Some results on $L\Sigma(\kappa)$ -spaces

F. CASARRUBIAS SEGURA, O. OKUNEV, C.G. PANIAGUA RAMÍREZ

Abstract. We present several results related to $L\Sigma(\kappa)$ -spaces where κ is a finite cardinal or ω ; we consider products and some constructions that lead from spaces of these classes to other spaces of similar classes.

Keywords: upper semicontinuous mappings, products, Lindelöf Σ -spaces

Classification: 54D20, 54C60, 54B10

All spaces in this article are assumed to be Tychonoff (= completely regular Hausdorff). We use terminology and notation as in [Eng2]. For multivalued mappings we do not require that images of points all be nonempty; if $p: X \to Y$ is a multivalued mapping and $A \subset X$, then p(A) is defined as $\bigcup \{ p(x) : x \in A \}$. The composition of two multivalued mappings $p: X \to Y$ and $q: Y \to Z$ is defined by the rule $(q \circ p)(x) = q(p(x))$. A multivalued mapping $p: X \to Y$ is upper semicontinuous if for every open set V in Y the set $\{ x \in X : p(x) \subset V \}$ is open in X, or, equivalently, if for every point x in X and every neighborhood V of p(x) in Y there is a neighborhood U of x in X such that $p(U) \subset V$.

It is well-known that the composition of compact-valued upper semicontinuous mappings is compact-valued upper semicontinuous. In fact, it is easy to prove that a mapping is compact-valued upper semicontinuous iff it is the composition of a continuous single-valued function, the inverse of a perfect mapping and the inverse of a closed embedding (see, e.g., [KOS]).

The symbol \mathfrak{c} denotes the cardinality of the continuum. If κ is an infinite cardinal, $A(\kappa)$ denotes the one-point compactification of a discrete space of cardinality κ . The symbol I stands for the closed interval [0, 1].

Let \mathcal{K} be a cover of a space X. A family \mathcal{N} of subsets of X is called a *network* modulo \mathcal{K} if for every element K of \mathcal{K} and a neighborhood U of K, there is an element N of \mathcal{N} such that $K \subset N \subset U$ [Nag].

The second author acknowledges support from CONACyT research project 61161/2006.

Given a cardinal κ , finite or infinite, a space X is called an $L\Sigma(<\kappa)$ -space [KOS] if it satisfies one of the following equivalent conditions:

There is a second-countable space M and a compact-valued upper semicontinuous mapping $p: M \to X$ such that p(M) = X and $w(p(z)) < \kappa$ for each $z \in M$;

or

There are a compact cover \mathcal{K} of X such that $w(K) < \kappa$ for every $K \in \mathcal{K}$ and a countable network modulo \mathcal{K} in X.

X is an $L\Sigma(\leq \kappa)$ -space if it is an $L\Sigma(<\kappa^+)$ -space. X is an $L\Sigma(\kappa)$ -space if it is an $L\Sigma(\leq \kappa)$ -space and is not an $L\Sigma(<\kappa)$ -space; this concept is especially important in the case of finite cardinals κ . Of course, for finite κ , the weights of images of points and of the elements of the compact covers in the above characterizations can be replaced by the cardinalities.

The classes of $L\Sigma(\langle \kappa \rangle)$ -spaces are invariant with respect to closed subspaces, continuous images and countable unions. Obviously, all $L\Sigma(\kappa)$ -spaces are Lindelöf Σ -spaces in the sense of [Nag]; it is easy to see that $L\Sigma(\leq 1)$ -spaces are exactly the spaces of countable network weight. The class of $L\Sigma(2)$ -spaces includes the Double Arrow space, one-point compactifications of uncountable discrete spaces of cardinality less or equal to the continuum, and the one-point compactifications of Ψ -like spaces (that is, the spaces of the form $\Psi(\mathcal{A})$, where \mathcal{A} is an almost disjoint family on ω ; see Section 2 for a detailed description). Assuming MA(ω_1), all scattered compact spaces of height 3 and cardinality ω_1 are in $L\Sigma(\leq 3)$ [KOS].

If $\kappa \geq \mathfrak{c}$, then $L\Sigma(\leq \kappa)$ -spaces are exactly Lindelöf Σ -spaces of network weight $\leq \kappa$.

1. Products of $L\Sigma(n)$ -spaces

It is easy to see, using the fact that the product of compact-valued upper semicontinuous mappings is upper semicontinuous, that the product of an $L\Sigma(\kappa)$ space with an $L\Sigma(\lambda)$ -space is an $L\Sigma(\leq \lambda \cdot \kappa)$ -space. However, if λ and κ are finite, it turns out that the product may be of the "type" lower than $\lambda \cdot \kappa$. For example, the one-point compactification $A(\omega_1)$ of the discrete space of cardinality ω_1 is an $L\Sigma(2)$ -space; as shown in [KOS], for every $n \in \omega$, $A(\omega_1)^n$ is $L\Sigma(n+1)$. On the other hand, if $\omega_2 \leq \mathfrak{c}$, then the space $A(\omega_2)$ is also an $L\Sigma(2)$ -space, but its square is in $L\Sigma(4)$. Thus, it may be interesting to find the exact $L\Sigma$ -classes for products of some $L\Sigma(n)$ -spaces. Several problems of this type were posed in [KOS] and [Oku]; here we present solutions to some of these problems.

Theorem 1.1. Suppose $m, n \in \omega$, X is an $L\Sigma(m)$ -space and Y is an $L\Sigma(n)$ -space. Then $X \times Y$ is an $L\Sigma(k)$ -space, where $n + m - 1 \le k \le mn$.

PROOF: Let $p_1: M_1 \to X$ and $p_2: M_2 \to Y$ be upper semicontinuous mappings from second countable spaces M_1 and M_2 onto X and Y such that p_1 is at most mvalued and p_2 is at most n-valued. Then the mapping $p_1 \times p_2: M_1 \times M_2 \to X \times Y$ (defined by the rule $(p_1 \times p_2)(m_1, m_2) = p_1(m_1) \times p_2(m_2)$) is upper semicontinuous and onto $X \times Y$. This proves that $X \times Y$ is an $L\Sigma(\leq mn)$ -space; therefore, $X \times Y$ is an $L\Sigma(k)$ -space for some $k \leq mn$.

To prove the second part of the inequality, suppose for contradiction that $X \times Y \in L\Sigma(k)$ and $k \leq n + m - 2$. Fix a second countable space M and an at most k-valued upper semicontinuous mapping $p: M \to X \times Y$ such that $p(M) = X \times Y$. Let π_X, π_Y be the projections of the product $X \times Y$; put

$$A = \{ z \in M : |\pi_X(p(z))| \le m - 1 \}.$$

Since the composition $\pi_X \circ p$ is upper semicontinuous and $X \notin L\Sigma(\leq m-1)$, there is a point $x_0 \in X$ such that $x_0 \notin \pi_X(p(A))$, hence $(\{x_0\} \times Y) \cap p(A) = \emptyset$. Let $B = M \setminus A$ and $q: B \to Y$ be the multivalued mapping defined by the rule:

$$q(z) = \pi_Y (p(z) \cap (\{x_0\} \times Y)).$$

Since $\{x_0\} \times Y$ is closed in $X \times Y$, the mapping q is upper semicontinuous, and from $p(M) = X \times Y$ and $(\{x_0\} \times Y) \cap p(A) = \emptyset$ it follows that q(B) = Y. For every $z \in B$, p(z) has at most n + m - 2 points, and at least m - 1 of these points have their projections on X different from x_0 . Hence, q(z) contains at most n - 1 points. Thus, q is an upper semicontinuous, at most (n - 1)-valued mapping from the second countable space B onto the space Y, a contradiction with the assumption that Y is an $L\Sigma(n)$ -space.

Corollary 1.2. If X is an $L\Sigma(n)$ -space for some $n \in \omega$, then X^m is an $L\Sigma(k)$ -space for some $k \ge mn - m + 1$.

In particular,

Corollary 1.3. If there is an $n \in \omega$ such that X^m is an $L\Sigma(\leq n)$ -space for every $m \in \omega$, then X has a countable network.

It was shown in [KOS] that if X^{ω} is an $L\Sigma(<\omega)$ -space, then there is an $n \in \omega$ such that X^m is an $L\Sigma(\le n)$ -space for every $m \in \omega$; it was also shown that, consistently, this implies that X has a countable network. Corollary 1.3 now allows to prove this in ZFC (thus giving an answer to Question 7.4 in [KOS]):

Corollary 1.4. If X^{ω} is an $L\Sigma(<\omega)$ -space, then X has a countable network (and hence X^{ω} is in fact an $L\Sigma(\leq 1)$ -space).

Another interesting corollary of Theorem 1.1 is

Corollary 1.5. If X is an $L\Sigma(m)$ -space for some $m \in \omega$, and Y is an $L\Sigma(n)$ -space for some $n \in \omega$, $n \ge 2$, then $X \times Y$ is not homeomorphic to X.

In particular, if X is an $L\Sigma(m)$ -space for some $m \in \omega$, $m \ge 2$, then all finite powers of X are pairwise non-homeomorphic.

Since the classes of $L\Sigma(\leq n)$ -spaces are invariant with respect to closed subspaces and continuous images, we may further strengthen Corollary 1.5.:

Corollary 1.6. If X is an $L\Sigma(m)$ -space for some $m \in \omega$, and Y is an $L\Sigma(n)$ -space for some $n \in \omega$, $n \geq 2$, then $X \times Y$ is not homeomorphic to a continuous image of any closed subspace of X.

Corollary 1.7. If X is an $L\Sigma(\leq n)$ -space for some $n \in \omega$, and there are natural k and m such that k < m and X^m is a continuous image of a closed subspace of X^k , then X has a countable network.

For example,

Corollary 1.8. Let X be the Double Arrow space. If $m, n \in \omega$ and n > m, then X^n cannot be embedded into a continuous image of X^m .

For some individual spaces, in particular, for products of given spaces, finding the exact $L\Sigma(k)$ -class where they belong appears a non-trivial task. For example, it is still not clear whether the square of the Double Arrow space is in $L\Sigma(3)$ or $L\Sigma(4)$ (Problem 1(132) in [Oku]).

The next theorem solves Problem 3(134) in [Oku].

Let \mathcal{A} be an almost disjoint family of infinite subsets of ω . Recall that the space $\Psi(\mathcal{A})$ is defined as the union $\omega \cup \mathcal{A}$ with the topology in which the points of ω are isolated, and basic neighborhoods of the points $A \in \mathcal{A}$ are of the form $\{A\} \cup A \setminus F$ where $F \subset A$ is finite. Clearly, $\Psi(\mathcal{A})$ is a Hausdorff zero-dimensional (hence Tychonoff) locally compact space. Let $\alpha \Psi(\mathcal{A})$ be its one-point compactification. Then $\alpha \Psi(\mathcal{A})$ is an $L\Sigma(2)$ -space, because it is a countable union of singletons (points of ω) and the subspace homeomorphic to $A(|\mathcal{A}|)$; the latter space is in $L\Sigma(2)$, and the class $L\Sigma(2)$ is invariant with respect to countable unions (see [KOS]). Problem 3(134) in [Oku] was whether the square of a space $\alpha \Psi(\mathcal{A})$ can be an $L\Sigma(3)$ -space and whether it can be an $L\Sigma(4)$ -space.

Theorem 1.9. Let \mathcal{A} , \mathcal{B} be uncountable almost disjoint families of infinite subsets of ω , and let $X = \alpha \Psi(\mathcal{A}) \times \alpha \Psi(\mathcal{B})$. Then

X is an $L\Sigma(3)$ -space iff both \mathcal{A} and \mathcal{B} have cardinality ω_1 ;

X is an $L\Sigma(4)$ -space iff one of the families \mathcal{A}, \mathcal{B} has cardinality greater than ω_1 .

PROOF: Since both $\alpha \Psi(\mathcal{A})$ and $\alpha \Psi(\mathcal{B})$ are $L\Sigma(2)$ -spaces, their product is an $L\Sigma(\leq 4)$ -space. By Theorem 1.1, X is not $L\Sigma(2)$, so it is either $L\Sigma(3)$ or $L\Sigma(4)$.

If one of the families \mathcal{A} , \mathcal{B} has cardinality greater or equal to ω_2 , then the one-point compactification of the corresponding Ψ -space contains a closed copy of $A(\omega_2)$ while the other contains a closed copy of $A(\omega_1)$. Hence, the product X contains a closed subspace homeomorphic to $A(\omega_2) \times A(\omega_1)$, which is not an $L\Sigma(\leq 3)$ -space by (the remark after the proof of) Theorem 4.7 in [KOS]. Since

the class of $L\Sigma(\leq 3)$ -spaces is hereditary with respect to closed subspaces, this proves that X cannot be an $L\Sigma(3)$ -space.

On the other hand, if both \mathcal{A} and \mathcal{B} have cardinality ω_1 , then each of them is the union of a countable space and the space $A(\omega_1)$. It follows that X is the union of a countable set, countably many copies of $A(\omega_1)$, and a copy of $A(\omega_1) \times A(\omega_1)$. Since each of these spaces is in $L\Sigma(\leq 3)$, the space X is in $L\Sigma(\leq 3)$. \Box

Corollary 1.10. If $\mathfrak{c} = \omega_1$, then for any uncountable almost disjoint families \mathcal{A} , \mathcal{B} on ω , the product $\alpha \Psi(\mathcal{A}) \times \alpha \Psi(\mathcal{B})$ is an $L\Sigma(3)$ -space.

2. One-point compactifications

In [KOS], the consistently positive answer to Question 7.4 was obtained by showing that a counterexample would have to be a strong S-space and an $L\Sigma(n)$ -space for some $n \in \omega$. It appears natural to ask if this kind of spaces can exist. In this section we present a construction that shows, in particular, that the answer is "yes".

Theorem 2.1. Let X be a locally compact space. Suppose that for some $n, m \in \omega$ there exist an $L\Sigma(\leq n)$ -space Y and a continuous mapping $j: X \to Y$ such that j(X) = Y and $|j^{-1}(y)| \leq m$ for all $y \in Y$. Then the one-point compactification αX of X is an $L\Sigma(\leq nm + 1)$ -space.

PROOF: If X is compact, then the mapping j is perfect, so its inverse is upper semicontinuous and at most m-valued. If $p: M \to Y$ is an upper semicontinuous at most n-valued mapping from a second countable space M onto Y, then the composition $j^{-1} \circ p$ is upper semicontinuous, onto X, and at most nm-valued, so $\alpha X = X$ is an $L\Sigma(\leq nm)$ -space.

Thus, we may assume that X is not compact. Let ∞ be the point such that $\{\infty\} = \alpha X \setminus X$.

Let $p: M \to Y$ be an upper semicontinuous mapping from a second-countable space M onto Y such that $|p(z)| \leq n$ for every $z \in M$. Define a multivalued mapping $q: M \to X$ by putting

$$q(z) = j^{-1}(p(z)) \cup \{\infty\}.$$

Obviously, the mapping q is onto αX and is at most (nm + 1)-valued, so to complete the proof, it remains to verify that q is upper semicontinuous.

Let z_0 be a point of M and U an open neighborhood of $q(z_0)$ in αX ; we need to find a neighborhood V of z_0 in M so that $q(V) \subset U$.

Since $\infty \in U$, the set $K = X \setminus U$ is compact. Put $W = Y \setminus j(K)$. The set W is open in Y and contains $p(z_0)$, so by the upper semicontinuity of p, there is a neighborhood V of z_0 in M such that $p(V) \subset W$. Then $q(V) = \{\infty\} \cup j^{-1}(p(V)) \subset \{\infty\} \cup j^{-1}(W) \subset U$, and the proof is complete. \Box

Corollary 2.2. If X is a locally compact space, and X admits a continuous bijection onto a second-countable space, then αX is an $L\Sigma(2)$ -space.

The Kunen Line and the Todorčević line [Todor] are locally compact, admit weaker second-countable topologies, and are strong S-spaces. Since the Todorčević line is constructed assuming $\mathfrak{b} = \omega_1$, we arrive at the following.

Corollary 2.3. Assume $\mathfrak{b} = \omega_1$. Then there exists a strong S-space which is an $L\Sigma(2)$ -space.

Arguments similar to that of the proof of Theorem 2.1 lead to the following versions:

Theorem 2.4. Let X be a locally compact space. Suppose there exist an $L\Sigma(<\omega)$ -space Y and a continuous finite-to-one mapping $j: X \to Y$ such that j(X) = Y. Then the one-point compactification αX of X is an $L\Sigma(<\omega)$ -space.

Theorem 2.5. Let X be a locally compact space. Suppose there exist an $L\Sigma(<\omega)$ -space Y and a continuous mapping $j: X \to Y$ such that j(X) = Y and $j^{-1}(y)$ is compact and metrizable for every $y \in Y$. Then the one-point compactification αX of X is an $L\Sigma(\leq \omega)$ -space.

Recall that a mapping $j: X \to Y$ is called *compact-covering* if for every compact set K in Y there is a compact set F in X such that j(F) = K.

Theorem 2.6. Let X be a locally compact space. Suppose there exist an $L\Sigma(\leq \omega)$ -space Y and a continuous compact-covering bijection $j: X \to Y$. Then the one-point compactification αX of X is an $L\Sigma(\leq \omega)$ -space.

In all three latter theorems the mapping q is defined in the same way as in the proof of Theorem 2.1, and the upper semicontinuity of q is verified by the same argument. In Theorem 2.4, q is trivially finite-valued, and in Theorem 2.5, q has compact metrizable images of points because finite unions of metrizable compacta are metrizable compacta. In Theorem 2.6, the compactness and metrizability of images of points under q are verified as follows: there is a compact subset C of X such that $p(z) \subset j(C)$; since j is a continuous bijection, the restriction of j to C is a homeomorphism. Thus, q(z) is the union of the set $j^{-1}(p(z))$, homeomorphic to p(z), and a singleton, hence compact metrizable.

It is not clear if it is possible to omit the requirement that j be compact-covering in Theorem 2.6. Hence,

Problem 2.7. Let X be a locally compact space. Suppose there exist an $L\Sigma(\leq \omega)$ -space Y and a continuous bijection $j: X \to Y$. Must the one-point compactification αX of X be an $L\Sigma(\leq \omega)$ -space?

It is also not clear whether Theorem 2.6 remains true if we require that j be finite-to-one instead of being a bijection. The reason of course is that the preimage of a compact metrizable space under a perfect finite-to-one mapping need not be metrizable, so the argument as above does not work. Hence,

Problem 2.8. Let X be a locally compact space. Suppose there exist an $L\Sigma(\leq \omega)$ -space Y and a continuous finite-to-one compact-covering mapping $j: X \to Y$. Must the one-point compactification αX of X be an $L\Sigma(\leq \omega)$ -space?

Problem 2.9. Let X be a locally compact space. Suppose there exist an $L\Sigma(\leq \omega)$ -space Y and a continuous finite-to-one mapping $j: X \to Y$ such that j(X) = Y. Must the one-point compactification αX of X be an $L\Sigma(\leq \omega)$ -space?

3. The Alexandroff duplicates

One of intriguing questions in the theory of $L\Sigma(\leq \omega)$ -spaces is the following (Question 7.5 in [KOS]; also Problem 13(144) in [Oku]): Let X be an $L\Sigma(\leq \omega)$ -space and let $p: X \to Y$ be a finite-valued upper semicontinuous mapping such that p(X) = Y. Must Y be an $L\Sigma(\leq \omega)$ -space?

Below we prove that the answer is positive for a particular case of the Alexandroff duplicate of an $L\Sigma(\leq \omega)$ -space; this gives a positive answer to Problem 15(146) in [Oku].

Recall that the Alexandroff duplicate AD(X) of a space X is $X \times 2$ with the topology defined as follows: the points of $X \times \{1\}$ are isolated, and basic neighborhoods of the points (x, 0) are of the form $(U \times 2) \setminus \{(x, 1)\}$ where U is a neighborhood of x in X (see [Eng1] for a discussion of this construction). It is easy to see that the mapping $\pi: AD(X) \to X$ defined by the rule $\pi((x, i)) = x$ is two-to-one and perfect, so its inverse is 2-valued upper semicontinuous.

Theorem 3.1. If X is an $L\Sigma(\leq \omega)$ -space, then so is AD(X).

PROOF: Fix a second-countable space M and an upper semicontinuous compactvalued mapping $p: M \to X$ so that p(M) = X and $w(p(z)) \leq \omega$ for every $z \in M$. Since the cardinalities of M and of $p(z), z \in M$, are at most \mathfrak{c} , we have $|X| \leq \mathfrak{c}$, and we may fix a one-to-one function (not necessarily continuous) $j: X \to I = [0, 1]$. Define a multivalued mapping $q: M \times I \to AD(X)$ by the rule:

$$q(z,t) = (p(z) \times \{0\}) \cup ((p(z) \cap j^{-1}(t)) \times \{1\}).$$

Since for every $(z,t) \in M \times I$ the set $j^{-1}(t)$ contains at most one point, the images of points under q are compact and metrizable. Let us verify that q is upper semicontinuous.

Let $(z_0, t_0) \in M \times I$, and let U be a neighborhood of $q(z_0, t_0)$; we need to find a neighborhood V of (z_0, t_0) so that $q(V) \subset U$. Since $p(z_0)$ is compact, there is a neighborhood W of $p(z_0)$ in X and a finite set $F \subset X$ such that $F \cap j^{-1}(t_0) = \emptyset$ and $U \supset (W \times 2) \setminus (F \times \{1\})$. Indeed, for every point $x \in p(z_0)$ we can fix a standard open neighborhood $(W_x \times 2) \setminus \{(x, 1)\}$ of (x, 0) contained in U; choose a finite subfamily W_{x_1}, \ldots, W_{x_n} of the family $\{W_x : x \in p(z_0)\}$ so that $p(z_0) \subset \bigcup_{i=1}^n W_{x_i}$, and put $W = \bigcup_{i=1}^n W_{x_i}$ and $F = \{x_1, \ldots, x_n\} \setminus j^{-1}(t_0)$.

Let S = j(F); then S is finite and $t_0 \notin S$. By the upper semicontinuity of p, there is an open neighborhood G of z_0 in M such that $p(G) \subset W$. Put $V = G \times (I \setminus S)$. Now if $(z,t) \in V$, then $p(z) \subset W$ and $p(z) \cap j^{-1}(t) \subset W \setminus F$, so $q(z,t) \subset (W \times 2) \setminus (F \times \{1\}) \subset U$, and V is as required.

Let us now verify that q is onto AD(X). If $x \in X$, then there is $z_0 \in M$ such that $x \in p(z_0)$. Put $t_0 = j(x)$. Then both (x, 0) and (x, 1) are in $q(z_0, t_0)$.

Thus, there is an upper semicontinuous compact-valued mapping with metrizable images of points from a second-countable space $M \times I$ onto AD(X), and the proof is complete.

Theorem 3.1 gives the positive answer to Problem 15(146) in [Oku].

A space X is called a $KL\Sigma(\leq \omega)$ -space if there is a compact second-countable space M and a compact-valued upper semicontinuous mapping $p: M \to X$ such that p(M) = X and $w(p(z)) \leq \omega$ for all $z \in M$ [KOS]. It is observed in [KOS] that a compact $L\Sigma(\leq \omega)$ -space need not be a $KL\Sigma(\leq \omega)$ -space. The same argument as in the proof of Theorem 3.1 can be used to prove the following:

Theorem 3.2. If X is a $KL\Sigma(\leq \omega)$ -space, then so is AD(X).

Of course, the same argument works for the next statement:

Theorem 3.3. Let κ be an infinite cardinal. If $|X| \leq \mathfrak{c}$ and X is an $L\Sigma(\leq \kappa)$ -space $(KL\Sigma(\leq \kappa)$ -space), then so is AD(X).

The condition " $|X| \leq \mathfrak{c}$ " in Theorem 3.3 cannot be omitted unless $2^{\kappa} \leq \mathfrak{c}$. Indeed, if $2^{\kappa} > \mathfrak{c}$, let $X = 2^{\kappa}$ (with the product topology). Trivially, $X \in KL\Sigma(\leq \kappa)$. On the other hand, every $L\Sigma(\leq \kappa)$ -space is a union of at most \mathfrak{c} subspaces of weight at most κ , so its network weight is at most $\kappa \cdot \mathfrak{c}$. The network weight of $AD(2^{\kappa})$ is 2^{κ} , so it cannot be an $L\Sigma(\leq \kappa)$ -space.

References

- [Eng1] Engelking R., On the double circumference of Alexandroff, Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys. 16 (1968), no. 8, 629–634.
- [Eng2] Engelking R., General Topology, Sigma Series in Pure Mathematics, vol. 6, Helderman, Lemgo, 1989.
- [KOS] Kubiš W., Okunev O., Szeptycki P.J., On some classes of Lindelöf Σ-spaces, Topology Appl. 153 (2006), no. 14, 2574–2590.

- [Nag] Nagami K., Σ-spaces, Fund. Math. 65 (1969), no. 2, 169–192.
- [Oku] Okunev O.G., $L\Sigma(\kappa)$ -spaces, Open Problems in Topology II (E. Pearl, ed.), Elsevier, 2007, pp. 47–50.
- [Todor] Todorčević S., Partition Problems in Topology, American Mathematical Society, Providence, 1989.

Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México D.F., México

E-mail: guli@servidor.unam.mx

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, av. San Claudio y Rio Verde s/n col. San Manuel, Ciudad Universitaria, CP 72570 Puebla, Puebla, México

E-mail: oleg@servidor.unam.mx

Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México D.F., México

E-mail: gerard_727@yahoo.com

(Received February 8, 2008, revised July 17, 2008)