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Radical decompositions of semiheaps
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Abstract. Semiheaps are ternary generalisations of involuted semigroups. The
first kind of semiheaps studied were heaps, which correspond closely to groups.
We apply the radical theory of varieties of idempotent algebras to varieties of
idempotent semiheaps. The class of heaps is shown to be a radical class, as are
two larger classes having no involuted semigroup counterparts. Radical decom-
positions of various classes of idempotent semiheaps are given. The results are
applied to involuted I-semigroups, leading to a radical-theoretic interpretation
of the largest idempotent-separating congruence.
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1. Background on semiheaps

We begin with a review of some established definitions and results.
A semiheap H is a set with a ternary operation [ ] satisfying the para-

associative law:

[[abc]de] ≈ [a[dcb]e] ≈ [ab[cde]].

(Here, the symbol ≈ is used to denote an identity, holding for all possible substi-
tutions of elements for the variables a, b, . . .. We use this notation frequently in
what follows.)

It seems that semiheaps were first considered by Vagner in [12]. Note that para-
associativity is not the obvious ternary generalisation of associativity, in which
the middle term above would be [a[bcd]e]: such “ternary semigroups” arise from
semigroups if one defines [abc] := abc.

Various additional laws can hold in a semiheap. Historically, the most impor-
tant have been the following:

1 [aaa] ≈ a

2 [aab] ≈ b ≈ [baa]

3 [aa[bbc]] ≈ [bb[aac]] and [[abb]cc] ≈ [[acc]bb]

A heap is a semiheap satisfying the second law above (and hence also the
first and third). We call the one-element semiheap (which is a heap) the trivial

heap. Every group gives a heap under the ternary operation [abc] := ab−1c, a
construction first considered in the setting of abelian groups by Prüfer in [10].
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Conversely, a group arises from a heap H by choosing any element e ∈ H and
defining a binary operation x ∗ y := [xey]; the element e becomes the identity of
the constructed group and [exe] the inverse of x. These constructions are mutually
inverse up to isomorphism. Hence the varieties of groups and pointed heaps are
term equivalent, as shown by Baer in [1].

A similar construction gives a semiheap when S is an involuted semigroup, that
is, a semigroup equipped with a unary operation ′ for which the following laws
are satisfied:

• a′′ ≈ a, and
• (ab)′ ≈ b′a′.

Thus if S is an involuted semigroup, setting

[abc] := ab′c for all a, b, c ∈ S

gives a semiheap operation on S. Denote by [S] the semiheap obtained from S in
this way. Every semiheap can be embedded in [S] for some involuted semigroup S:
see Section 2 of [12].

A generalised heap is a semiheap satisfying the first and third laws above;
these were considered by Vagner in [12]. Motivated by partial one-to-one func-
tions from one set to another, generalised heaps also arise from certain kinds of
involuted semigroups. An inverse semigroup is an involuted semigroup in which
the additional laws

• aa′a ≈ a, and
• aa′bb′ ≈ bb′aa′

hold. (Omitting the law (ab)′ ≈ b′a′, which follows from the others, gives Howie’s
definition as on page 145 of [7].) It can be shown that the set of idempotents of
an inverse semigroup S is

E(S) = {a′a | a ∈ S},

and hence that ef = fe for all e, f ∈ E(S), so that E(S) is a subsemigroup of S
which is a semilattice. If S is an inverse semigroup then [S] is a generalised heap,
and all generalised heaps are subsemiheaps of generalised heaps of this form (see
Section 3 of [12]).

Let us call a semiheap satisfying the idempotency law [aaa] = a an idempotent

semiheap. These are the main objects of interest in the current article. If S is an
involuted semigroup, the semiheap [S] is idempotent if and only if aa′a = a for
all a ∈ S, a condition which says that S is an involuted I-semigroup (see [7]).

Not all involuted I-semigroups are inverse semigroups (and indeed not all idem-
potent semiheaps are generalised heaps), as the following example shows. Let S
be a set of symbols. Define the rectangular band on S to be G = S × S with
binary operation (a, b)(c, d) := (a, d) and involution (a, b)′ := (b, a). Then G is
an involuted I-semigroup which is not an inverse semigroup, so the idempotent
semiheap obtained from it is not a generalised heap, as is easily verified.
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2. Semiheaps and radicals

In this section and the next, we shall concentrate entirely on idempotent semi-
heaps and their radicals, with interpretations for involuted I-semigroups consid-
ered in the final section. We begin with some quite general notions.

2.1 Background: radicals of idempotent algebras. Let A be any homo-
morphically closed class of algebras of some fixed signature. If for each A ∈ A,
there is an associated congruence ρA with the following properties:

• (Q) ρA/ρA
is the equality congruence, and

• (F) if f : A → B is a surjection, then f(ρA) ⊆ ρB,

then we say the family of congruences ρA, A ∈ A, determines a Hoehnke radical

(see [4]). This notion of radical has proved useful in the study of semigroups
(see [5]), and indeed wherever there is no natural notion of “normal subobject”
available.

For rings and near rings, one can express the notion of a Hoehnke radical in
terms of ideals (because of the correspondence between ideals and congruences),
resulting in a notion strictly weaker than that of a Kurosh-Amitsur radical (de-
veloped earlier in the setting of associative ring theory; see [2]). The additional
properties needed to give a Kurosh-Amitsur radical are that the assignment of
the radical ideal to the algebra be idempotent and complete (the assigned ideal
contains all “radical ideals”, namely those ideals for which the associated radical
congruence is the full congruence). Similar remarks apply to multioperator groups
in general.

An idempotent algebra is one in which every singleton set is a subalgebra;
equivalently, for each fundamental operation ρ of arity n, the law

ρ(x, x, . . . , x) ≈ x

holds. Thus every idempotent semiheap is an idempotent algebra, and indeed the
idempotent semiheaps constitute a variety of idempotent algebras.

For any variety V of idempotent algebras, there is an enrichment of the Hoehnke
radical notion available, with similar features to the Kurosh-Amitsur radical. Al-
though idempotent algebras do not generally have “normal subalgebras” in any
natural sense, this is compensated for by the fact that congruence classes in idem-
potent algebras are always subalgebras.

Let V be a variety of idempotent algebras (meaning algebras in which every
singleton element is a subalgebra). The following definition is given in [3].

A non-empty subclass R of V is a radical class if

(R1) whenever δ, τ are congruences on A ∈ V for which all δ-classes are in
R, there exists a congruence λ on A/τ for which (δ ∨ τ)/τ ≤ λ and all
λ-classes are in R;
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(R2) for every A ∈ V there is a congruence ρA on A for which all ρA-classes
are in R and ρA ≥ ρ for every congruence ρ on A with all its classes in
R; and

(R3) ρA/ρA
= 0A/ρA

for every A ∈ V .

(Here the notation 0A refers to the trivial congruence of equality on A.) Call
a congruence in A for which all classes are in R an R-congruence. So (R2) says
that every A has a largest R-congruence, and (R3) then says that factoring this
out leaves an algebra with no non-trivial R-congruences. Obviously ρA above
is unique for a given R, and the ρA determine R since A ∈ R if and only if
|A/ρA| = 1.

It follows from these axioms that the family of congruences ρA (A ∈ V) de-
termines a Hoehnke radical. Given a Hoehnke radical on V with associated con-
gruence ρ, we say an algebra A is “radical” if |A/ρA| = 1. The definition of
radical for varieties of idempotent algebras requires that in every A, each ρA-class
is radical, and that ρA is largest amongst all such congruences; these conditions
parallel similar conditions in the definition of a Kurosh-Amitsur radical, and are
not even expressible in the general algebra setting to which the Hoehnke radical
notion applies.

A ∈ V is semisimple if ρA = 0A, and a semisimple class in V is a class S
consisting of all semisimple algebras relative to some radical class in V . There is
an inclusion-reversing bijection between the collections of radical and semisimple
classes in V . (See Proposition 3.4 of [11] for a proof.)

A useful set of sufficient conditions is furnished by the following requirements
on the subclass R of V : it must satisfy (R1) together with the following.

(E) If σ is a congruence on A ∈ V for which all σ-classes of A and A/σ itself
are in R, then A ∈ R.

(C) If {σα | α ∈ Λ} is a chain of congruences on A such that each σα-class is
in R for each α, then each

∨
α∈Λ σα-class is in R.

(J) If σ and τ are congruences on A ∈ V such that all σ-classes and all
τ -classes are in R, then all (σ ∨ τ)-classes are in R.

In [3], (E) and (C) are shown to be necessary conditions for R to be a radical
class, and (R1), (E), (C) and (J) are shown to be sufficient. In fact it follows from
the very general work of [8] that condition (J) is superfluous in this set of sufficient
conditions, and so (R1), (E) and (C) provide a characterisation of radical classes.
However, (J) is easily established in the examples to follow, and we include the
arguments.

Proposition 4.2 in [3] states that a homomorphically closed class R is a radical
class if and only if it satisfies (C), (E), (J), and condition (F) for a Hoehnke radical.
If the class R is closed under taking subalgebras and ρ is an R-congruence on
A ∈ A, and if δ is a congruence on A contained in ρ, then δ is obviously an
R-congruence on A also; it follows that R satisfies (R1) if and only if it satisfies
the (usually stronger) condition
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(R1′) whenever δ, τ are congruences on A ∈ V for which all δ-classes are in R,
then (δ ∨ τ)/τ is an R-congruence on A/τ .

The next result follows because (C) holds in any variety (see the proof of
Theorem 3.1 in [3]).

Corollary 1. The following are equivalent for the subvariety R of the variety V
of idempotent algebras:

• R is a radical class in V ;
• R satisfies (R1′), (E) and (J);
• R satisfies (F), (E) and (J).

2.2 Radicals of heaps. The radical theory just discussed immediately applies
to any variety of idempotent semiheaps. A natural starting point is the variety
of heaps, because of its close connection to the variety of groups (for which a
conventional Kurosh-Amitsur radical theory exists). Now because every heap is,
up to isomorphism, of the form [S] for some group S, and because for a given
heap H the group 〈H〉 is itself determined up to isomorphism, it follows that
every isomorphically closed class of heaps has the form

[K] = {H | H ∼= [S] for some S ∈ K}

where K is an isomorphically closed class of groups.

Theorem 2. The radicals of groups and heaps correspond: the usual Kurosh-
Amitsur group radical class R corresponds to the heap radical class [R].

Proof: This follows from the fact that the congruences on the group G and
the heap [G] correspond (easily checked) and the fact that heaps therefore have
permuting congruences. In this case, (R1) can be replaced by the generally weaker
condition of homomorphic closure (Corollary 1.8 of [3]), and it is easy to check
that this together with the conditions (R2) and (R3) for a radical class of heaps
correspond to the usual Kurosh-Amitsur conditions in the definition of a radical
class of groups (interpreted in terms of congruences). �

2.3 Radicals of semiheaps. We now broaden the outlook, and show that the
variety of heaps is a radical class within any variety of idempotent semiheaps.
Indeed we shall consider three radical classes of idempotent semiheaps, two of
which are strictly larger than the class of heaps. These two larger classes prove
to be of interest only in the ternary setting (collapsing back down to the heap
radical for involuted I-semigroups).

First, we introduce some useful pre-orders. Let H be an idempotent semiheap,
with a, b ∈ H . We will say that a ≤l b if a = [abb], a ≤r b if a = [bba], and a ≤ b
if a = [abb] = [bba]; hence ≤ = (≤l ∩ ≤r).

Proposition 3. Let H be an idempotent semiheap. The relations ≤l, ≤r and
hence also ≤ are preorders (reflexive and transitive) on H .
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Proof: We consider ≤l only, the other cases following immediately. For each
a ∈ H , we have a ≤l a since [aaa] = a for all a ∈ S, so ≤l is reflexive.

Now assume a, b, c ∈ H are such that a ≤l b and b ≤l c. Then [acc] = [[abb]cc] =
[ab[bcc]] = [abb] = a, so a ≤l c as claimed. �

Let us say that a semiheap H is a right heap if it satisfies [aab] = b, or equiva-
lently b ≤r a, for all a, b ∈ H . Let RH be the variety of right heaps. We define
the variety LH of left heaps in the obvious way also. Let H be the variety of
heaps; then of course H = LH ∩RH .

The variety of right heaps properly contains the variety of heaps, since the
variety of right zero semiheaps , RZ, defined by the law [xyz] = z, is evidently
a proper subvariety of the variety of right heaps intersecting trivially with the
variety of heaps. Similarly for the variety of left zero semiheaps , LZ, defined in
the obvious manner.

Theorem 4. LH , RH and H are radical classes within any variety of idempotent
semiheaps containing them.

Proof: We check that (E), (R1) and (J) are satisfied by the variety of right heaps.
For (E), suppose A is an idempotent semiheap and suppose σ is a congruence on
A such that A/σ ∈ RH and every σ-class in A is in RH ; that is, for all a, b ∈ A,
[aab] σ b and [bba] σ a, and if x σ y then [xxy] = y and [yyx] = x. Hence for all
a, b ∈ A, [[aab][aab]b] = b, [aa[bba]] = [bba] and [bb[aab]] = [aab], so

b = [[aab][aab]b]

= [[[aab]ba]ab]

= [[aa[bba]]ab]

= [[bba]ab]

= [bb[aab]]

= [aab].

To show (R1) for RH , suppose σ is a congruence on A such that a σ b implies
[aab] = b (that is, every σ-class is in RH). Suppose τ is also a congruence on A.
We shall show λ = (σ ∨ τ)/τ has all λ-classes in RH . Thus we must show that if
a (σ ∨ τ) b then [aab] τ b.

So suppose a, b ∈ A are such that a(σ∨τ)b. This means that for i = 1, 2, . . . , k,
there are ai, bi (with bk = b) such that

a σ a1 τ b1 σ a2 τ b2 σ . . . τ b.

Hence [aaa1] = a1, a1 τ b1, [b1b1a2] = a2, a2 τ b2, . . . , ak τ bk = b. Hence

[aab1] τ b1, [b1b1b2] τ b2, . . . , [bk−1bk−1bk] τ b.
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We show by induction that [aabi] τ bi for all i = 1, 2, . . . , k. The i = 1 case is
immediate, and if [aabj] τ bj for some j between 1 and k − 1 inclusive, then

[aabj+1] τ [aa[bjbjbj+1]] = [[aabj ]bjbj+1] τ [bjbjbj+1] τ bj+1.

Hence (R1) holds.
Finally, suppose σ, τ are congruences on A for which all classes are right heaps.

So if a σ b then a = [bba] and b = [aab], that is, a ∼r b, and similarly for τ . The
transitivity of the equivalence relation ∼r ensures that if x (σ∨τ)y, then x ∼r y,
that is, x = [yyx] and y = [xxy], and so each (σ ∨ τ)-class of A is a right heap.
Hence (J) holds.

There are obvious variants of these arguments for LH , and the H case follows
by combining the two one-sided arguments. �

In a number of important situations, the left heap, right heap and heap radical
classes coincide. Here is one.

Proposition 5. Let H be a generalised heap. Then H ∈ RH (resp. LH) if and
only if H ∈ H.

Proof: If H is a generalised heap which is a right heap, with a, b ∈ H , then

a = [[abb][abb]a]

= [[abb]bb]aa]

= [[abb]aa]

= [[aaa]bb]

= [abb],

and so H ∈ H. �

3. Partitions into maximal subheaps and radical theory

We have been interested in structure-preserving partitions of semiheaps into
subheaps. However, it turns out that every idempotent semiheap can be de-
composed into a disjoint union of its maximal subheaps. If this partition is a
congruence (as is often the case), it will be the heap radical congruence. Similar
remarks apply to maximal left/right heaps.

3.1 Disjoint unions of (left/right) heaps. It is obvious that those semiheaps
admitting a partition into subheaps (or sub-left/right heaps) are exactly the idem-
potent semiheaps. (By contrast, involuted I-semigroups are unions of groups if
and only if the law xx′ ≈ x′x holds; so here is an example where the “binary”
and “ternary” theories diverge.)

By making use of the preorder ≤ introduced earlier, far more can be said. Let
H be an idempotent semiheap, with a, b ∈ H . Let ∼ be the equivalence relation
generated by the preorder ≤ on H . For every a ∈ H , let a∗ = {x ∈ H : x ∼ a}.
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Proposition 6. Let H be an idempotent semiheap. For every a ∈ H , a∗ is a
subsemiheap of H which is a maximal subheap.

Proof: Assume x, y, z ∈ a∗. Then [aa[xyz]] = [[aax]yz] = [xyz] and similarly
[[xyz]aa] = [xy[zaa]] = [xyz], so [xyz] ≤ a. As a∗ is an equivalence class (with
respect to ∼), it follows that a∗ = x∗ = y∗ = z∗ and so [xxy] = y, [zzy] = y, and
so forth. Hence

[[xyz][xyz]a] = [x[[xyz]zy]a] = [[x[xy[zzy]]a] = [x[xyy]a] = [zza] = a

and likewise [a[xyz][xyz]] = a, so a ≤ [xyz] as required. Hence a∗ is a subsemiheap
of H .

Furthermore, x ≤ y for all x, y ∈ a∗ and hence [xyy] = [yyx] = x for all
x, y ∈ a∗. So a∗ is a heap. Clearly, if M is a subheap of H , then the elements of
M are equivalent under ∼, so M is contained in a subheap of the form a∗. Hence
each a∗ is maximal. �

Corollary 7. The idempotent semiheap H is a disjoint union of its maximal
subheaps:

H =
⋃

a∈H

a∗.

Of course ≤ induces a partial order on S/ ∼, so the maximal subheaps of S are
naturally partially ordered. Note however that ∼ is not in general a congruence.
An inverse semigroup example quickly shows this: in the inverse semigroup I(X)
of all injective partial functions, the equivalence relation ∼ relates 1:1 partial maps
with the same domain and range, and in general only the left and right positions
in the ternary product are respected, not the central one. However, in important
cases which we turn to shortly, the equivalence relation ∼ is always a congruence.

Lemma 8. Let H be an idempotent semiheap on which ∼ is a congruence. Then
∼ is the H-radical congruence on H .

For an idempotent semiheap H , there are obvious definitions of the equivalence
relations ∼l (resp. ∼r) in terms of ≤l (resp. ≤r). In general the ∼l-classes will not
be subsemiheaps, although of course they will be if ∼l is a congruence. Arguing
as in the proof of Proposition 6, we obtain the following.

Proposition 9. If ∼l (resp. ∼r) is a congruence on the idempotent semiheap H ,
then it is the LH-radical (resp. RH-radical) congruence of H , and each ∼l-class
(resp. ∼r-class) is a maximal sub-left heap (resp. sub-right heap).

3.2 Radical decompositions of left and right heaps. The variety of heaps
is a radical class within the variety of right heaps, and so the heap-semisimple
class within the class of right heaps will be a measure of the difference between
them.

Theorem 10. Within the variety of right heaps (resp. left heaps), the semisimple
class corresponding to the radical class of heaps is the variety of right zero heaps
(resp. left zero heaps).
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Proof: Let H be a right heap. We first show that the equivalence relation ∼ is
a congruence on H , from which it follows that ∼ is the H-radical of H .

First note that if a, b, x, y ∈ H are such that a = [xyb] in H , then b = [yxa].
To see this, let z ∈ H and then we have

b = [[yxz][yxz]b]

= [yx[z[yxz]b]]

= [yx[zx[xyb]]]

= [yx[zza]]

= [y[zzx]a]

= [yxa]

as required.
Now suppose ai ∼ bi, i = 1, 2, 3. Setting x = [a1a2a3], we have

[xa3a3] = [[a1a2a3]a3a3] = [a1a2[a3a3a3]] = [a1a2a3] = x.

But because x = [a1a2a3], we also have that a3 = [a2a1x] from the previous
argument, so it follows that a3 = [a3xx]. Of course we also have that x = [a3a3x]
and a3 = [xxa3] because H is a semiheap. Hence x ∼ a3, that is, [a1a2a3] ∼ a3.
Similarly, [b1b2b3] ∼ b3, and so because a3 ∼ b3, it follows that [a1a2a3] ∼ [b1b2b3].

The above argument shows that for all a1, a2, a3 ∈ H , [a1a2a3] ∼ a3, and it is
immediate that H/ ∼ is a right zero semiheap.

The left-sided version is of course very similar. �

Hence every right heap is a “right zero semiheap of heaps”.

3.3 Rectangular semiheaps. It is well known that the class of rectangular
bands is the variety of semigroups defined by the single law xyx ≈ x; equivalently,
it satisfies the two laws xyz ≈ xz, x2 ≈ x (Theorem 1.1.3 of [7]). A semiheap can
be defined on any rectangular band S by setting [abc] := ac; if S is involuted, this
coincides with the semiheap operation of [S]. It is clear that the law [aba] = a
is satisfied, and we call any semiheap satisfying this law a rectangular semiheap.
Clearly a rectangular semiheap is idempotent.

Lemma 11. For any a, b, c, d ∈ H , a rectangular semiheap, [abc] = [adc].

Proof: We have a = [aba], c = [cbc], b = [b[adc]b], and so

[adc] = [[aba]d[cbc]] = [[aba][bcd]c] = [a[[bcd]ab]c] = [a[b[adc]b]c] = [abc].

�

This result can readily be converted into a characterisation of rectangular semi-
heaps analogous to a familiar one for rectangular bands (see Chapter 1 of [7]).

Theorem 12. The variety of rectangular semiheaps is term equivalent to the
variety of rectangular bands, via the correspondences [abc] ↔ abc, ab ↔ [abb].
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Proof: We must show the constructions are mutually inverse. In a rectangu-
lar semiheap H , the induced rectangular band induces a semiheap operation on
a, b, c ∈ H expressible as (by repeated use of the previous lemma)

abc = a(bc) = [a[bcc][bcc]] = [ab[bcc]] = [ab[bbc]] = [a[bbb]c] = [abc].

Conversely, starting with a rectangular band, the derived product of a, b ∈ H
looks like [abb] = abb = ab, completing the proof. �

No non-trivial semiheap can be both a heap and a rectangular semiheap.

Proposition 13. If A is both a heap and a rectangular semiheap, then |A| = 1.

Proof: Suppose A is both a heap and a rectangular semiheap. If a, b ∈ A then
a = [abb] = [aab] = b. �

An elementary fact about rectangular bands is that each is a direct product of
a left zero semigroup with a right zero semigroup, and conversely each such direct
product is a rectangular band; see Chapter 1 of [7] for instance. This fact has
an immediate radical-theoretic interpretation in terms of radicals of rectangular
bands (which form an idempotent variety). The semiheap form of this result can
be given in terms of the left and right heap radicals.

Theorem 14. Within the variety of rectangular semiheaps, the right heap radical
class consists of right zero semiheaps, and has corresponding semisimple class all
left zero semiheaps (and vice versa).

Proof: Within rectangular semiheaps, [aab] = [acb] for any a, b, c, by Lemma 11,
so right heaps are exactly right zero semiheaps.

Let H be a rectangular semiheap. We first show the equivalence relation ∼r

associated with the preorder ≤r (hence given by a ∼r b if a = [bba], b = [aab]) is
a congruence. Suppose that in H , ai ∼r bi, i = 1, 2, 3. Then by Lemma 11,

[a1a2a3] = [a1a3a3] = [[b1b1a1]a3a3] = [b1[a3a1b1]a3] = [b1[a3b1b1]a3] = [b1a3a3]

whereas [b1b2b3] = [b1b3b3]. Now

[[b1a3a3][b1a3a3][b1b3b3]] = [[b1a3a3]b[b1b3b3]]

= [b1[b1a3a3][b1b3b3]]

= [b1b1[b1b3b3]]

= [[b1b1b1]b3b3]

= [b1b3b3],

so [b1b3b3] ≤r [b1a3a3]. Similarly [b1a3a3] ≤r [b1b3b3], and so by symmetry we
have [b1a3a3] ∼r [b1b3b3]. Hence ∼r is indeed a congruence on H .

Hence by Proposition 9, ∼r is the right heap radical congruence on H . We
show that H/ ∼r is a left heap (equivalently, a left zero semiheap). Now for all
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a, b ∈ H ,

[[abb][abb]a] = [[abb]aa] = [a[abb]a] = [aaa] = a,

and also [aa[abb]] = [[aaa]bb] = [abb], so by definition, [abb] ∼r a. Moreover, it is
clear that in any left zero semiheap, the right heap radical is trivial. Hence the
RH-semisimple rectangular semiheaps are exactly the left zero semiheaps. �

Thus within the variety of rectangular semiheaps, both the left and right heap
radicals (which reduce to the classes of left and right zero semiheaps) are SSR-
classes in the sense of [3], that is, both semisimple and radical classes.

If S is an involuted rectangular band, then from Theorem 25, there is a largest
H-congruence ρS on (S, ·,′ ), which is also its largest LH-congruence and largest
RH-congruence. By Proposition 13, this is just equality, and so S is semisimple
in the Hoehnke sense. Similarly, as a semiheap, [S] is H-semisimple.

However, letting S consist of the set of ordered pairs (a, b) ∈ X×X for some set
X having at least two elements, with multiplication given by (a, b)(c, d) = (a, d)
and with (a, b)′ = (b, a), we see that S is an involuted rectangular band (in fact
a typical one), but it is neither LH-semisimple nor RH-semisimple, since it is
neither a left zero nor a right zero semiheap. In fact it is easy enough to identify
the left heap radical congruence of [S]: it is ρ given by (a, b) ρ (c, d) if and only if
a = c. Factoring this out evidently gives a right zero semiheap, and each ρ-class
is a left zero semiheap. On the other hand, ρ is not even a congruence on the
involuted semigroup S.

By Proposition 24 an idempotent semiheap of the form [S] (where S is an invo-
luted I-semigroup) is in H if and only if it is in RH , or equivalently LH . However,
the above shows that the H-radical, LH-radical, and RH-radical congruences of
[S] can all be different, even though the associated Hoehnke radicals on S are
necessarily all the same.

3.4 Near heaps. A further fairly well known class of involuted semigroups is
the class of Clifford semigroups. Recall that a Clifford semigroup is an inverse
semigroup that satisfies aa′ = a′a for all a ∈ S (equivalently, ea = ae for all
a ∈ S and e ∈ E(S)). As discussed in Section 3, these arise naturally in the
setting of idempotent-separating congruences (that is, H-congruences) on inverse
semigroups.

If S is a Clifford semigroup, it is obvious that the following law is satisfied
by [S]:

[aab] ≈ [baa].

We call an idempotent semiheap H satisfying this law a near heap. As far as we
know, this notion has not previously been studied.

All groups are Clifford semigroups, and obviously all heaps are near heaps. On
the other hand, we have the following inclusion, analogous to the fact that all
Clifford semigroups are inverse semigroups.

Proposition 15. Every near heap is a generalised heap.
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Proof: If A is a near heap and a, b, c ∈ A, then

[[aa[bbc]] = [[bbc]aa] = [bb[caa]] = [bb[aac]],

and similarly [[abb]cc] = [[acc]bb]. �

The class of near heaps contains non-heaps; for example, it includes the semi-
heap analogs of semilattices. Viewing a semilattice L trivially as an involuted
semigroup (in which a′ = a for all a ∈ L), the semiheap operation on [L] is given
by [abc] = abc for all a, b, c ∈ L, and [L] is easily seen to satisfy the following laws:
[abb] ≈ [aab], and

[abc] ≈ [acb] ≈ [bac] ≈ [bca] ≈ [cab] ≈ [cba].

We call a semiheap satisfying this last sequence of identities commutative. Con-
versely, if H is a commutative semiheap satisfying [abb] ≈ [aab], then the binary
operation ∗ on H defined by a∗ b := [aab] = [abb] is easily seen to be a semilattice
operation (such that [abc] = a ∗ b ∗ c). We call a semiheap corresponding to a
semilattice in this way a semilattice semiheap, or just a semilattice for short if the
context is clear. Clearly the varieties of semilattices and semilattice semiheaps
are term equivalent.

As for rectangular semiheaps, the classes of semilattices and heaps intersect
minimally. The proof of the following is formally identical to that of Proposi-
tion 13, although the steps follow for different reasons.

Proposition 16. If A is both a heap and a semilattice, then |A| = 1.

Hence the class of semilattices is heap-semisimple; indeed semilattices are ar-
guably the most “un-heap-like” of idempotent semiheaps. It is of interest to
characterise those idempotent semiheaps which give semilattices when factored
by their heap radical. Of course such a semiheap is a “semilattice of heaps” in
the obvious sense: there is a congruence ρ for which the ρ-classes are heaps and
the quotient semiheap is a semilattice. We now show that any such semilattice of
heaps is a near heap: indeed we show something more general.

Proposition 17. Suppose H is an idempotent semiheap with a heap-generating
congruence ρ for which H/ρ is a near heap. Then H is a near heap.

Proof: We must show that for a, b ∈ H , [abb] = [bba]. Writing x̄ for the ρ-class
containing x ∈ H , we see that for a, b ∈ H ,

[aab] = [āāb̄] = [b̄āā] = [baa]

and so [aab]ρ[baa]. Hence, because ρ is heap-generating, we have that

[aab] = [[baa][baa][aab]]

= [[baa]aa]b[aab]]

= [[ba[aaa]]b[aab]]

= [[baa]b[aab]].
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By a dual argument, we see that [baa] equals the same thing, and so [aab] = [baa].
Hence H is a near heap. �

Of course, a special case of this last result arises by requiring that H/ρ be
a semilattice.

Lemma 18. In the near heap H , the equivalence relation ∼ is a congruence.
Hence ∼ is the heap radical congruence on H .

Proof: The near heap H can be embedded in a generalised heap of the form [S]
where S is an inverse semigroup; identify H with its image in [S] under such an
embedding. Then for all a, b ∈ H , the law [xyy] ≈ [yxx] tells us that ab′b = bb′a
(or equivalently a′bb′ = b′ba′), as calculated in S.

Suppose that for all ai, bi ∈ H , i = 1, 2, 3, we have ai ∼ bi. Then for each i,
ai ≤ bi, and so ai = [ai, bi, bi] = [bi, bi, ai], or in terms of S, ai = aib

′
ibi = bib

′
iai.

We wish to show that [a1a2a3] ≤ [b1b2b3]. But

[[a1a2a3][b1b2b3][b1b2b3]] = a1a
′
2a3(b1b

′
2b3)

′b1b
′
2b3

= a1a
′
2a3b

′
3b2b

′
1b1b

′
2b3

= a1b
′
1b1a

′
2a3b

′
3b2b

′
2b3

= a1a
′
2a3b

′
3b2b

′
2b3

= a1a
′
2b2b

′
2a3b

′
3b3

= a1(b2b
′
2a2)

′(a3b
′
3b3)

= a1a
′
2a3

= [a1a2a3],

as required. Similarly [[b1b2b3][b1b2b3][a1a2a3]] = [a1a2a3], so [a1a2a3] ≤ [b1b2b3].
Likewise, [a1a2a3] ≥ [b1b2b3], and so [a1a2a3] ∼ [b1b2b3].

The final part follows from Lemma 8. �

This observation allows us to describe H/ ∼ in such cases.

Theorem 19. If H is a near heap, then H/ ∼ is a semilattice.

Proof: The near heap K = H/ ∼ is heap-semisimple, so on K, ∼ is trivial,
which means that the maximal subheaps of K are the singletons. This means
that if a ∼ b in K, then a = b. Using arguments very similar to those used in
the proof of Lemma 18 (involving viewing K as a subsemiheap of [S] for some
inverse semigroup S), it is not hard to show that [[efg][abc][abc]] = [efg] =
[[abc][abc][efg]] where e, f, g is any permutation of a, b, c, so that [efg] ≤ [abc],
and hence by symmetry [efg] ∼ [abc] and so [efg] = [abc]. Similarly one can
show that [[abb][aab][aab]] = [abb] = [[aab][aab][abb]], and so on, to establish that
[abb] ∼ [aab], so that [abb] = [aab]. Hence K is a (ternary) semilattice. �

Corollary 20. The class of near heaps consists of exactly those idempotent semi-
heaps H for which (i) the natural partial ordering ≤ on the ∼-classes is a semi-
lattice ordering and (ii) ∼ itself is a congruence.
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Corollary 21. The following are equivalent for an idempotent semiheap H :

• there is a heap-generating congruence ρ on H for which H/ρ is a near
heap;

• there is a heap-generating congruence ρ on H for which H/ρ is a semilat-
tice;

• H is a near heap.

In particular then, near heaps are exactly “semilattices of heaps”. This corre-
sponds to the analogous fact from semigroup theory that a semilattice of groups
(that is, a semigroup having a congruence partitioning it into subsemigroups which
are groups and such that the factor semigroup is a semilattice) is exactly a Clifford
semigroup; see Section 4.2 of [7] for an exposition.

In [3], Gardner cites the example of bands (semigroups in which all elements
are idempotent) as a major motivation for his development of the theory of rad-
icals of idempotent algebras: it is well known that every band is a semilattice
of rectangular bands (satisfying xyx = x). The fact that every near heap is a
semilattice of heaps can be interpreted similarly.

Corollary 22. Within the variety of near heaps, SH is a semisimple class cor-
responding to the radical class of heaps.

Proof: Any H-semisimple near heap is a semilattice as we just saw. Conversely,
because semilattices can only be heaps if they are trivial by Proposition 16, it
follows that every semilattice is H-semisimple (since it has no non-trivial sub-
heaps). �

4. Consequences for involuted I-semigroups

4.1 Generalities. We now present a new general result. Let A be a class of
algebras of some fixed type which is closed under homomorphic images. Suppose
that some reduct of the algebras in A yields algebras in the variety V consisting
of idempotent algebras; for A ∈ A, let [A] denote this idempotent reduct in V .
If R is a radical class in V , and A ∈ A, we say the congruence ρ of A is an
R-congruence if ρ is an R-congruence on [A]. (Any congruence on A is of course
one on [A] as well.)

Note that the largest R-congruence on [A] may not even be a congruence on A,
let alone an R-congruence on it. However, we do have the following.

Theorem 23. Let A and V be as above. Suppose R is a radical class in V that is
closed under taking subalgebras. Then the congruence family ρA on A obtained
by setting, for each A ∈ A,

ρA = max{ρ | ρ is an R-congruence on A},

exists and is a Hoehnke radical in A.
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Proof: First we know δ[A] = max{ρ | ρ is an R-congruence on [A]} exists and
is the radical congruence on [A]. Consider the following congruence on A:

ρA =
∨

{ρ | ρ is an R-congruence on A}.

Of course this is also a congruence on [A]; moreover because each ρ in the join
defining ρA is also one of those in the join defining δ[A], and because the join is the
same operation in both cases (namely equivalence relation join), it follows that
ρA ⊆ δ[A], and so the ρA-classes of [A] are subalgebras of the δ[A]-classes of [A],
hence in R by the assumption that R is closed under taking subalgebras; hence
ρA is indeed the maximum of all R-congruences on A, as claimed.

We now show that the ρA, A ∈ A, define a Hoehnke radical. Suppose δ is a
congruence on A containing ρA, for which all δ/ρA-classes in [A]/ρA are in R.
Let T be a δ-class in A. Then [T ] (defined in the obvious manner) is a subalgebra
of [A]. Moreover [T ]/ρA is in R by assumption on δ since each δ/ρA-class is in
R, and also each ρA-class in T is in R. Hence by (E), T ∈ R. Hence δ = ρA by
definition of ρA, and so only the trivial congruence (of equality) on A/ρA is such
that all its classes (when viewed as in V) are in R.

For (F), it is obviously sufficient to prove that if A ∈ A and τ is a congruence
on A, then for any a, b ∈ A, (a, b) ∈ ρA implies (aτ , bτ ) ∈ ρA/τ (where xτ denotes
the τ -class in A containing x). But if (a, b) ∈ ρA then of course (a, b) ∈ ρA ∨ τ
and so of course (aτ , bτ ) ∈ (ρA ∨ τ)/τ which, being a congruence on A/τ , is
certainly also one on [A]/τ , and necessarily an R-congruence on [A]/τ since R
is closed under subalgebras, by (R1′) (and using the fact that ∨ is the same in
both congruence lattices). Hence it is an R-congruence on A/τ as well, and so is
contained in ρA/τ . �

Although we shall only apply it to the varieties of involuted I-semigroups and
idempotent semiheaps, Theorem 23 obviously has wide applicability, and could
lead to consideration of new Hoehnke radicals for various structures having idem-
potent reducts.

4.2 The H-radical for involuted I-semigroups. Recall that when restricted
to the variety of generalised heaps, LH = RH = H. Likewise, for involuted
I-semigroups, all three radical classes are equal.

Proposition 24. Suppose S an involuted I-semigroup. If [S] is a left or right
heap, then it is a heap.

Proof: Let S be an involuted I-semigroup for which [S] is a right heap. Then
for all a, b ∈ S, we must have aa′b = [aab] = b. Then also, (ba′a)′ = a′(a′)′b′ = b′,
and so [baa] = ba′a = b, so [S] is a heap. Similarly if [S] is a left heap. �

Hence the variety of right heaps is different to most of the varieties of semi-
heaps considered previously in the literature: in contrast to the varieties of heaps,
generalised heaps, idempotent semiheaps and semiheaps themselves (as discussed
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above), RH does not consist of exactly the semiheap subreducts of some vari-
ety (or even some class) of involuted semigroups A. For if RH consisted of all
subreducts of A for some class A of involuted semigroups, then by the previous
result, the largest A could be is the class of all groups, whence RH would be the
class of heaps, a contradiction, and so there is no such class A. We return to
consideration of LH and RH later.

Apart from its final observation, the following is immediate from Theorem 23.

Theorem 25. Let S be an involuted I-semigroup, with R chosen to be one of
the radical classes H, RH , LH . Then S has a largest R-congruence θS , and the
only R-congruence on S/θS is trivial. This congruence satisfies the functoriality
property (F) and hence is a Hoehnke radical, and is independent of which of the
three radical classes is chosen.

Proof: Clearly every θH-congruence is a θRH -congruence. To see the converse,
note that if ρ is a θRH -congruence on S, and a ρ b, then aa′b = b, but also
a′ ρ b′, and so a′(a′)′b′ = b′, and as before we see that b = ba′a as well, so ρ is a
θH-congruence. Similarly for θLH -congruences. �

Recall that a semigroup S is regular if for each a ∈ S there is b ∈ S such
that a = aba. The class of regular semigroups includes all full transformation
semigroups and all inverse semigroups, and is perhaps the most important single
class of semigroups. Idempotent-separating congruences are of particular impor-
tance in the study of regular semigroups; these are congruences for which any two
idempotents are congruent exactly when they are equal. It is well known that
every regular semigroup S has a largest idempotent-separating congruence θ, and
that S/θ is free of any non-trivial such congruences; see [7] for example. There
is a structure theorem due to Munn in [9], describing S/θ when S is an inverse
semigroup.

Proposition 26. The following are equivalent for the congruence ρ on the invo-
luted I-semigroup (S, ·,′ ):

• ρ is idempotent-separating;
• ρ is an H-congruence.

Proof: Let (S, ·,′ ) be as described, with ρ a congruence on it. Then for all a ∈ S,
(aa′)(aa′) = (aa′a)a′ = aa′, so aa′ is idempotent.

If ρ is idempotent-separating and (a, b) ∈ ρ, then (aa′, bb′) ∈ ρ, and so aa′ = bb′,
so [aab] = aa′b = bb′b = b, and similarly [baa] = b. Conversely, assuming ρ is
an H-congruence, if a, b ∈ S satisfy a ρ b, then aa′ ρ bb′. But aa′ and bb′ are
idempotent, so

bb′ = [(aa′)(aa′)(bb′)] = aa′aa′bb′ = aa′bb′ = aa′bb′bb′ = [(aa′)(bb′)(bb′)] = aa′.

Similarly a′a = b′b. If also a, b are idempotent, then so are a′, b′, and so

a = aa′a = (aa′)(a′a) = (bb′)(b′b) = bb′b = b,
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so ρ is idempotent-separating. �

The following is now immediate from Theorem 25.

Corollary 27. The heap radical congruence on an involuted I-semigroup is its
largest idempotent-separating congruence.

The previous corollary says that any involuted I-semigroup has a largest idem-
potent-separating congruence. This is not implied by the well-known fact re-
garding such congruences in regular semigroups, since such congruences may not
respect the involution.

However, in an inverse semigroup, semigroup congruences automatically re-
spect the inverse operation, and we recover the fact that every inverse semigroup
has a largest idempotent-separating congruence. Indeed, if S is an inverse semi-
group, the largest idempotent-separating congruence ρS admits an explicit de-
scription (see [6]):

(a, b) ∈ ρ ⇔ a′ea = b′eb for all e ∈ E(S).

The resulting factor inverse semigroup S/ρ can be represented as a full sub-
semigroup of the semigroup TE(S) of isomorphisms between the principal ideals
of E(S). This can be interpreted as a structure theorem for “heap-semisimple”
inverse semigroups.

Can this fact about inverse semigroups be given a Kurosh-Amitsur radical-
theoretic interpretation, involving some kinds of “normal subobjects” in inverse
semigroups (rather than just in terms of a Hoehnke radical)? The congruences
on an inverse semigroup are all determined by congruence pairs (N, θ), where N
is a normal subsemigroup, meaning an (inverse) subsemigroup containing E(S)
and closed under conjugation (defined in the obvious way, as for groups), θ is a
congruence on the semilattice of idempotents E(S), and there are various linking
conditions between N and θ. The congruence δ on S can be defined via

(a, b) ∈ δ ⇔ a′b ∈ N and (aa′, bb′) ∈ θ.

N then consists of those elements of S congruent to an idempotent (the kernel

of S), while θ is the restriction of δ to E(S) (the trace of δ), and all congruence
pairs arise from congruences in this way. See [7] for the details.

In the case of an idempotent-separating congruence δ on the inverse semi-
group S, the trace θ is of course equality on E(S) (that is, the diagonal relation),
while its kernel N is easily seen to be a Clifford semigroup (an inverse semi-
group additionally satisfying the law aa′ ≈ a′a). Conversely, any pair (N, θ) in
which θ is the diagonal relation on E(S) and N is a normal Clifford subsemi-
group is the congruence pair of an idempotent-separating congruence on S. So
idempotent-separating congruences on S correspond one-to-one with normal Clif-
ford subsemigroups of S.

It follows that any inverse semigroup has a largest normal Clifford subsemi-
group which, when factored out, leaves an inverse semigroup with no non-trivial
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normal Clifford subsemigroups, that is, the only one is the semilattice E(S) (and
in particular, if S is itself a Clifford semigroup, the quotient is a copy of the semi-
lattice E(S)). This is a radical-like fact, but no more than that because there is
no general kind of subobject of an inverse semigroup that can play the role of the
radical. Normal subsemigroups cannot do this job, since these do not define con-
gruences in the absence of further information about the trace of the congruence.
We could restrict to cases in which the trace is equality, but this merely gives
us “radical” congruences in the current sense. A truly semiheap-theoretic view
must be taken if one wishes to go beyond a Hoehnke radical when interpreting
the largest idempotent-separating congruence.
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