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Interpolation of x-compactness and PCF

ISTVAN JUHASZ, ZOLTAN SZENTMIKLOSSY

Abstract. We call a topological space k-compact if every subset of size xk has a
complete accumulation point in it. Let ®(u, k, A) denote the following statement:
u <k <X =cf(\) and there is {S¢ : £ < A} C [k]* such that [{£ : [Se N A] =
p} < X whenever A € [k]<*. We show that if ®(u,r,)) holds and the space
X is both p-compact and A-compact then X is xk-compact as well. Moreover,
from PCF theory we deduce ®(cf(x), x, k1) for every singular cardinal k. As a
corollary we get that a linearly Lindelof and N,-compact space is uncountably
compact, that is k-compact for all uncountable cardinals k.
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We start by recalling that a point z in a topological space X is said to be a
complete accumulation point of a set A C X iff for every neighbourhood U of x
we have |U N A| = |A|. We denote the set of all complete accumulation points of
A by A°.

It is well-known that a space is compact iff every infinite subset has a complete
accumulation point. This justifies to call a space k-compact if its every subset
of cardinality x has a complete accumulation point. Now, let x be a singular
cardinal and k = Y {kq : @ < cf(k)} with k4 < K for each a < cf(k). Clearly,
if a space X is both ke-compact for all a < cf(x) and cf(k)-compact then X is
k-compact as well. This trivial “extrapolation” property of x-compactness (for
singular ) implies that in the above characterization of compactness one may
restrict to subsets of regular cardinality.

The aim of this note is to present a new “interpolation” result on x-compact-
ness, i.e. one in which g < kK < A and we deduce k-compactness of a space from its
- and A-compactness. Again, this works for singular cardinals x and the proof
uses non-trivial results from Shelah’s PCF theory.

Definition 1. Let x, A\, pu be cardinals, then ®(u,k,A) denotes the following
statement: p < k < A = cf(A) and there is {S¢ : £ < A} C [k]* such that
{E : |Se N A] = u}| < A whenever A € [k]<".
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As we can see from our next theorem, this property ® yields the promised
interpolation result for x-compactness.

Theorem 2. Assume that ®(u, x,\) holds and the space X is both p-compact
and A-compact. Then X is k-compact as well.

PROOF: Let Y be any subset of X with |Y| = k and, using ®(u, &, \), fix a family
{Se : £ < A} C [Y]* such that [{£ : |[Se N A| = p}| < X whenever A € [Y]<".
Since X is u-compact we may then pick a complete accumulation point pe € S¢°
for each & < A.

Now we distinguish two cases. If [{ps : £ < A}| < A then the regularity of A
implies that there is p € X with [{{ < A : pe = p}| = A. If, on the other hand,
[{pe : € < A}| = A then we can use the A-compactness of X to pick a complete
accumulation point p of this set. In both cases the point p € X has the property
that for every neighbourhood U of p we have |[{{ : [Se NU| = p}| = A

Since Se NU C Y NU, this implies using ®(u, &, A) that |[Y N U| = &, hence p
is a complete accumulation point of Y, hence X is indeed k-compact. (|

Our following result implies that if ®(u, £, ) holds then x must be singular.
Theorem 3. If ®(u,k,\) holds then we have cf(u) = cf(k).

PROOF: Assume that {S¢ : £ < A} C [k]* witnesses ®(u, k,A) and fix a strictly
increasing sequence of ordinals 7, < k for a < cf(k) that is cofinal in k. By the
regularity of A > k there is an ordinal £ < A such that |Se N 7| < p holds for
each a < cf(x). But this S¢ must be cofinal in x, hence from |S¢| = p we get
cf(p) < cf(k) < p.

Now assume that we had cf () < cf(x) and set |SeNna| = pa for each o < cf(k).
Our assumptions then imply p* = sup{uq : @ < cf(x)} < p as well as cf(k) < py,
contradicting that Se = J{Se N1 : & < cf(k)} and |Se| = p. This completes our
proof. O

According to theorem 3 the smallest cardinal p for which ®(u, x, A) may hold
for a given singular cardinal k is cf(k). Our main result says that this actually
does happen with the natural choice A = k™.

Theorem 4. For every singular cardinal k we have ®(cf(k), k, k™).

PrOOF: We shall make use of the following fundamental result of Shelah from
his PCF theory: There is a strictly increasing sequence of length cf(k) of regular
cardinals k, < k cofinal in k and such that in the product

P =[[{#a: a < cf()}

there is a scale {fe : £ < kT} of length x*. (This is Main Claim 1.3 on p.46

of [2].)
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Spelling it out, this means that the k*-sequence { f¢ : £ < K1} C P is increasing
and cofinal with respect to the partial ordering <* of eventual dominance on P.
Here for f,g € P we have f <* g iff there is a < c¢f(x) such that f(8) < g(8)
whenever o < 8 < cf (k).

Now, to show that this implies ®(cf(k), k, k), we take the set H = [J{{a} x
Ko @ a < cf(k)} as our underlying set. Note that then |H| = k and every function
f € P, construed as a set of ordered pairs (or in other words: identified with its
graph) is a subset of H of cardinality cf(k).

We claim that the scale sequence {fe : ¢ < w7} C [H]¥"™ witnesses
®(cf(x),s,xT). Indeed, let A be any subset of H with |A] < k. We may then
choose a < cf(k) in such a way that |A| < k4. Clearly, then there is a function
g € P such that we have AN ({8} x kg) C {8} x g(B) whenever a < § < cf(k).
Since {fe : £ < kT} is cofinal in P w.r.t. <*, there is a £ < k™ with g <* f¢ and
obviously we have |AN f,| < cf(k) whenever { <n < kt. O

Note that the above proof actually establishes the following more general result:
If for some increasing sequence of regular cardinals {k, : o < cf(k)} that is cofinal
in k there is a scale of length A = cf()) in the product [[{kq : @ < cf(k)} then
O (cf(k), K, A) holds.

Before giving some further interesting application of the property ®(u,k, A),
we present a result that enables us to “lift” the first parameter cf(x) in Theorem 4
to higher cardinals.

Theorem 5. If ®(cf(k),k,\) holds for some singular cardinal k then we also
have ® (i, k, ) whenever cf(k) < u < k with cf(u) = cf(k).

PROOF: Let us put cf(k) = ¢ and fix a strictly increasing and cofinal sequence
{Ka : @ < p} of cardinals below k. We also fix a partition of x into disjoint sets
{Hy : o < o} with |H,| = K, for each a < .

Let us now choose a family {S¢ : £ < A} C [k]? that witnesses ®(cf(k), k, A).
Since A is regular, we may assume without any loss of generality that |H,NSe| < o
holds for every a < g and £ < X. Note that this implies [{a: H, N Se # 0} = o
for each & < A.

Now take a cardinal g with cf(p) = o < p < k and fix a strictly increasing and
cofinal sequence {po : @ < g} of cardinals below p. To show that ®(u,k, ) is
valid, we may use as our underlying set S = [J{Hs X o : a < g}, since clearly
|S| = k.

For each & < A let us now define the set T C S as follows:

Te = | J{(Se N Ha) % o s 0 < 0}

Then we have |T¢| = p because |[{a : Hy, N Se # 0} = 0. We claim that
{T¢ : £ < A} witnesses ®(u, K, A).
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Indeed, let A C S with |A] < k. For each o < p let B, denote the set of all first
co-ordinates of the pairs that occur in AN(H, X o) and set B = |J{ B, : 8 < 0}.
Clearly, we have B C k and |B| < |A] < &, hence |{{ : |Se N B| = o}| < A.

Now, consider any ordinal £ < A with [SeNB| < o. If (v,6) € (TeNA)N(Hq %
o) for some o < g then we have v € Se N By, consequently H, NS¢ N B # ().
This implies that

W={a: (TenNA)N(Hy X p1o) # 0}
has cardinality < |Se N B| < g. But for each @ € W we have

|Te N (Ho X pta)| < 0+ pra < g,
hence
Ten A= J{(TeNA) N (Ho X pa) 1 a € W}

implies |T¢ N A| < p as well. But this shows that {T¢ : £ < A} indeed witnesses
D(u, K, N). O

Arhangel’skii has recently introduced and studied in [1] the class of spaces that
are k-compact for all uncountable cardinals x and, quite appropriately, called
them wuncountably compact. In particular, he showed that these spaces are Lin-
delof.

We recall that the spaces that are k-compact for all uncountable regular cardi-
nals x have been around for a long time and are called linearly Lindel6f. Moreover,
the question under what conditions is a linearly Lindel6f space Lindel6f is impor-
tant and well-studied. Note, however, that a linearly Lindel6f space is obviously
compact iff it is countably compact, i.e. w-compact. This should be compared
with our next result that, we think, is far from being obvious.

Theorem 6. Every linearly Lindeléf and R,,-compact space is uncountably com-
pact hence, in particular, Lindel6f.

PROOF: Let X be a linearly Lindel6f and N,-compact space. According to the
(trivial) extrapolation property of k-compactness that we mentioned in the in-
troduction, X is k-compact for all cardinals x of uncountable cofinality. Conse-
quently, it only remains to show that X is k-compact whenever x is a singular
cardinal of countable cofinality with N, < k.

But, according to theorems 4 and 5, we have ®(X,,x,x") and X is both
R,-compact and xT-compact, hence theorem 2 implies that X is k-compact as
well. O

Arhangel’skii gave in [1] the following surprising result which shows that the
class of uncountably compact T3-spaces is rather restricted: Every uncountably
compact T5-space X has a (possibly empty) compact subset C' such that for every
open set U D C we have | X \ U| < R,,. Below we show that in this result the
T3 separation axiom can be replaced by 77 plus van Douwen’s property wD, see
e.g. 3.12 in [3]. Since uncountably compact T3-spaces are normal, being also
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Lindel6f, and the wD property is a very weak form of normality, this indeed is
an improvement. For the convenience of the reader we recall that a space X has
property wD iff every infinite closed discrete set A in X has an infinite subset B
that expands to a discrete (in X) collection of open sets {U, : x € B}.

Definition 7. A topological space X is said to be k-concentrated on its subset
Y if for every open set U D Y we have | X \ U| < k.

So what we claim can be formulated as follows.

Theorem 8. Every uncountably compact T} space X with the wD property is
R, -concentrated on some (possibly empty) compact subset C'.

PrOOF: Let C be the set of those points x € X for which every neighbourhood
has cardinality at least N,. First we show that C, as a subspace, is compact.
Indeed, C is clearly closed in X, hence Lindeldf, so it suffices to show for this that
C is countably compact.

Assume, on the contrary, that C' is not countably compact. Then, as X is 77,
there is an infinite closed discrete A € [C]“. But then by the wD property there
is an infinite B C A that expands to a discrete (in X) collection of open sets
{Us : © € B}. By the definition of C' we have |Uz| > X, for each = € B.

Let B = {xy, : n < w} be any one-to-one enumeration of B. Then for each n <
w we may pick a subset A4,, C U,, with |[A4,| = 8,, and set A = [J{4, : n < w}.
But then |A| =X, and A has no complete accumulation point, a contradiction.

Next we show that X is N, concentrated on C. Indeed, let U O C be open. If
we had | X \ U| > R, then any complete accumulation point of X \ U is not in U
but is in C, again a contradiction. (I

The following easy result, that we add for the sake of completeness, yields a
partial converse to theorem 8.

Theorem 9. If a space X is k-concentrated on a compact subset C then X is
A-compact for all cardinals A > k.

PROOF: Let A C X be any subset with |A| = A > k. We claim that we even
have A° N C # (. Assume, on the contrary, that every point x € C has an
open neighbourhood U, with |[A NU,| < A. Then the compactness of C' implies
C cU = |J{U; : ¢ € F} for some finite subset F' of C. But then we have
|[ANU| < A, hence |[A\ U| = A > &, contradicting that X is k-concentrated
on C. O

Putting all these theorems together we immediately obtain the following result.

Corollary 10. Let X be a T} space with property wD that is X,,-compact for each
0 < n <w. Then X is uncountably compact if and only if it is R,-concentrated
on some compact subset.

319



320 I. Juhédsz, Z. Szentmikldssy

REFERENCES

[1] Arhangel’skii A.V., Homogeneity and complete accumulation points, Topology Proc. 32
(2008), 239-243.

[2] Shelah S., Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press,
Oxford, 1994.

[3] van Douwen E., The Integers and Topology, in Handbook of Set-Theoretic Topology,
K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp. 111-167.

ALFRED RENYI INSTITUTE OF MATHEMATICS, P.O. Box 127, 1364 BUDAPEST,
HUNGARY

Email: juhaszQrenyi.hu

EOTVOS LORANT UNIVERSITY, DEPARTMENT OF ANALYSIS, PAZMANY PETER SETANY
1/A, 1117 BUDAPEST, HUNGARY

Email: zoli@renyi.hu

(Received March 8, 2009, revised March 31, 2009)



