such that Cp(Ψ(A), 2)

n is Lindelöf
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for all n. The fact that Cp(Ψ(A), 2)
ω is never Lindelöf, where Ψ(A) is the Mrowka

space determined by a maximal almost disjoint family A, is implicitly proved in
[POL1] but not stated. A stronger result is obtained in [D&S], namely, that
Cp(Ψ(A), convergent sequence) is not Lindelöf for any maximal almost disjoint
family A. Thus, if in Example 3.6 we trade compactness for pseudocompactness,
we obtain a first-countable pseudocompact Z with the desired properties. But
can we have both compactness and first-countability?

Question 3.7. Is there a first-countable (or weakly first-countable) compactum
Z such that Cp(Z, 2) is Lindelöf while Cp(Z \ {p}, 2) is not for some p ∈ Z?

Above discussion suggests relaxing “countable character” to some property
closer to “countable tightness”. It is natural to add points of countable tightness
from the Čech-Stone compactification.

Question 3.8. Let Cp(X) be Lindelöf and p ∈ βX have countable tightness

in βX . Is Cp(X ∪ {p}) Lindelöf?

Although we do not know the answer to the question in general case, we have
a solution if X is initially ω1-compact. Recall that X is initially ω1-compact
if every infinite set of cardinality at most ω1 has a complete accumulation point
in X . This is equivalent to the condition that every open cover of X of cardinality
at most ω1 contains a finite subcover. A point p ∈ X is a complete accumulation
point for a set A ⊂ X if every open neighborhood of p meets A by a subset of
cardinality of A.

Theorem 3.9. Let X be initially ω1-compact. If Cp(X) is Lindelöf then so is
Cp(βX).

Proof: By Baturov’s theorem [BAT] it suffices to show that Cp(βX) has count-
able extent (=“every closed discrete subset is countable”). Fix an ω1-sized subset
F of Cp(βX). If g ∈ Cp(X) we denote by g̃ the continuous extension of g over βX .
Put G = {g ∈ Cp(X) : g̃ ∈ F}. Clearly, the cardinality of G is ω1. By hypothesis,
there exists a complete accumulation point g∗ ∈ Cp(X) for G. Put f∗ = g̃∗. Let
us show that f∗ is a complete accumulation point for F . First let us prove the
following claim.

Claim. Suppose x ∈ βX \ X . Then the set Gx = {g ∈ G : g̃(x) ∈ (f∗(x) −
1/5, f∗(x) + 1/5)} is uncountable and g∗ is a complete accumulation point
for Gx.

Assume that at least one of the two conclusions does not hold. Then G′ =
G\Gx is uncountable and g∗ is a complete accumulation point forG′. Assume
f∗(x) = 0. For every g ∈ G′ put Sg = g−1(R \ (−1/5, 1/5)). Put Sg∗ =

g∗−1(0). Observe that the closure of every Sg in βX is a closed Gδ-set
containing x. Since X is pseudocompact, the intersection of any countable
collection of Sg’s is non-empty. Since X is initially ω1-compact, there exists
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z ∈ Sg∗ ∩ (
⋂

g∈G′ Sg). Then g(z) /∈ (−1/5, 1/5) for every g ∈ G while g∗(z) ∈

(−1/5, 1/5). This contradicts the fact that g∗ is a complete accumulation
point for G′. The claim is proved.

To show that f∗ is a complete accumulation point for F fix an open neighborhood
U = U1 ∩ · · · ∩Un of f

∗, where Ui = {f ∈ Cp(βX) : f(xi) ∈ (f
∗(xi)− ǫi, f

∗(xi)+
ǫi)} with xi ∈ βX and ǫi > 0 fixed. Put G0 = G. For 0 < i ≤ n, put Gi = {g ∈
G : g̃(xj) ∈ (f

∗(xj)− ǫj , f
∗(xj) + ǫj), j ≤ i}. That is, Gi consists of all elements

of G whose extensions over βX are elements of U1 ∩ · · · ∩ Ui. Suppose that for
every i < k ≤ n, we have proved that Gi is uncountable and g∗ is a complete
accumulation point for Gi. Let us prove the same for Gk. Since G0 = G, we may
assume that k > 0.
If xk ∈ X then Vk = {g ∈ Cp(X) : g̃(xk) ∈ (f

∗(xk) − ǫk, f∗(xk) + ǫk)} is an
open neighborhood of g∗ in Cp(X). Therefore, Gk = Gk−1 ∩ Vk is uncountable
and g∗ is a complete accumulation point for Gk.
If xk ∈ βX \X then by substituting Gk−1 for G in the hypothesis of Claim we

get Gk = Gxk
is uncountable and g∗ is a complete accumulation point for Gk.

Thus, Gn is uncountable and g∗ is a complete accumulation point for Gn.
Since Gn = {g ∈ G : g̃ ∈ U} and g̃ ∈ F for all g ∈ Gn we conclude that F ∩ U is
uncountable. Therefore, f∗ is a limit point for F . �

To strengthen the conclusion of this theorem, we need the following folklore
statement.

Lemma 3.10. If Cp(βX) is Lindelöf and X is dense in Y then Cp(Y ) is Lindelöf.

Proof: The space βX admits a continuous map onto βY . Since these spaces are
compact, the map in question is quotient. Therefore, Cp(βY ) is homeomorphic
to a closed subspace of Cp(βX) [ARH, Corollary 0.4.8], and therefore, is Lindelöf.
It is clear that Cp(βY ) admits a continuous surjection onto Cp(Y ). �

Corollary 3.11. Let X be initially ω1-compact with Cp(X) Lindelöf. If X is
dense in Y then Cp(Y ) is Lindelöf.

Theorem 3.9 and Lemma 3.10 imply that if X is an initially ω1-compact space
and Cp(X) is Lindelöf then Cp(bX) is Lindelöf for some compactification bX ofX .
To reverse this statement we have to answer the following question.

Question 3.12. Let X be a compactum with Cp(X) Lindelöf. Let Y be an
initially ω1-compact subspace of X . Is Cp(Y ) Lindelöf? What if Y is countably
compact?

Next is a simple observation related to this question.

Theorem 3.13. Assume Martin Axiom and Negation of Continuum Hypothesis.

Let X be a compactum with Cp(X) Lindelöf. Let Y be a countably compact
subspace of X . Then Cp(Y ) is Lindelöf. Moreover, Y is compact.
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Proof: It suffices to show that Y is compact. By Asanov’s theorem [ASA],
X has countable tightness. Assume Y is not compact. Due to countable tight-
ness, there exists a countable set A ⊂ Y whose closure in X meets X \ Y . By
Reznichenko’s theorem (see [ARH]), Martin Axiom and negation of CH imply
that every separable compactum Z with Lindelöf Cp(Z) is metrizable. Therefore,
ClX (A) is metrizable. This means that there exists a sequence of elements of Y
that converges to a point in X \Y . This contradicts countable compactness of X .

�

We would like to finish our study with several more questions related to our
results.

Question 3.14. Is there an initially ω1-compact space X which is not compact
and has Cp(X) Lindelöf?

Question 3.15. Let X be a compactum with Cp(X) Lindelöf. Let X ∪ X ′ be

the Alexandroff double of X . Is Cp(X ∪ X ′) Lindelöf? What if X is a Corson
compactum. What if X is countably compact and not compact?

Observe that the answer to this question is in affirmative if X is an Eber-
lein compactum. Indeed, the Alexandroff double of an Eberlein compactum is
an Eberlein compactum and the function space of every Eberlein compactum is
Lindelöf [TAL].

Question 3.16. Let X be the Alexandroff double of the Σ-product of ω1-many
copies of R. Is Cp(X) Lindelöf?

Question 3.17. Let Cp(X, 2) be Lindelöf and let p have a countable weak base
in Y = {p} ∪ X . Is Cp(Y, 2) Lindelöf? What if Cp(·, 2) is replaced with Cp(·)?

Question 3.18. Let Y = X ∪ A be a first countable compactum, where all ele-
ments of A are isolated in Y . Suppose that Cp(X) is Lindelöf and A is countable.
Is Cp(Y ) Lindelöf?

Question 3.19. Let Xn be a first countable compactum such that Cp(Xn) is
Lindelöf. Suppose that X =

⋃
n Xn and Xn ⊂ Xn+1. Is Cp(X) Lindelöf? What

if X is compact?

In connection with the last two questions we would like to mention that there
exists ([POL1]) a compact space X ∪ A such that X is compact with Lindelöf
Cp(X), A is a countable dense subset of isolated points in X ∪A, and Cp(X ∪A)
is not Lindelöf. That is, adding countably many isolated points to a compactum
may destroy Lindelöf property in a function space. The existence of such a space
follows from the theorem of R. Pol [POL1] that states the following: If Z is a
compact separable space with the ω1th derived set empty and Cp(Z) Lindelöf then
Z is countable. Therefore, for the promised example one can take the one-point
compactification of the Cantor Tree.
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Another fact that should be mentioned is that Cp(FR) is not Lindelöf, where
FR is the Franklin-Rajagopalan space [F&R] with the derived set ω1. This fol-
lows from the argument of the above mentioned theorem of Pol [POL1] (can
also be found in [ARH, Proposition IV.7.4]). Thus, compactness is important in
Questions 3.18 and 3.19. In fact, the argument of [D&S, Proposition 1] implies
that even Cp(FR, convergent sequence) is not Lindelöf. It is not clear, however,
whether Cp(FR, 2) is Lindelöf or not.
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fined on Mrowka spaces, Topology Appl. 148 (2005), no. 1–3, 239–252.
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