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More on cardinal invariants of analytic P-ideals

BARNABAS FARKAS, LAJOS SOUKUP

Abstract. Given an ideal 7 on w let a(Z) (a(Z)) be minimum of the cardinalities of
infinite (uncountable) maximal Z-almost disjoint subsets of [w]¥. We show that
a(Zy) > w if I is a summable ideal; but a(Z;) = w for any tall density ideal
Z; including the density zero ideal Z. On the other hand, you have b < a(Z)
for any analytic P-ideal Z, and a(Z;) < a for each density ideal Zj;.

For each ideal 7 on w denote bz and 97 the unbounding and dominating
numbers of (w*, <7) where f <7 giff {n € w: f(n) > g(n)} € Z. We show that
bz = b and 07 = 0 for each analytic P-ideal Z.

Given a Borel ideal Z on w we say that a poset P is Z-bounding if V& € ZTNVF
dyeZINV x Cy. Pis I-dominating if 3y e INVEVz €ZINV o C* y.

For each analytic P-ideal Z if a poset P has the Sacks property then P
is Z-bounding; moreover if 7 is tall as well then the property Z-bounding/Z-
dominating implies w*-bounding/adding dominating reals, and the converses of
these two implications are false.

For the density zero ideal Z we can prove more: (i) a poset P is Z-bounding
iff it has the Sacks property, (ii) if P adds a slalom capturing all ground model
reals then P is Z-dominating.
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1. Introduction

In this paper we investigate some properties of some cardinal invariants as-
sociated with analytic P-ideals. Moreover we analyze related “bounding” and
“dominating” properties of forcing notions.

Let us denote fin the Frechet ideal on w, i.e. fin = [w]<“. Further we always
assume that if 7 is an ideal on w then the ideal is proper, i.e. w ¢ Z, and fin C Z,
so especially Z is non-principal. Write Z+ = P(w)\Z and 7* = {w\X : X € T}.

An ideal 7 on w is analytic if T C P(w) ~ 2¢ is an analytic set in the usual
product topology. 7 is a P-ideal if for each countable C C 7 there is an X € 7
such that Y C* X for each Y € C, where A C* B iff A\B is finite. Z is tall (or
dense) if each infinite subset of w contains an infinite element of Z.

A function ¢ : P(w) — [0,00] is a submeasure on w iff p(X) < ¢(Y) for
XCY Cw, op(XUY) < p(X) + oY) for XY C w, and ¢({n}) < oo for
n € w. A submeasure ¢ is lower semicontinuous iff ¢(X) = lim, ., (X Nn) for
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each X C w. A submeasure ¢ is finite if p(w) < co. Note that if ¢ is a lower
semicontinuous submeasure on w then (U, ¢, An) < >, c., ©(An) holds as well
for A,, C w. We assign the exhaustive ideal Exh(p) to a submeasure ¢ as follows

Exh(p) = {X Cw: nlirrgo ©(X\n) =0}.

Solecki [So, Theorem 3.1] proved that an ideal Z C P(w) is an analytic P-ideal
or 7T = P(w) iff T = Exh(p) for some lower semicontinuous finite submeasure.
Therefore each analytic P-ideal is F,s (i.e. I13), hence a Borel subset of 2. It is
straightforward to see that if ¢ is a lower semicontinuous finite submeasure on w
then the ideal Exh(¢p) is tall iff lim, . ¢({n}) = 0.

Let Z be an ideal on w. A family A C ZV is Z-almost-disjoint (Z-AD in short),
if ANB € T for each {A, B} € [A]2. An Z-AD family A is an Z-MAD family if for
each X € Z7 there exists an A € A such that X N A € ZT, i.e. Ais C-maximal
among the Z-AD families.

Denote a(Z) the minimum of the cardinalities of infinite Z-MAD families. In
Theorem 2.2 we show that a(Zy) > w if Z), is a summable ideal; but a(Z;) = w
for any tall density ideal Z; including the density zero ideal

Z:{Agw: lim M:O}.

n— o0 n

On the other hand, if you define a(Z) as minimum of the cardinalities of uncount-
able Z-MAD families then you have b < a(Z) for any analytic P-ideal Z, and
a(Z2;) < a for each density ideal Z; (see Theorems 2.6 and 2.8).

In Theorem 3.1 we prove under CH the existence of an uncountable Cohen-
indestructible Z-MAD family for each analytic P-ideal Z.

A sequence (A, : o < k) C [w]¥ is a tower if it is C*-descending, i.e. Ag C* A,
if @ < 8 < Kk, and it has no pseudointersection, i.e. a set X € [w]¥ such that
X C* A, for each o < k. In Section 4 we show it is consistent that the continuum
is arbitrarily large and for each tall analytic P-ideal Z there is a tower of height
w1 whose elements are in Z*.

Given anideal Z on w and f, g € w¥, write f <z gif{n € w: f(n) > g(n)} € 7.
As usual let <*=<j,. The unbounding and dominating numbers of the partially
ordered set (w*¥,<z), denoted by bz and 07 are defined in the natural way, i.e.
bz is the minimal size of a <z-unbounded family, and 07 is the minimal size of
a <z-dominating family. By these notations b = b, and 0 = ?g,. In Section 5
we show that bz = b and 07 = 0 for each analytic P-ideal Z. We also prove, in
Corollary 6.8, that for any analytic P-ideal Z a poset P is <z-bounding iff it is
w*“-bounding, and P adds <z-dominating reals iff it adds dominating reals.

In Section 6 we introduce the Z-bounding and Z-dominating properties of forc-
ing notions for Borel ideals: P is Z-bounding iff any element of ZNVF is contained
in some element of Z N V; P is Z-dominating iff there is an element in Z N VF
which mod-finite contains all elements of ZN V.
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In Theorem 6.2 we show that for each tall analytic P-ideal Z, if a forcing
notion is Z-bounding then it is w“-bounding, and if it is Z-dominating then it
adds dominating reals. Since the random real forcing is not Z-bounding for each
tall summable and tall density ideal Z by Proposition 6.3, the converse of the
first implication is false. Since a o-centered forcing cannot be Z-dominating for a
tall analytic P-ideal Z by Theorem 6.4, the standard dominating real forcing D
witnesses that the converse of the second implication is also false.

We prove in Theorem 6.5 that the Sacks property implies the Z-bounding
property for each analytic P-ideal 7.

Finally, based on a theorem of Fremlin we show that the Z-bounding property
is equivalent to the Sacks property.

2. Around the almost disjointness number of ideals

For any ideal Z on w, denote by a(Z) the minimum of the cardinalities of infinite
Z-MAD families.

To start the investigation of this cardinal invariant we recall the definition
of two special classes of analytic P-ideals: the density ideals and the summable
ideals (see [Fa]).

Definition 2.1. Let h: w — R* be a function such that >
summable ideal corresponding to h is

Ihz{Agw:Zh(n)<oo}.

neA

h(n) = co. The

necw

Let (P, :n <w) be a decomposition of w into pairwise disjoint nonempty
finite sets and let @ = (u,:n € w) be a sequences of probability measures,
tn 2 P(Py) — [0,1]. The density ideal generated by [i is

Zz={ACw: lim p,(ANP,) =0}.

A summable ideal Zj, is tall iff lim,, . h(n) = 0; and a density ideal Zj is tall
iff

() lim max u,({i}) = 0.

n—oo 1€ P,

Clearly the density zero ideal Z is a tall density ideal, and the summable and
the density ideals are proper ideals.

Theorem 2.2. (1) a(Z},) > w for any summable ideal Zj,.
(2) a(Zz) = w for any tall density ideal Z.

PROOF: (1): We show that if {4, : n < w} C Z; is Z-AD then there is B € I
such that BN A,, € T for n € w.

For each n € wlet B, C A, \|U{Am : m < n} be finite such that ) ;.5 h(i) >
1, and put

B=J{Bn,:new}
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(2): Write i = (un : n € w) and p, concentrates on P,. By () we have
lim,, 00 | Pp| = 0.
Now for each n we can choose k, € w and a partition {P, : k < k,} of P,
such that
(a) limy,— o0 kp = 00,
(b) if k < kn, then pun(Pnx) > 5t
Put Ay, = U{Pur : k < ky,} for each k € w. We show that {4y : k € w} is a
Z;-MAD family.
If &y, > k then pn(Ax N Py) = pin (P k) > # Since for an arbitrary k for all
but finitely many n we have k,, > k it follows that

. . . 1 1
1TSEPWAAkm}%):1?S¥pﬂnu%k)ZlffgpyﬁT::?;I>07
thus Ay € Z;-Ii_
Assume that X € Z:{. Pick € > 0 with limsup,,_ ., pn(X N P,) > €. For a
large enough k we have s < £ so if k < k;, then

fon(Po \ U{Pryi 1 < k}) < 2k1+1 <3

So for each large enough n there is i, < k such that u,(X NP, ;) > m
Then 4, = 4 for infinitely many n, so limsup,,_, o gn(X N A;) > 37T and so

XmAieZg. O

This theorem gives new proof of the following well-known fact:
Corollary 2.3. The density zero ideal Z is not a summable ideal.

Given two ideals 7 and J on w write Z <gk J (see [Ru]) iff there is a function
f+w — w such that

I={ICuw:f'TeJ}

and write Z <gp J (see [LaZh]) iff there is a finite-to-one function f : w — w
such that

I={ICw:f'IeJ}
The following observations imply that there are Z-MAD families of cardinality
¢ for each analytic P-ideal 7.

Observation 2.4. Assume that 7 and J are ideals on w, T <gk J witnessed by
a function f : w — w. If A is an Z-AD family then {f *A: A € A} is a J-AD
family.

Observation 2.5. fin <gp 7 for any analytic P-ideal T.

PROOF: Let 7 = Exh(yp) for some lower semicontinuous finite submeasure ¢ on w.
Since w ¢ Z we have lim,, .o p(w\n) =& > 0. Hence by the lower semicontinuous
property of ¢ for each n > 0 there is m > n such that ¢([n,m)) > /2.
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So there is a partition {I,, : n < w} of w into finite pieces such that ¢(I,,) > €/2
for each n € w. Define the function f : w — w by the stipulation f”I,, = {n}.
Then f witnesses fin <gp Z. [l

For any analytic P-ideal Z denote a(Z) the minimum of the cardinalities of
uncountable Z-MAD families.

Clearly a(Z) > w implies a(Z) = a(Z), especially a(Zy) = a(Zp,) for summable
ideals.
Theorem 2.6. a(Z;) < a for each density ideal Zj.

PROOF: Let f : w — w be the finite-to-one function defined by f={n} = P,,
where i = (i, : n € w) and py, : P(P,) — [0,1]. Specially f witnesses fin <gp Zj.

Let A be an uncountable (fin-)MAD family. We show that f~1[A] = {f1A:
A€ A} is a Z;-MAD family.

By Observation 2.4, f~*[A] is a Zz-AD family.

To show the maximality let X € Z:{ be arbitrary, limsup,, . un(X N P,) =
e > 0. Thus

J={new: u,(XNP,) >e/2}

is infinite. So there is A € A such that AN J is infinite.

Then f~1A € f~'[A]land X N f~1A4 € Z:{ because there are infinitely many
n such that P, C f~'A and p,(X N P,) > /2. O

Problem 2.7. Does a(Z) < a hold for each analytic P-ideal Z?
Theorem 2.8. b < a(Z) provided that T is an analytic P-ideal.

Remark. If X C [w]w is an infinite almost disjoint family then there is a tall ideal
Z such that X is Z-MAD. So the theorem above does not hold for an arbitrary
tall ideal on w.

PRrROOF: Z = Exh(yp) for some lower semicontinuous finite submeasure (.

Let A be an uncountable Z-AD family of cardinality smaller than b. We show
that A is not maximal.

There exists an ¢ > 0 such that the set

A-={Aec A: nlingo ©(A\n) > ¢}

is uncountable. Let A" = {A,, : n € w} C A be a set of pairwise distinct elements
of A.. We can assume that these sets are pairwise disjoint. For each A € A\ A’
choose a function f4 € w* such that

(x4) ©((ANAy)\ fa(n)) < 27" for each n € w.

Using the assumption |A| < b there exists a strictly increasing function f € w*
such that faq <* f for each A € A\A’. For each n pick g(n) > f(n) such that
¢(An N [f(n),g(n))) > e, and let

X = (4.0 [f(n), g(n))).

new
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Clearly X € Zg because for each n < w there is m such that A,,N[f(m), g(m)) C
X\n and so p(X \ n) > ¢(A, N[f(m),g(m))) > &, ie. lim, o (X \n) > &.

We have to show that X N A € Z; for each A € A. If A = A,, for some n then
XNA=XnA,=A4,Nn[f(n),g(n)), i.e. the intersection is finite.

Assume now that A € A\A’. Let 6 > 0. We show that if k is large enough
then o((ANX)\ k) <.

There is N € w such that 27V < § and fa(n) < f(n) for each n > N.

Let k be so large that k contains the finite set | J,, . 5 [f(n), g(n)).

Now (XNANE = Uje,, (AuNANLF (n), g(m))) \k and (AuANL (n), g(m)))\b =
(if n < N, so

(X NnANk= [ (A nAN[f(n),9(n))\k

n>N
C U (A n\f(m) € [ ((An 0 A\ Fa(n)).
n>N n>N
Thus by (*A) we have
X NANK) < S oA nAN fam) < Y zin _g-NH g
n>N n>N

3. Cohen-indestructible Z-mad families

If ¢ is a lower semicontinuous finite submeasure on w then clearly ¢ is deter-
mined by ¢ [ [w]<“. Using this observation one can define forcing indestructibility
of Z-MAD families for an analytic P-ideal Z. The following theorem is a modifi-
cation of Kunen’s proof for existence of Cohen-indestructible MAD family from
CH (see [Ku, Chapter VIIT Theorem 2.3]).

Theorem 3.1. Assume CH. For each analytic P-ideal T then there is an un-
countable Cohen-indestructible Z-MAD family.

PrOOF: We will define the uncountable Cohen-indestructible Z-MAD family { A, :
& <wi} CIT by recursion on € € wy. The family {A¢ : € < wq} will be fin-AD as
well. Our main concern is that we do have a(Z) > w so it is not automatic that
{A, : 7 < &} is not maximal for £ < wy.

Denote C the Cohen forcing. Let Z = Exh(p) be an analytic P-ideal. Let
{(pg,X§,55> :w < € < w1} be an enumeration of all triples (p, X, ) such that
p € C, X is a nice name for a subset of w, and § is a positive rational number.

Write € = lim,, 0 ¢(w \ n) > 0. Partition w into infinite sets {4,, : m < w}
such that lim,,_ . (A4, \ n) = ¢ for each m < w.

Assume § > w and we have A, € ZT for n < { such that {4, : n < £} is a
fin-AD so especially an Z-AD family.

Claim: There is X € 7T such that | X N A¢| < w for { < ¢&.
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PROOF OF THE CLAIM: Write £ = {(; : i < w}. By recursion on j € w we can
choose z; € [Ay,] = for some ¢; € w such that

(i) o(z;) >¢/2,

(i) z; N (Uic; Ac) = 0.
Assume that {x; : ¢ < j} is chosen. Pick £; € w\ {¢; : 7 < j}. Let m € w be such
that Ay, NU{A¢, : i < j} € m. Since p(Ay, \ m) > ¢, there is z; € [Ay,\m] =
with p(z;) > ¢/2.

Let X = J{z; : j <w}. Then |A; N X| < w for { < § and lim,, oo (X \ n) >

e/2. O

If pe does not force (a) and (b) below then let A¢ be X from the claim.
(a) limp oo ‘%V’(XE\”) > 557
(b) Vn< & XenA, el

Assume pg IH(a)A(b). Let {Bs : k € w} = {A, :n <&} and {p : k € w} =
{p’ € C:p' <p¢} be enumerations. Clearly for each k € w we have

pi I lim G((XAULB; 1< kp)\n) > b,
so we can choose a qi < pi and a finite ai C w such that w(ai) > ¢ and
¢sIF as C (X \U{BS - 1 < EP\E. Let Ae = U{d} : k € w}. Clearly A¢ € T+
and {A, : n < &} is a fin-AD family.

Thus A ={A¢: { <wi} CZT is a fin-AD family.

We show that A is a Cohen-indestructible Z-MAD. Assume otherwise there
is a & such that pe IF lim, o @(Xe\n) > 0e AVD < w1 Xe N A, € Z, specially
pe IF(a)A(b). There is a pi < p¢ and an N such that pi I @((Xe N Ag)\N) < d¢.
We can assume k > N, so pi - @((Xe N Ag)\k) < d¢. By the choice of q}; and ai
we have ¢; IF @5 C (XeNAg)\E, so qi - @((XeNAg)\E) > d¢, a contradiction. [

4. Towers in Z*

Let Z be an ideal on w. A C*-decreasing sequence (A, : a < k) is a tower
in I* if (a) it is a tower (ie. there is no X € [w]” with X C* A, for a < k),
and (b) A, € T* for o < k. Under CH it is straightforward to construct towers
in Z* for each tall analytic P-ideal Z. The existence of such towers is consistent
with 2 > w; as well by the Theorem 4.2 below. Denote C,, the standard forcing
adding a Cohen reals by finite conditions.

Lemma 4.1. Let Z = Exh(p) be a tall analytic P-ideal in the ground model V.
Then there is a set X € V&1 NI such that | X N S| =w for each S € [w]“ NV.

PROOF: Since 7 is tall we have lim,,—.. ¢({n}) = 0. Fix a partition (I, : n € w)
of w into finite intervals such that ¢({z}) < 5= for & € I,41 (we cannot say
anything about ¢({z}) for € Iy). Then X’ € T whenever | X' N I,| < 1 for
each n.



288

B. Farkas, L. Soukup

Let {i} : k < k,} be the increasing enumeration of I,,. Our forcing C adds a
Cohen real ¢ € w* over V. Let

X,={:¢(n)=kmod k,} e VENT.
A trivial density argument shows that |[X, NS|=w foreach S e VNjw]*. O

Theorem 4.2. Ik¢,, "There exists a tower in Z* for each tall analytic P-ideal Z.”

PROOF: Let V be a countable transitive model and G be a C,,-generic filter
over V. Let Z = Exh(y) be a tall analytic P-ideal in V]G] with some lower
semicontinuous finite submeasure ¢ on w. There is a § < w; such that ¢ |
[w]<¥ € V[Gs] where G5 = G N Cs, so we can assume ¢ [ [w]<¥ € V.

Work in V[G] recursion on w; we construct the tower A = (A, : a < wy) in T*
such that A | a € V[G,].

Because Z contains infinite elements we can construct in V' a sequence (A, :
n € w) in Z* which is strictly C*-descending, i.e. |[A,\Ap41| = w for n € w.
Assume (A¢ : £ < ) are done.

Since 7 is a P-ideal there is A], € T* with A, C* Ag for § < a.

By Lemma 4.1 there is a set X, € V[Goy1]NZ such that X, NS # 0 for each
S € [w]” NVI[Ga].

Let Ay = A\X, € V[Gag1]NT* so S ¢* A, for any S € V[Go]N[w]“. Hence
VIG] E"(An : @ < w1) is a tower in Z*. O

Problem 4.3. Do there exist towers in Z* for some tall analytic P-ideal Z in ZFC?

5. Unbounding and dominating numbers of ideals

A supported relation (see [Vo]) is a triple R = (A, R, B) where R C A x B,
dom(R) = A, ran(R) = B, and we always assume that for each b € B there is an
a € A such that (a,b) ¢ R.

The unbounding and dominating numbers of R are defined as:

b(R) =min{|4'|: A/ CAAVbEBA ¢ R™Yb}},
3(R) =min{|B'|: B C BAA=R"'B'}.

For example by = b(w*, <z7,w®) and 07 = d(w¥,<7,w*). Note that b(R) and
9(R) are defined for each R, but in general b(R) < 9(R) does not hold.
We recall the definition of Galois-Tukey connection of relations.

Definition 5.1 ([Vo]). Let Ry = (A1, R1,B1) and Ro = (As, Ra, B2) be sup-
ported relations. A pair of functions ¢ : Ay — As, ¢ : Bo — Bj is a Galois- Tukey
connection from R1 to R, in notation (¢,v) : R1 < Ra, if a1 R11(b2) whenever
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¢(a1)Rabs2. In a diagram:

G(by) € By —2— By 3 by
R, < R>
med —2 5 Ay5 P(az)

We write R1 =< Ro if there is a Galois-Tukey connection from R; to Ro. If
R1 = Ry and Re = R then we say R, and Ro are Galois-Tukey equivalent, in
notation R1 = Ros.

Fact 5.2. If Rl j RQ then b(Rl) 2 b(Rg) and D(Rl) S D(Rg).
Theorem 5.3. If 7 <gp J then (w*,<z,w¥) = (W, <7,w").

PRrROOF: Fix a finite-to-one function f :w — w witnessing Z <gp J.
Define ¢, : w* — w* as follows:

¢(a)(i) = max(z" f~H{i}),
() (7) = y(f(5))-
We prove two claims.
Claim 5.3.1. (¢,9) : (w¥, <7,w*) = (w¥, <7,wW*).

PROOF OF THE CLAIM: We show that if ¢(z) <z y then =z <7 ¥(y). Indeed,
I={i:¢)i) > y()} € Z. Assume that f(j) = i ¢ I. Then ¢(z)(i) =
max(z” f~H{i}) < y(i). Since y(i) = ¢ (y)(j), so

a(j) < max(z” f~H()Y) < y(f(5) = »(y)()-
Since f~1I € J this yields z <7 9¥(y). O
Claim 5.3.2. (¢,¢) : (0¥, <7,w¥) < (W, <7,w?).

PROOF OF THE CLAIM: We show that if ¢(y) <7 z then y <7 ¢(x). Assume
on the contrary that y €7 ¢(z). Then A = {i € w: y(i) > ¢(x)(i)} € I*. By
definition of ¢, we have A = {i : y(i) > max(z” f~1{i})}.

Let B=f"1Ae J". For j € B we have f(j) € A and so

D)) = y(f(7)) > (@) (f(j)) = max(z" FHf(G)}) = 2 ().
Hence ¥(y) €1 x, a contradiction. O
These claims prove the statement of the theorem, so we are done. (|

By Fact 5.2 we have:
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Corollary 5.4. If 7 <gp J holds then by = by and 07 =07.
By Observation 2.5 this yields:

Corollary 5.5. If 7 is an analytic P-ideal then (w*,<*,w*) = (w¥,<7,w%),
and by = b and 07 = 0.

6. Z-bounding and Z-dominating forcing notions

Definition 6.1. Let Z be a Borel ideal on w. A forcing notion P is Z-bounding if
FpVA€eZ3IBeINV ACB.

P is Z-dominating if
Fp3BeZIVAcINV AC" B.

Theorem 6.2. Let 7 be a tall analytic P-ideal. If P is Z-bounding then P is
w*-bounding as well; if P is ZT-dominating then P adds dominating reals.

PROOF: Assume that Z = Exh(y) for some lower semicontinuous finite submea-
sure . For A € 7 let

da(n) =min{k € w: p(A\ k) <27"}.

Clearly if AC B €T then ds < dp.

It is enough to show that {d4 : A € T} is cofinal in (w¥,<*). Let f € w“.
Since 7 is a tall ideal we have limy_.oc p({k}) = 0 but lim,,—c(w \ m) =& > 0.
Thus for all but finite n € w we can choose a finite set 4, C w\ f(n) such that
27" < p(Ay) <27 so A=J{An :n€w} €T and f <* da.

Why? We can assume that if &k > f(n) then ¢({k}) < 27™. Let n be so large
that 27" < e. Now if there is no a suitable A4,, then p(w\f(n)) < 27" < &,
a contradiction. O

The converse of the first implication of Theorem 6.2 is not true by the following
proposition.

Proposition 6.3. The random forcing is not Z-bounding for any tall summable
and tall density ideal T.

PrROOF: Denote B the random forcing and A the Lebesgue-measure.

If 7 = 7} is a tall summable ideal then we can choose pairwise disjoint sets
H(n) € [w]* such that >y, k() = 1 and max{h(l) : | € H(n)} < 27" for
each n € w. Let H(n) = {I} : k € w}. For each n fix a partition {[B}] : k € w}
of B such that A(B}) = h(I}) for each k € w. Let X be a B-name such that
kg X = {ip : [By] € G}. Clearly kg X € Zj,. X shows that B is not Z,-
bounding.
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Assume on the contrary that there is a [B] € B and an A € 7, such that
[B] IF X C A. There is an n € w such that

S OABE) = > h(Iy) < M(B).

IneA IneA

Choose a k such that [} ¢ A and [BP|A[B] # [0]. We have [BP]A[B] IF [ € X\ A4,
a contradiction.

If 7T = Z; is a tall density ideal then for each n fix a partition {[B}] : k € P,}
of B such that A\(B}) = un({k}) for each k. Let X be a B-name such that
kg X = {k : [B}] € G}. Clearly by X € Zz. X shows that B is not Zj-
bounding.

Assume on the contrary that there is a [B] € B and an A € Z; such that
[B] I X C A. There is an n € w such that

> AMBE) = pa(ANP,) < A(B).
keANP,
Choose a k € P,\A such that [B] A [B] # [#]. We have [BP] A [B] - k € X\ A4,
a contradiction. g

The converse of the second implication of Theorem 6.2 is not true as well: the
Hechler forcing is a counterexample according to the following theorem.

Theorem 6.4. If P is o-centered then P is not Z-dominating for any tall analytic
P-ideal T.

PROOF: Assume that Z = Exh(y) for some lower semicontinuous finite submea-
sure . Let € = limy,_,00 p(w \ 1) > 0.

Let P = J{C\, : n € w} where C,, is centered for each n. Assume on the
contrary that IFp XeIANVAeINV A c* X for some P-name X.

For each A € 7 choose a py € P and a kg € w such that

(o) palkF A\ka C X Ap(X \ ka) < /2.

Foreachn,k e wlet C, = {A €T :psa € CyNka =k}, andlet By, = UCh k-
We show that for each n and &

©o(Bnr \ k) <e/2.

Assume indirectly ¢(By, ;\k) > €/2 for some n and k. There is a k' such that
©(Bn.x N[k, k")) > /2 and there is a finite D C C, ;, such that B, N[k, k') =
(UD) N [k, k). Choose a common extension ¢ of {p4 : A € D}. Now we have
qIFU{A\k: A e D} C X and so

qIFe/2 <@(Bux NIk K)) = o(UD) N [k, K) < o(X N[k, E)) < o(X\E),

which contradicts (o).
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So for each n and k the set w\ B, i, is infinite, so w \ By, i contains an infinite
Dy, € Z. Let D € T be such that D,, ;, C* D for each n,k € w.
Then, there is no n, k such that D C* B,, j, a contradiction. O

By this theorem an by Lemma 4.1 the Cohen forcing is neither Z-dominating
nor Z-bounding for any tall analytic P-ideal Z.

Finally, in the rest of the paper we compare the Sacks property and the Z-
bounding property.

Theorem 6.5. If P has the Sacks property then P is Z-bounding for each analytic
P-ideal T.

PROOF: Let Z = Exh(p). Assume l-p X € Z. Let dy be a P-name for an element
of w* such that IFp dy (7)) = min{k € w : (X\k) < 27"}. We know that P is
w*-bounding. If p IF dy < f for some strictly increasing f € w* then by the
Sacks property there is a ¢ < p and a slalom S : w — [[w]<*] =, 18(n)| < n such
that

gIFV®nXn [f(n), f(n+1)) € S(n).

Now let
A= |J{DeSn):p(D) <27}
new
A € T because p(A\f(n)) < Zkz" e(AN[fk), f(k+1)) < Zkz” 2% Clearly
qIF X C* A. O

A supported relation R = (A, R, B) is called Borel-relation iff there is a Polish
space X such that A, B C X and R C X2 are Borel sets. Similarly a Galois-
Tukey connection (¢,%) : R1 =< Ra between Borel-relations is called Borel GT-
connection iff ¢ and i are Borel functions. To be Borel-relation and Borel GT-
connection is absolute for transitive models containing all relevant codes.

Some important Borel-relations:

(A): (Z,C,7) and (Z,C*,7) for a Borel ideal Z.

(B): Denote Slm the set of slaloms on w, i.e. S € Slm iff S : w — [w]<* and
|S(n)| = 2™ for each n. Let C and C* be the following relations on w* x Slm:

FEW S = V™) pewf(n)eSn).

The supported relations (w*, C, Slm) and (w*, C*, Slm) are Borel-relations.

(C): Denote £ the set of positive summable series. Let < be the coordinate-
wise and <* the almost everywhere coordinate-wise ordering on ¢. (¢, <,¢f)
and (¢, <*,¢]) are Borel-relations.

Definition 6.6. Let R = (A4, R, B) be a Borel-relation. A forcing notion P is
R-bounding if

FpVa e A3be BNV aRb;
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and R-dominating if
IFp 3b€ BVa e ANV aRb.

For example the property of being Z-bounding/dominating is the same as being
(Z,C*, I)-bounding/dominating.
We can reformulate some classical properties of forcing notions:

w®-bounding = (W, <™ w*)-bounding

adding dominating reals = (w?, <*, w“)-dominating
Sacks property = (w®, c™, Slm)-bounding

adding a slalom capturing = (w®, C*, Slm)-dominating

all ground model reals

If R = (A, R, B) is a supported relation then let R+ = (B,-R~!, A) where
b(-R™Ya iff not aRb. Clearly (R+)* = R and b(R) = 2(R*). Now if R is a
Borel-relation then R is a Borel-relation too, and a forcing notion is R-bounding
iff it is not R+-dominating.

Fact 6.7. Assume R =X Ry are Borel-relations with Borel GT-connection and P
is a forcing notion. If P is Ry-bounding/dominating then P is R -bounding/domi-
nating.

By Corollary 5.5 this yields

Corollary 6.8. For each analytic P-ideal T (1) a poset P is <z-bounding iff it is
w¥-bounding, (2) forcing with a poset P adds <z-dominating reals iff this forcing
adds dominating reals.

We will use the following theorem.

Theorem 6.9 ([Fr], 526B, 5241I). There are Borel GT-connections (Z£,C, Z) <
(05, <, 05) and (¢, <, ¢]) = (w*,C*, Slm).

Note that there is no Galois-Tukey connection from (¢, <,¢]) to (Z,C, Z) so
they are not GT-equivalent (see [LoVe, Theorem 7]).

Corollary 6.10. If P adds a slalom capturing all ground model reals then P is
Z-dominating.

PrOOF: By Fact 6.7 and Theorem 6.9, adding slalom is the same as (¢}, <*, ¢])-
dominating. Let # be a P-name such that IFp & € £ AV y € 4 NV y <* i,
Moreover let X be a P-name such that Fp X = {z € 7 : |2\i] < w, ¥V n
(z(n) # &(n) = 2(n) € w)}. Let (¢,¢) : (2,C,2) = (47, <,47) be a Borel
GT-connection. Now if A is a P-name such that IFp V z € X ¢(z) C* A then A
shows that PP is Z-dominating. (|

Denote D the dominating forcing and LOC the Localization forcing.

293
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Observation 6.11. If 7 is an arbitrary analytic P-ideal then the two step iter-
ation D x LOC is Z-dominating.

Indeed, let Z € V C M C N be transitive models, d € M N w* be strictly
increasing and dominating over V, and S € N, S : w — [[w]<“’}<w, IS(n)] < n
a slalom which captures all reals from M. Now if

Xn=U{4A € Sn)NP(dn),dn+1)):p(Ad) <277}
then it is easy to see that Y C* (J{X,,:n€w} eI NN foreach Y e V NZ.

Problem 6.12. For which analytic P-ideal Z does (Z,C™*),Z) < (¢, <™, ¢f)
hold, or “adding slaloms” imply Z-dominating, or at least LOC is Z-dominating?

Problem 6.13. Does Z-dominating (or Z-dominating) imply adding slaloms?
We will use the following deep result of Fremlin to prove Theorem 6.15.

Theorem 6.14 ([Fr], 526G). There is a family {Py : f € w*} of Borel subsets of
¢ such that the following hold:
(i) 6 =U{Py: f €w®},
(i) if £ <g then Py C P,
(iil) (Py,<,67) = (Z,C, Z) with a Borel GT-connection for each f.

Theorem 6.15. P is Z-bounding iff P has the Sacks property.

PrOOF: Let {Py : f € w“} be a family satisfying (i), (ii), and (iii) in Theo-
rem 6.14, and fix Borel GT-connections (¢s,vs) : (Pr, <, 67) < (2,C, 2) for
each f € w”. Assume P is Z-bounding and IFp & € ¢]. P is w*-bounding by
Theorem 6.2 so using (ii) we have IFp ¢ = J{Ps : f € w* NV}. We can choose

a P-name f for an element of w* NV such that IFp & € P;. By the Z-bounding
property of P there is a P-name A for an element of ZNV such that IFp bf (&) C A,
solkp @ < ¢p(A) € 7 NV. So Pis (£, <) ¢} )-bounding. By Theorem 6.9 and
Fact 6.7 P has the Sacks property.

The converse implication was proved in Theorem 6.5. ([l

Problem 6.16. Does the Z-bounding property imply the Sacks property for each
tall analytic P-ideal Z7
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