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Central subsets of Urysohn universal spaces

Piotr Niemiec

Abstract. A subset A of a metric space (X, d) is central iff for every Katětov map
f : X → R upper bounded by the diameter of X and any finite subset B of X

there is x ∈ X such that f(a) = d(x, a) for each a ∈ A ∪ B. Central subsets of
the Urysohn universal space U (see introduction) are studied. It is proved that
a metric space X is isometrically embeddable into U as a central set iff X has
the collinearity property. The Katětov maps of the real line are characterized.

Keywords: Urysohn’s universal space, ultrahomogeneous spaces, extensions of
isometries

Classification: 54E50, 54D65

In [15] Urysohn introduced his universal separable metric space which turned
out to be uniquely determined (up to isometry) by the three conditions: complete-
ness, ultrahomogeneity and universality. (Ultrahomogeneity of a metric space X
means that any isometry between its two finite subsets is extendable to an isom-
etry of the whole space onto itself; while universality of X means that every
separable metric space is isometrically embeddable in X .) About thirty years
later, Huhunaǐsvili [7] has proved that every isometry between compact subsets of
the Urysohn universal space admits a bijective isometric extension defined on the
whole space. This is probably the most important result on this space which has
been obtained after the paper of Urysohn and before Katětov’s [10] one, where
the author presented a very useful method of constructing the Urysohn space.
Since that time, the literature concerning Urysohn’s universal space U is still
growing up and we mention here only a part of it: Uspenskij has shown in [16]
that the group of isometries of U is a universal Polish group and in [17] that U is
homeomorphic to a separable Hilbert space; Holmes [5] has proved that the space
U generates a unique (up to linear isometry preserving the points of U) Banach
space (see also [6] or [13] for short proofs); Cameron and Vershik [2] have shown
that U can be endowed with the structure of a monothetic group; Melleray [12]
has obtained the converse theorem to Huhunaǐsvili’s one: if any isometry between
two arbitrary (isometric) copies of a metric space X admits a bijective isometric
extension defined on U, then the completion of X is compact.

In the present paper we will study central subsets (defined in the Abstract) of
U and its ‘spherical’ geometry.

Section 1 deals with Katětov maps and hulls. It is proved that the Katětov
hull of a metric space is always hyperconvex and Katětov maps defined on the
real line are characterized.
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Section 2 is devoted to central subsets of Urysohn spaces and common spheres
(that is, intersections of spheres) with centres in them. We give an alternative
proof of the above mentioned Huhunaǐsvili theorem. Several results on common
spheres isometric to Urysohn spaces are presented. It is also shown that every
central subset of a metric space X is central in the completion of X . As a con-
sequence of this, we prove that a metric space is isometrically embeddable in the
Urysohn universal space as a central set iff it has the so-called collinearity property

(see Theorem 1.2 for the definition of this).

Terminology and notation. The sets of all nonnegative real numbers is denoted
by R+. The identity map on a set X is denoted by idX . For two numbers p, q ∈
[−∞,+∞], p ∧ q and p ∨ q stand, respectively, for the minimum and maximum
of them. Similarly, if f and g are two real functions with a common domain or
if one of them is a real function and the other is an element of [−∞,+∞], f ∧ g
and f ∨ g are the minimum and maximum functions of them.

The open and the closed ball with centre at a and of radius r in a metric
space (X, d) are denoted by BX(a, r) and B̄X(a, r), respectively. The sphere
{x ∈ X : d(a, x) = r} = B̄X(a, r)\BX(a, r) is denoted by SX(a, r). Additionally,
let BX(a, 0) = ∅ and B̄X(a, 0) = SX(a, 0) = {a}. We say that the space X is
precompact if its completion is compact or, equivalently, if X is totally bounded;
and X is Heine-Borel if every closed ball in X is compact.

A map f : X → Y between metric spaces (X, dX) and (Y, dY ) is nonex-

pansive [λ-isometric] if for every x1, x2 ∈ X , dY (f(x1), f(x2)) ≤ dX(x1, x2)
[dY (f(x1), f(x2)) = λdX(x1, x2)]. A λ-isometry is a λ-isometric bijection. The
spaces X and Y are said to be Λ-isometric iff there is a λ-isometry of X onto Y
for some positive λ.

The Hausdorff distance between two nonempty subsets A and B of a metric
space (X, d) is denoted by distd(A,B) (∈ [0,+∞]). The function distd is a metric
on the space Db(X) of all nonempty, bounded and closed subsets of X .

For metric spaces (X, d) and (Y, ̺), we shall write (X, d) ⊂ (Y, ̺) if X ⊂ Y
and ̺

∣∣
X×X

= d.

1. Katětov maps

From now to the end of the section (X, d) is a nonempty metric space.

1.1 Definition. A function f : X → R is a Katětov map if |f(a) − f(b)| ≤
d(a, b) ≤ f(a) + f(b) for any a, b ∈ X . If additionally f(X) ⊂ [0, diamX ], we call
it an inner Katětov map.

The diameter of a Katětov map f is the number

δ(f) = δX(f) = 2 inf f(X) ∈ R+,

while the bound of it is defined by l(f) = lX(f) = 1
2 infx,y∈X(f(x) + f(y) −

d(x, y)) ∈ R+. The set of all [inner] Katětov maps on X is denoted by E(X)
[Ei(X)]. Additionally, for a number r ∈ [0,+∞], let Er(X) be the set of all
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Katětov maps f such that f(X) ⊂ [0, r]. Observe that E∞(X) = E(X) and
Ediam X(X) = Ei(X).

We call the set E(X) the Katětov hull of the metric space (X, d). The Katětov
hull and all its subsets are considered with the metric induced from the ‘supre-
mum’ norm, denoted by ‖ · ‖. (Katětov maps may be unbounded, their difference
however is always bounded.)

Katětov maps are precisely the functions that arise in a natural way from
one-point metric extensions of the given space.

For an element x of the space X , put ex : X ∋ y 7→ d(x, y) ∈ R+ and e(X) =
{ex : x ∈ X}. Easily e(X) ⊂ Ei(X). The reader will easily check that if f ∈
E(X), then δX(f) = 0 iff f ∈ e(X), provided X is complete. Further, one shows
that the Kuratowski map e : X ∋ x 7→ ex ∈ E(X) is isometric and ‖f−ex‖ = f(x)
for each x ∈ X and f ∈ E(X).

Basic properties of Katětov maps and hulls the reader can find in [10], [3]
or [13]. Here we recall only the most important ones. For a nonempty subset

A of X and a Katětov map f : A → R, let f̂ : X → R be defined by f̂(x) =

infa∈A(f(a) + d(x, a)). Then f̂ is a Katětov map on X which extends f and the

map E(A) ∋ f 7→ f̂ ∈ E(X) is isometric. Having this, the reader shall easily

check that if r ≥ diamX , then the map Er(A) ∋ f 7→ f̂ ∧ r ∈ Er(X) is isometric.

The map f̂ is called the Katětov extension of f .
In the sequel we shall be working with metric spaces with separable Katětov

hulls. Therefore it seems to be worthwhile to mention the following result, due to
Melleray [12]:

1.2 Theorem. The Katětov hull, E(X), of a metric space (X, d) is separable iff

X has the collinearity property, i.e. if there is no infinite subset A of X such that

inf{d(x, y) + d(y, z) − d(x, z) : x, y, z are distinct points of A} > 0.

The completion of a metric space with the collinearity property is Heine-Borel.

In fact Melleray obtained the above condition by combining his criterion in-
volving inline subsequences with its equivalence with the collinearity property,
proved by Kalton [9].

Theorem 1.2 immediately implies that the Katětov hull of each subset of the
real line is separable. In the next result, which will be applied in the next section,
we shall characterize Katětov maps on R. In order to do this, we have to recall
the classical theorem of real analysis. Namely, if f : R+ → R is a nonexpansive
map, then there exists a measurable function g : R+ → R such that |g| ≤ 1 and
f(x) = f(0)+

∫ x

0
g(t) dt. Below, sgn: R → {−1, 0, 1} denotes the signum function.

1.3 Theorem. (i) A function f : R+ → R is a Katětov map if and only if f
is of the form

(1.1) f(x) = α+ x+

∫ +∞

0

u(t) sgn(t− x) dt (x ∈ R+),
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where α is a nonnegative constant and u : R+ → [0, 1] is a Lebesgue in-

tegrable function. Moreover, lA(f) = α for every subset A of R+ such

that 0 ∈ A and supA = +∞, and u, as an element of L1(R+), is uniquely

determined by (1.1).
(ii) If a ∈ R is fixed, then a function f : R → R is a Katětov map if and only if

f is of the form

(1.2) f(x) = γ + |x− a| +

∫ +∞

−∞

w(t) sgn(t− a) sgn(t− x) dt,

where γ ≥ 0 and w : R → [0, 1] is a Lebesgue integrable function. Moreover,

lC(f) = γ for every nonempty subset C of R such that supC = − inf C =
+∞ and w, as an element of L1(R), is uniquely determined by (1.2).

Proof: (i). Suppose that f is a Katětov map. By the note preceding the state-
ment of the theorem, there exists a measurable function g : R+ → [−1, 1] such
that f(x) = f(0) +

∫ x

0
g(t) dt. Put u = 1

2 (1 − g) : R+ → [0, 1]. Let h ∈ R+.

Since f is a Katětov map, so h ≤ f(0) + f(h) = 2f(0) +
∫ h

0
g(t) dt and therefore∫ h

0 (1 − g(t)) dt = h −
∫ h

0 g(t) dt ≤ 2f(0). This implies, thanks to the nonnega-

tivity of the function 1 − g, that
∫ +∞

0 (1 − g(t)) dt ≤ 2f(0). Thus u is Lebesgue

integrable and
∫ +∞

0 u(t) dt ≤ f(0). Put α = f(0) −
∫ +∞

0 u(t) dt ≥ 0. Finally, we
obtain

f(x) = f(0) +

∫ x

0

g(t) dt = α+

∫ +∞

0

u(t) dt+

∫ x

0

(1 − 2u(t)) dt

= α+ x+

∫ +∞

x

u(t) dt−

∫ x

0

u(t) dt = α+ x+

∫ +∞

0

u(t) sgn(t− x) dt.

Now suppose that f is given by the formula (1.1). Then, for x, y ∈ R+ such that
x ≤ y, we have:

|f(y) − f(x)| =
∣∣∣y − x+

∫ +∞

0

u(t)(sgn(t− y) − sgn(t− x)) dt
∣∣∣

=
∣∣∣
∫ y

x

(1 − 2u(t)) dt
∣∣∣ ≤

∫ y

x

|1 − 2u(t)| dt ≤

∫ y

x

1 dt = |y − x|

and

1

2
(f(x) + f(y) − |y − x|) = α+ x+

1

2

∫ +∞

0

u(t)(sgn(t− x) + sgn(t− y)) dt

= α+

∫ x

0

(1 − u(t)) dt+

∫ +∞

y

u(t) dt ≥ α ≥ 0,

which yields that f ∈ E(R+). What is more, if x = 0 ∈ A and y ∈ A tends
to +∞, then the expression which follows the last equality sign in the foregoing
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calculations tends to α and therefore lA(f) ≤ α. On the other hand, the above
argument shows that also f − α ∈ E(R+), so α = lA(f).

Now, if u′ is a Lebesgue integrable function such that

f(x) = α′ + x+

∫ +∞

0

u′(t) sgn(t− x) dt

for each x ≥ 0 and some constant α′ ≥ 0, then α′ = l(f) and 0 =
∫ +∞

0
(u(t) −

u′(t)) sgn(t−x) dt = −2
∫ x

0
(u(t)−u′(t)) dt+

∫ +∞

0
(u(t)−u′(t)) dt for every x ∈ R+.

Putting x = 0, we obtain
∫ +∞

0
(u(t)−u′(t)) dt = 0 and thus

∫ x

0
(u(t)−u′(t)) dt = 0

for any x ∈ R+, which implies that u− u′ = 0 in L1(R+).

(ii). First suppose that a = 0. Since the set R− = (−∞, 0] is isometric to R+,
so, simply changing the variable (x ; −x) and thanks to (i), we conclude that
there exist nonnegative constants γ− and γ+ and Lebesgue integrable functions
w− and w+ defined on the intervals R− and R+, respectively, with values in

[0, 1] and such that f(x) = γ− − x −
∫ 0

−∞
w−(t) sgn(t − x) dt for x ≤ 0 and

f(x) = γ+ + x +
∫ +∞

0
w+(t) sgn(t − x) dt for x ≥ 0. Let w : R → [0, 1] be the

union of the functions w− and w+ (the value at 0 has no matter). Thus w is
Lebesgue integrable and

(1.3) f(±x) = γ± + |x| ±

∫

R±

w(t) sgn(t∓ x) dt (x ∈ R+).

Furthermore, if x < 0 < y, then

y − x ≤ f(x) + f(y) = γ− + γ+ + y − x

+

∫ x

−∞

w(t) dt−

∫ y

x

w(t) dt+

∫ +∞

y

w(t) dt

and therefore
∫ y

x

w(t) dt ≤ γ− + γ+ +

∫ x

−∞

w(t) dt+

∫ +∞

y

w(t) dt.

Now letting x → −∞ and y → +∞, we obtain
∫ +∞

−∞
w(t) dt ≤ γ− + γ+. But,

thanks to (1.3), γ− + γ+ = 2f(0) −
∫ +∞

−∞
w(t) dt and hence

∫ +∞

−∞
w(t) dt ≤ f(0).

Put γ = f(0) −
∫ +∞

−∞
w(t) dt (≥ 0). Observe that γ± = f(0) −

∫
R±

w(t) dt =

γ +
∫

R∓
w(t) dt. Now, by (1.3), we conclude that for x ≤ 0,

f(x) = γ +

∫ +∞

0

w(t) dt+ |x| −

∫ 0

−∞

w(t) sgn(t− x) dt

= γ + |x| +

∫ +∞

−∞

w(t) sgn(t) sgn(t− x) dt
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and for x ≥ 0,

f(x) = γ +

∫ 0

−∞

w(t) dt+ |x| +

∫ +∞

0

w(t) sgn(t− x) dt

= γ + |x| +

∫ +∞

−∞

w(t) sgn(t) sgn(t− x) dt,

which finishes the proof in the case of a = 0.
Now if a is arbitrary and f ∈ E(R), then also fa ∈ E(R), where fa(x) =

f(a + x). Applying the foregoing part of the proof for fa and changing the
variable, we obtain the required formula (1.2).

For the proof of the converse statement, suppose that f is of the form (1.2).
Let x, y ∈ R be such that x ≤ y. Observe that |y− a| − |x− a| =

∫ y

x
sgn(t− a) dt

and hence

|f(y) − f(x)| =
∣∣∣
∫ y

x

(1 − 2w(t)) sgn(t− a) dt
∣∣∣ ≤

∫ y

x

|1 − 2w(t)| dt ≤ y − x

and

(1.4)

1

2
(f(x) + f(y) − |y − x|) = γ +

1

2
(|x − a| + |y − a| − (y − x))

+
1

2

∫ +∞

−∞

w(t) sgn(t− a)(sgn(t− x) + sgn(t− y)) dt

= γ + (x ∨ a− y ∧ a) +

∫ +∞

−∞

w(t) dt−

∫ x

a

w(t) sgn(t− a) dt

+

∫ a

y

w(t) sgn(t− a) dt.

Now if y ≤ a, then, continuing (1.4), we obtain

1

2
(f(x) + f(y) − |y − x|) = γ +

∫ a

y

(1 − w(t)) dt+

∫ x

−∞

w(t) dt+

∫ +∞

a

w(t) dt,

which is no less than γ. Similarly, if x ≥ a, then (1.4) gives

1

2
(f(x) + f(y) − |y − x|) = γ +

∫ x

a

(1 − w(t)) dt+

∫ a

−∞

w(t) dt+

∫ +∞

y

w(t) dt,

which is also no less than γ. Finally, if x ≤ a ≤ y, the calculations in (1.4) can
be continued as follows

(1.5)
1

2
(f(x) + f(y) − |y − x|) = γ +

∫ x

−∞

w(t) dt+

∫ +∞

y

w(t) dt ≥ γ ≥ 0.
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Thus f ∈ E(R) and as in the proof of (i), also f − γ ∈ E(R), so γ ≤ lC(f). On
the other hand, if x, y ∈ C and x→ −∞ and y → +∞, then the expression which
follows the last equality sign in (1.5) tends to γ and therefore lC(f) = γ. To
justify that w is unique, use analogous argument as that in the proof of (i). �

Before we end the section, we shall establish an important property of Katětov
hulls, namely the hyperconvexity of them. The fundamental theorem of Aronszajn
and Panitchpakdi [1] states that a nonempty metric space (M,̺) is hyperconvex
iff it is injective, i.e. if every nonexpansive map defined on a subset of an arbitrary
metric space Y with values in M is extendable to a nonexpansive map defined on
the whole space Y (and with values in M as well). They have also shown that M
is hyperconvex if

⋂
x∈M B̄M (x, f(x)) 6= ∅ for each f ∈ E(M). For definition and

more on hyperconvex spaces the reader is referred to [11].

1.4 Theorem (cf. [8]). If r ∈ (0,+∞] is such that r ≥ diamX , then the space

Er(X) is hyperconvex.

Proof: Firstly we show that Y = E(X) is hyperconvex. Let F ∈ E(Y ). It is
enough to show that

⋂
h∈Y B̄Y (h, F (h)) 6= ∅. Put f : X ∋ x 7→ F (ex) ∈ R. It

is easily seen that f ∈ E(X). Furthermore, if g ∈ E(X), then |f(x) − g(x)| =∣∣∣F (ex) − ‖g − ex‖
∣∣∣ ≤ F (g) for any x ∈ X and therefore ‖f − g‖ ≤ F (g), which

means that f ∈ B̄Y (g, F (g)).
Now consider a map Φ: E(X) ∋ f 7→ f ∧ r ∈ Er(X). It is easy to check that

it is well defined. What is more, Φ is nonexpansive and Φ(f) = f for f ∈ Er(X).
So, since E(X) is hyperconvex, so is Er(X). �

2. Central sets

For a subset A of a metric space X and a function f : B → R+ with B ⊃ A,
the symbol SX(A, f) stands for the intersection

⋂
a∈A SX(a, f(a)), provided A is

nonempty (and SX(∅, f) = X), and is called the common sphere with centres in
A and radii of f . Recall that if the common sphere SX(A, f) is nonempty, then
f
∣∣
A

is a Katětov map upper bounded by diamX .

2.1 Definition. Let X be a nonempty metric space, n ∈ N and let f ∈ Ei(X).
A subset A of X is said to be n-central for f , if SX(A∪B,F ) 6= ∅ for every subset
B of X with cardB ≤ n and any F ∈ Ei(X) such that F

∣∣
A

= f
∣∣
A
. A is central

for f if it is n-central for f for each n. Let On(f) = On
X(f) denote the family of

all n-central subsets of X for f and let OX(f) be the collection of central subsets
for f .

The set A is n-central if it is n-central for any f ∈ Ei(X). Similarly, A is
central if A ∈ OX(f) for each f ∈ Ei(X). The family of all central [n-central]
subsets of X is denoted by O(X) [On(X)]. Note that A ∈ O(X) iff SX(A∪B) 6= ∅
for each finite B ⊂ X and f ∈ Ei(X).

The reader will easily check the following facts for a metric space (X, d) of
positive diameter and its two arbitrary subsets A and B: (a) if B ⊂ A and
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A ∈ O(X), then B ∈ O(X); (b) if A ∈ O(X), then Ā ∈ O(X); (c) if A ∈ O(X)
and B is finite, then A ∪ B ∈ O(X); (d) if ϕ : X → X is an isometry and
A ∈ O(X), then ϕ(A) ∈ O(X); (e) X /∈ O(X).

Recall that a metric space X is finitely injective iff the following condition is
fulfilled: whenever B is a metric space of finite cardinality and of diameter no
greater than diamX , and A is a subset of B, then every isometric map of A into
X admits an isometric extension defined on the whole space B (and with values
in X). (In the literature finitely injective spaces satisfy our condition and in
addition are unbounded.) It is easy to check that the space X is finitely injective
iff O(X) is nonempty, iff O(X) contains all finite subsets of X .

Now it is a good time to put

2.2 Definition. An Urysohn space is a separable complete metric space X such
that every separable metric space of diameter no greater than diamX is isometri-
cally embeddable inX and each isometry between finite subsets ofX is extendable
to an isometry of X onto itself. An Urysohn space is nontrivial if it has more
than one point.

For an arbitrarily fixed number r ∈ [0,+∞] there is a unique (up to isometry)
Urysohn space of diameter r. We shall denote it by Ur, and U will stand for the
unbounded Urysohn space.

The fundamental result on Urysohn spaces is the following result due to Ury-
sohn [15] (cf. [13, Section 3], [14, Lemma 5.1.17] or [18, Proposition 3.10] and
references therein).

2.3 Theorem. The completion of a finitely injective metric space is finitely

injective. A metric space is Urysohn iff it is separable, complete and finitely

injective.

In the sequel we shall prove the strengthened version of the above result (see
Corollary 2.16).

2.4 Lemma. Let (X, d) be a nonempty metric space and let f ∈ Ei(X). If A
and B are two nonempty members of O1

X(f), then

distd(SX(A, f), SX(B, f)) ≤ 2 distd(A,B).

Proof: Since A,B ∈ O1
X(f), the sets SX(A, f) and SX(B, f) are nonempty. It

suffices to show that distd(x, SX(B, f)) ≤ 2 distd(A,B) for any x ∈ SX(A, f). If
x ∈ SX(A, f), then d(x, a) = f(a) for each a ∈ A. Let F ∈ E(B ∪ {x}) be an
extension of f

∣∣
B

with F (x) = supb∈B |f(b)−d(x, b)|. Then F (x) ≤ f(x). We infer

from this that SX(B ∪ {x}, F ) 6= ∅. Take any element c of the latter common
sphere. Then easily c ∈ SX(B, f) and d(x, c) = F (x). So, it is enough to check
that F (x) ≤ 2 distd(A,B). For arbitrary b ∈ B and a ∈ A, we have

(2.1) d(b, x) − f(b) ≤ d(b, a) + d(a, x) − f(b) = d(a, b) + f(a) − f(b) ≤ 2d(a, b)
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and

(2.2) f(b) − d(b, x) ≤ f(b) − d(a, x) + d(a, b) = f(b) − f(a) + d(a, b) ≤ 2d(a, b).

Now, by (2.1), d(b, x) − f(b) ≤ infa∈A 2d(a, b) = 2 distd(b, A) ≤ 2 distd(A,B).
Similarly, by (2.2), f(b) − d(b, x) ≤ 2 distd(A,B). �

2.5 Theorem. Let (X, d) be a complete metric space. If (An)n is a sequence

of nonempty members of O(X) such that

(2.3) distd(An, A) → 0 (n → +∞)

for some nonempty subset A of X , then A ∈ O(X) as well.

Proof: Let B be a finite subset of X and let f be an inner Katětov map on X .
Since An ∈ O(X), therefore An ∪ B ∈ O(X) ⊂ O1

X(f) for each n. Moreover,
distd(An ∪ B,Am ∪ B) ≤ distd(An, Am). But this, combined with Lemma 2.4,
yields distd(SX(An∪B, f), SX(Am∪B, f)) ≤ 2 distd(An, Am), which implies that
the sequence (SX(An ∪B, f))n is a fundamental sequence in the space Db(X) of
all nonempty, bounded and closed subsets of X . Since X is complete, so is the
space Db(X) with respect to the Hausdorff distance (see [4]). Therefore there
exists a nonempty set V such that

(2.4) distd(SX(An ∪B, f), V ) → 0 (n → +∞).

Take any v ∈ V . We shall show that v ∈ SX(A ∪ B, f). By (2.4), there exists
a sequence (vn)n such that vn ∈ SX(An ∪ B, f) for every n and d(vn, v) → 0
(n → +∞). Let a ∈ A ∪ B. If a ∈ B, then d(vn, a) = f(a) and since vn →
v (n → +∞), so f(a) = d(v, a), which means that v ∈ SX(a, f(a)). Now assume
that a ∈ A. As before, thanks to (2.3), there exists a sequence (an)n such that
an ∈ An for each n and d(an, a) → 0 (n → +∞). Now for any n, we have
f(an) = d(vn, an) and hence, by the continuity of f , f(a) = d(v, a), which yields
that v ∈ SX(a, f(a)). �

Having the above theorem, we immediately get

2.6 Corollary. If K is a precompact subset of a complete metric space X and

A ∈ O(X), then A ∪K ∈ O(X).

Note that Huhunaǐsvili’s theorem [7] follows from Corollary 2.6.
Further properties of central sets and common spheres in Urysohn spaces are

collected in the next theorem. A part of them is known (we shall comment this
after the proof).

2.7 Theorem. Let r ∈ (0,+∞], d be the metric of Ur and let A be a nonempty

member of O(Ur).

(U0) E(A) is separable (it is enough to require that A ∈ O0(Ur)).
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(U1) If f : A → R+ is any function (not necessarily a Katětov map), then the

set Z = Ur \
⋃

a∈ABUr
(a, f(a)) is isometric to Ur, provided Z is nonempty.

What is more, Z is nonempty if and only if:

• f(a) ≤ r for each a ∈ A, provided r < +∞,

• there exists x ∈ Ur for which the map f − ex

∣∣
A

is bounded, provided

r = +∞.

(U2) If f ∈ Ei(Ur), then the set T = SUr
(A, f) is isometric to Us with s =

r ∧ δA(f).
(U3) If A is bounded and s ∈ R+ is such a number that 1

2 diamA ≤ s ≤ r, then

the set ∆(A, s) = {x ∈ Ur : ex

∣∣
A

= const ≥ s} is isometric to Ur.

(U4) The map Er(A) ∋ f 7→ SUr
(A, f) ∈ Db(Ur) is isometric. The family

{SUr
(A, f)}f∈Er(A) is a cover of Ur and consists of pairwise disjoint subsets,

and there is an isometric map ψ : Er(A) → Ur such that ψ(f) ∈ SUr
(A, f)

for each f ∈ Er(A).
(U5) There exists a family of isometric maps (ϕt : Ur → Ur)t∈I , where I =

[0, r] ∩ R, such that ϕ0 = idUr
and

(2.5) d(ϕt(x), ϕs(x)) = |t− s| and distd(ϕt(x), A) ≥ t

for each x ∈ Ur and t, s ∈ I.
(U6) If Y is a separable metric space of diameter no greater than r and B its

subset, then every isometric map ϕ of B into A is extendable to an isometric

map of Y into Ur. Every isometry between A and another central subset of

Ur is extendable to an isometry of the whole space Ur.

(U7) There is a hyperconvex subset R of Ur such that A ⊂ R. In particular, if

Y is a metric space and B is a subset of Y , then every nonexpansive map

of B into A is extendable to a nonexpansive map of Y into Ur.

Proof: The points (U0) and (U6) have standard proofs (therefore we omit them),
while (U7) follows from (U4) and Theorem 1.4.

(U1): The set Z is clearly closed. We shall show that it is finitely injective
and that diamZ = r, provided Z 6= ∅. Clearly, diamZ ≤ r. Let B be a finite
nonempty subset of Z and let g ∈ Er(B). Put G = ĝ ∧ r. Then G ∈ Ei(Ur) and
SUr

(A ∪ B,G) 6= ∅, since A ∈ O(Ur). It suffices to check that G(a) ≥ f(a) for
a ∈ A, because then SUr

(A ∪B,G) ⊂ SUr
(B, g) ∩ Z. If a ∈ A, then f(a) ≤ r and

we only need to show that infb∈B(g(b)+ d(b, a)) ≥ f(a). But if b ∈ B, then b ∈ Z
and therefore b /∈ BUr

(a, f(a)), which finally gives g(b) + d(b, a) ≥ d(b, a) ≥ f(a).
The remainder is simple.

(U2): The nonemptiness of T simply follows from the fact that A is central.
Also T is clearly closed. If a, b ∈ T = SUr

(A, f) and x ∈ A, then d(a, b) ≤
d(a, x)+d(b, x) = 2f(x), which yields that diamT ≤ δA(f). Now let B be a finite
subset of T and let g ∈ E(B) be such a Katětov map that g is upper bounded by
r ∧ δA(f) on B. We shall show that

(2.6) f ∪ g ∈ E(A ∪B).
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Take a ∈ A and b ∈ B. Since b ∈ T , hence f(a) − g(b) = d(a, b) − g(b) ≤ d(a, b).
On the other hand, g(b) − f(a) ≤ δA(f) − f(a) ≤ f(a) = d(a, b) and therefore
|f(a)− g(b)| ≤ d(a, b). What is more, d(a, b) = f(a) ≤ f(a) + g(b), which finishes
the proof of (2.6). Now since A is central, therefore SUr

(A ∪ B, h) 6= ∅, where
h ∈ E(A ∪B) is the union of f and g. If c belongs to the latter common sphere,
then c ∈ SUr

(A, f) = T and c ∈ SUr
(B, g) and thus SUr

(B, g) ∩ T is nonempty.
(U3): It is clear that the set ∆(A, s) is closed and that diam∆(A, s) ≤ r. It

is nonempty, since it contains SUr
(A, f), where f ≡ s on A. Let B be a finite

nonempty subset of ∆(A, s) and let g ∈ E(B) be such a Katětov map that g is
upper bounded by r on B. Put G = ĝ ∧ r ∈ Ei(Ur). Take y ∈ SUr

(A ∪ B,G).
Then y ∈ SUr

(B, g) (because G
∣∣
B

= g) and d(x, y) = G(x) for x ∈ A. If x1, x2 ∈
A, then, by the definition of ∆(A, s) (⊃ B), ĝ(x1) = infb∈B(d(b, x1) + g(b)) =
infb∈B(d(b, x2) + g(b)) = ĝ(x2) and therefore ey(x1) = G(x1) = G(x2) = ey(x2).
What is more, ĝ(x1) ≥ infb∈B d(x1, b) ≥ s, so ey

∣∣
A

= const ≥ s, which means

that y ∈ ∆(A, s).
(U4): By (U2), we know that the map is well defined. Fix f, g ∈ Er(A). Take

x ∈ SUr
(A, f). Then, for any y ∈ SUr

(A, g) and each a ∈ A, |f(a) − g(a)| =
|d(x, a) − d(y, a)| ≤ d(x, y) and hence ‖f − g‖ ≤ distd(x, SUr

(A, g)). In order to
prove the converse inequality, first we shall show that

(2.7) g̃(x) = ‖f − g‖ and g̃
∣∣
A

= g

defines a Katětov map g̃ on A ∪ {x}. For any a ∈ A we have: d(a, x) = f(a) ≤
g(a) + ‖f − g‖ and d(a, x) = f(a) ≥ g(a) − ‖f − g‖. Moreover, ‖f − g‖ ≤
f(a) + g(a) = d(x, a) + g(a). The last three inequalities imply that

∣∣‖f − g‖ −

g(a)
∣∣ ≤ d(x, a) ≤ ‖f − g‖ + g(a) and thus the condition (2.7) is indeed sat-

isfied. Now since ‖f − g‖ ≤ r (because the images of f and g are included
in [0, r]) and A ∈ O(Ur), so there is y ∈ Ur such that d(y, a) = g(a) for
a ∈ A and d(x, y) = ‖f − g‖. We have obtained y ∈ SUr

(A, g) satisfying
d(x, y) = ‖f − g‖, which shows that distd(x, SUr

(A, g)) = ‖f − g‖. The same
argument proves that distd(y, SUr

(A, f)) = ‖f − g‖ for each y ∈ SUr
(A, g) and

therefore distd(SUr
(A, f), SUr

(A, g)) = ‖f−g‖. It is clear that the suitable family
of common spheres consists of pairwise disjoint nonempty sets which cover Ur.

Now let E = {ea

∣∣
A

: a ∈ A} ⊂ Er(A) and ψ0 : E ∋ ea

∣∣
A
7→ a ∈ A. Then ψ0 is

isometric. Since A ∈ O(Ur), Er(A) is separable and diamEr(A) ≤ r, hence, by
(U6), there is an isometric map ψ : Er(A) → Ur such that ψ

∣∣
E

= ψ0. Let a ∈ A

and f ∈ Er(A). We have d(a, ψ(f)) = d(ψ(ea

∣∣
A
), ψ(f)) = ‖ea

∣∣
A
− f‖ = f(a),

which shows that ψ(f) ∈ SUr
(A, f).

(U5): Let {rn}n≥0 be a sequence of distinct real numbers such that r0 = 0
and the set R = {rn : n ≥ 0} is a dense subset of I. We shall build, using
induction, a sequence of isometric maps (ϕrn

)∞n=0, with ϕ0 = idUr
, which satisfies

the condition (2.5) for t, s ∈ R. Put ϕ0 = idUr
and assume that the maps ϕrj

are
defined for j = 0, . . . , n− 1, where n ≥ 1, in such a way that (2.5) is fulfilled for
t, s ∈ Rn = {r0, . . . , rn−1}. Let D = {dn : n ≥ 1} be a dense subset of Ur. We
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shall define an isometric map Φ: D → Ur such that

(2.8) d(Φ(x), ϕt(x)) = |rn − t| and distd(Φ(x), A) ≥ rn

for each x ∈ D and r ∈ Rn. Suppose that Φ is defined (and satisfies the above
conditions) for x ∈ Dn = {dk : 0 < k < n} with n ≥ 1. Let Y = {ϕt(x) : t ∈ Rn}
and put g : Y ∋ ϕt(x) 7→ |t− rn| ∈ R+. Observe that g is a Katětov map. What
is more, (ex ◦Φ−1)∪g ∈ E(Φ(Dn)∪Y ). So, the map f : Φ(Dn)∪Y → R+ defined
by f(z) = d(x,Φ−1(z)) for z ∈ Φ(Dn) and f(ϕt(x)) = |t − rn| for t ∈ Rn is well

defined and Katětov. Moreover, f is upper bounded by r. Thus f̂ ∧ r is an inner
Katětov map which extends f . Since A is central, hence there is w ∈ Ur such
that

(2.9) f̂(u) ∧ r = d(u,w)

for u ∈ A ∪ Dn ∪ Y . This yields that the formula Φ(x) = w extends Φ to an
isometric map from Dn ∪{x} into Ur in such a way that d(Φ(x), ϕt(x)) = |rn − t|
for t ∈ Rn. So, it remains to check that distd(Φ(x), A) ≥ rn or, equivalently

(thanks to (2.9)), that f̂(a) ≥ rn for each a ∈ A. Take a ∈ A and recall that

f̂(a) = infz∈Φ(Dn)∪Y (f(z) + d(z, a)). If z = ϕt(x) with t ∈ Rn, then f(z) +
d(z, a) ≥ |rn − t| + t ≥ rn. On the other hand, if z = Φ(y) for some y ∈ Dn,
then f(z) + d(z, a) ≥ d(Φ(y), a) ≥ distd(Φ(y), A) ≥ rn, where the last inequality

follows from (2.8) for y. This implies that f̂(a) ≥ rn.
Having the map Φ: D → Ur satisfying (2.8), it remains to define the map ϕrn

as the unique extension of Φ.
Thus the sequence (ϕrn

)n has been constructed. Finally put ϕt(x) =
limrn→t ϕrn

(x) for each t ∈ I and x ∈ Ur. It is easy to check that the family
(ϕt)t∈I defined in such a way satisfies (2.5). �

The point (U1) says that Urysohn space have fractal properties. A special case
of (U2) (when A is finite) was done by Melleray [13, §4.2]. Melleray has also
shown in [12] that if A is a (nonempty) Heine-Borel subset of U, then for each
M > 0 the set {x ∈ U : distd(x,A) ≥ M} is isometric to U — this is related to
our property (U1).

Another facts on ‘spherical’ geometry of Urysohn spaces are proved below.

2.8 Proposition. (a) Let r, s ∈ (0,+∞]. Let u and v be two arbitrary elements

of Ur and Us, respectively. If p and q are two positive (finite) numbers

such that p ≤ 1
2r and q ≤ 1

2s, then the balls B̄Ur
(u, p) and B̄Us

(v, q) are

Λ-isometric.

(b) If r < +∞ and s and t are two different numbers from the interval [ 12r, r],

then the closed balls B̄Ur
(a, s) and B̄Ur

(a, t) (where a ∈ Ur is arbitrary) are

not Λ-isometric.

Proof: To prove (a), use the back-and-forth method, starting with ϕ(u) = v.
To see (b), suppose, for the contrary, that s < t and that there exists a

Λ-isometry ϕ : B̄Ur
(a, t) → B̄Ur

(a, s). First of all, by (U2), diam B̄Ur
(a, t) =
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diam B̄Ur
(a, s) = r and therefore ϕ is an isometry. Let b = ϕ−1(a) and q =

(d(a, b) + t) ∧ r ≥ t. It is easy to see that the formulas a 7→ t and b 7→ q define
a Katětov map on {a, b} and hence there is z ∈ Ur such that d(a, z) = t and
d(b, z) = q. But then z ∈ B̄Ur

(a, t) and d(ϕ(z), a) = d(ϕ(z), ϕ(b)) = d(z, b) ≥ t >
s, which denies the connection ϕ(z) ∈ B̄Ur

(a, s). �

Now we shall give two examples dealing with central subsets and common
spheres.

2.9 Example. Let r ∈ (0,+∞]. The assumption that A ∈ O(Ur) in (U2) is
essential: if a and b are two distinct points of Ur and s = 1

2d(a, b), then for
A = SUr

({a, b}, s) one has SUr
(A, s) = {a, b} and SUr

(A ∪ {a}, s) = ∅, although
the constant map ‘s’ is a Katětov map on A ∪ {a}.

Also the set ∆(A, s) in (U3) cannot be replaced by the set P = {x ∈ ∆(A, s) :
ex ≤ 2s on A}, i.e. the set P is not finitely injective in general: if A = {a} and
0 < s ≤ 1

4r, then P = B̄Ur
(a, 2s) \BUr

(a, s) is not finitely injective.

Similarly as central sets one may define absolutely central spaces: a separable
metric space is absolutely central if each isometric copy of it in any Urysohn space
is central. Let AO denote the class of all absolutely central (separable) metric
spaces. Melleray [12] has proved the following

2.10 Theorem. AO coincides with the class of precompact spaces.

The above statement means that for every separable non-precompact metric
space D there is a subset D′ of the unbounded Urysohn space U which is isometric
to D and is not central. This is however immediate for spaces whose Katětov hulls
are non-separable — every isometric copy of such a metric space in any Urysohn
space is not 0-central (which follows from (U0)). So, one may ask which metric
spaces can have central (isometric) copies in the unbounded Urysohn space. Our
next aim is to give such a characterization. The main result of the paper is:

2.11 Theorem. A metric space X can be isometrically embedded as a central

subset of U iff X has the collinearity property.

The necessity follows from Theorem 1.2 and (U0). The proof of the sufficiency
will be preceded by the next few lemmas. The first of them can easily be deduced
from the note in [13, Definition 6.8]:

2.12 Lemma. For every nonempty space (A, dA) with separable Katětov hull

there exists an unbounded separable finitely injective space (Ã, d̃ ) such that

(A, dA) ⊂ (Ã, d̃ ) and A ∈ O(Ã ).

Now we want to show that if A is a central subset of Z, then A is central in
the completion of Z as well. For simplicity, we fix the situation.

From now on, (X, d) is a complete metric space and Z and A are such nonempty
subsets of X that Z is dense in X and

(2.10) SX(A ∪B, f) 6= ∅
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for every finite subset B of Z and any f ∈ Ei(X). Additionally, put r = diamX
(we do not assume that X is unbounded). Under these assumptions we state and
prove the next three lemmas.

2.13 Lemma. For any x1, . . . , xp ∈ X , each ε > 0 and f ∈ Ei(X) there exists

z ∈ X such that f(x) − ε ≤ d(z, x) ≤ f(x) + ε for every x ∈ A ∪ {x1, . . . , xp}.

Proof: Since Z is dense in X , there are points z1, . . . , zp in Z such that
d(xj , zj) ≤

ε
4 for j = 1, . . . , p. Put g(x) = (f(x)+ ε

2 )∧r (x ∈ X). Since g ∈ Ei(X)
and by (2.10), there is z ∈ X such that d(z, x) = g(x) for x ∈ A ∪ {z1, . . . , zp}.
Observe that if a ∈ A, then f(a) ≤ g(a) = d(a, z) ≤ f(a) + ε. Finally, if
j ∈ {1, . . . , p}, then

f(xj) − ε ≤ g(xj) −
ε

2
≤ g(zj) + d(xj , zj) −

ε

2
≤ g(zj) −

ε

4
= d(zj , z)−

ε

4

≤ d(zj , xj) + d(xj , z) −
ε

4
≤ d(xj , z) ≤ d(xj , zj) + d(zj , z) ≤

ε

4
+ g(zj)

≤
ε

4
+ g(xj) + d(xj , zj) ≤ f(xj) +

ε

2
+
ε

4
+
ε

4
= f(xj) + ε.

�

2.14 Lemma. If x1, . . . , xp, z ∈ X , f ∈ Ei(X) and ε > 0 are such that 0 <
f(x)− 1

8ε ≤ d(x, z) ≤ f(x)+ ε for each x ∈ A∪{x1, . . . , xp}, then there is z′ ∈ X

such that 0 < f(x) − 1
8ε

′ ≤ d(x, z′) ≤ f(x) + ε′ for x ∈ A ∪ {x1, . . . , xp} and

d(z, z′) ≤ ε′, where ε′ = 3
4ε.

Proof: First of all, observe that z /∈ B, where B = A∪{x1, . . . , xp}. (Indeed, for
x = z one of the two inequalities 0 < f(x)− 1

8ε ≤ d(x, z) is impossible.) Now define

g : B∪{z} → R+ by the formulas: g(x) = f(x)+ 1
2ε for x ∈ B and g(z) = 5

8ε. The

map g is easily Katětov on B. What is more, if x ∈ B, then f(x) > 1
8ε and hence

|g(x)− g(z)| = f(x)− 1
8ε ≤ d(x, z) ≤ f(x) + ε ≤ g(x)+ g(z). Thus g is a Katětov

map and therefore, by Lemma 2.13 applied for x1, . . . , xp, z,
1
32ε and ĝ ∧ r, there

is z′ ∈ X such that g(x) ∧ r − 1
32ε ≤ d(x, z′) ≤ g(x) + 1

32ε for x ∈ B ∪ {z}. This

means that for x ∈ B, 0 < f(x) − 1
8ε < f(x) − 1

8ε
′ ≤ g(x) ∧ r − 1

32ε ≤ d(x, z′) ≤

g(x) + 1
32ε ≤ f(x) + 1

2ε+ 1
4ε = f(x) + ε′ and d(z, z′) ≤ g(z) + 1

32ε ≤ ε′. �

2.15 Lemma. For every f ∈ Ei(X) and each finite subset B of X , the common

sphere SX(A ∪B, f) is nonempty.

Proof: If δX(f) = 0, then f ∈ e(X) and hence easily SX(A ∪B, f) 6= ∅. So, we
may assume that δX(f) > 0. Put εn = (3

4 )nδX(f) > 0. By Lemma 2.13, there

exists z1 ∈ X such that f(x)− 1
8ε1 ≤ d(x, z1) ≤ f(x)+ ε1 for x ∈ A∪B. Observe

that f(x) ≥ 1
2δX(f) > 1

8ε1 for each x ∈ A ∪ B. Now making use of Lemma 2.14
and induction, we obtain points z2, z3, z4, . . . of X such that

(2.11) 0 < f(x) −
1

8
εn ≤ d(x, zn) ≤ f(x) + εn
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and d(zn, zn+1) ≤ εn+1 for each x ∈ A ∪ B and n ≥ 1. Since
∑∞

n=1 εn < +∞,
so the sequence (zn)n is fundamental. By the completeness of X , there is z ∈ X
such that limn→+∞ d(zn, z) = 0. Now letting n → +∞ in (2.11), we obtain
d(x, z) = f(x) for each x ∈ A ∪B, which finishes the proof. �

2.16 Corollary. If A is a central subset of a metric space X , then A is central

in the completion of X .

Now to prove the ‘if’ part of Theorem 2.11, it suffices to combine Theorem 1.2
with Lemma 2.12 and Corollary 2.16. Note also that, in particular, we have
obtained an alternative proof of the theorem of Urysohn (Theorem 2.3).

Having in mind Theorem 2.10, the next result is rather surprising.

2.17 Proposition. Let (X, d) be a complete metric space and let B be a central

subset of X . If A is a nonempty subset of X which is isometrically embeddable

in R and f ∈ E(X) is such that lA(f) = 0, then the common sphere SX(A∪B, f)
is nonempty.

Proof: Thanks to Corollary 2.6, we may assume that A is unbounded, and
closed. Let Ã be a subset of R which is isometric to A and such that 0 ∈ Ã,
sup Ã = +∞ and inf Ã ∈ {−∞, 0}. Let ψ : A → Ã be an isometry. Put b =
ψ−1(0), Kn = B̄X(b, n) ∩A and Fn = SX(B ∪Kn, f) (n ≥ 1). By Corollary 2.6,
each Fn is nonempty, closed and bounded. What is more,

(2.12) Fn ⊃ Fn+1.

We shall show that (Fn)n is a fundamental sequence with respect to the Hausdorff
distance. Thanks to (2.12), it is enough to estimate the numbers distd(x, Fn) for

x ∈ Fm and m < n. Let g = f ◦ ψ−1 ∈ E(Ã). First we will show that g has an
extension of the form (1.2) with a = γ = 0 which is a Katětov map. Indeed, if

inf Ã = −∞, then it is enough to apply Theorem 1.3(ii) for ĝ (recall that in that

case γ = lÃ(g) = lA(f) = 0). On the other hand, if inf Ã = 0, then we may apply

Theorem 1.3(i) for ĝ
∣∣
R+

to conclude that g(x) = x +
∫ +∞

0 u(t) sgn(t − x) dt for

each x ∈ Ã and some integrable function u : R+ → [0, 1]. So, if w : R → [0, 1] is
equal to 0 on (−∞, 0) and coincides with u on R+, then w is integrable and

(2.13) g(x) = |x| +

∫ +∞

−∞

w(t) sgn(t) sgn(t− x) dt

for x ∈ Ã. Thus we have shown that in both the cases g has an extension of the
form (2.13). And, what is important,

(2.14)

∫ 0

−∞

w(t) dt = 0 if inf Ã = 0.

Now for n ≥ 1 put bn = max(Ã∩ [0, n]) and an = min(Ã∩ [−n, 0]). Observe that

the sequence (bn)n tends to +∞ and so does (−an)n if inf Ã 6= 0.
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Let n > m ≥ 1 and x ∈ Fm. Note that x ∈ SX(B ∪Kn, ex) and hence

(2.15) distd(x, Fn) ≤ distd(SX(B ∪Kn, ex), SX(B ∪Kn, f)).

Further, the proof of (U4) shows that

(2.16) distd(SX(B ∪Kn, ex), SX(B ∪Kn, f)) = ‖ex

∣∣
B∪Kn

− f
∣∣
B∪Kn

‖.

Since x ∈ Fm, so x ∈ SX(B, f) and therefore ex

∣∣
B

= f
∣∣
B

. Thus ‖ex

∣∣
B∪Kn

−

f
∣∣
B∪Kn

‖ = ‖ex

∣∣
Kn

− f
∣∣
Kn

‖. This, combined with (2.15) and (2.16), yields

(2.17) distd(x, Fn) ≤ ‖ex

∣∣
Kn

− f
∣∣
Kn

‖.

Now put h = ex ◦ ψ−1 ∈ E(Ã). Observe that

(2.18) h(x) = g(x) for x ∈ Ã ∩ [−m,m],

because x ∈ SX(Km, f), and

(2.19) ‖ex

∣∣
Kn

− f
∣∣
Kn

‖ ≤ ‖h− g‖.

We shall show that

(2.20) |h(x) − g(x)| ≤ 2

∫ +∞

−∞

w(t) dt− 2

∫ bm

am

w(t) dt (x ∈ Ã).

Let x ∈ Ã. By (2.18), we may assume that |x| > m and then sup{
∣∣g(x) − |x −

y|
∣∣ : y ∈ Ã∩ [−m,m]} ≤ g(x), h(x) ≤ inf{g(z)+ |x− z| : z ∈ Ã∩ [−m,m]}. First

assume that x > m. Substituting y = am and z = bm, we conclude that

|h(x) − g(x)| ≤ g(bm) + |x− bm| −
∣∣g(am) − |x− am|

∣∣.

Since am ≤ 0 ≤ bm ≤ m < x and thanks to (2.13), we have

|h(x) − g(x)| ≤ g(am) + g(bm) + am − bm = 2

∫ +∞

−∞

w(t) dt− 2

∫ bm

am

w(t) dt,

which proves the inequality (2.20). The case of x < −m is similar (substitute
y = bm and z = am).

Now (2.17), (2.19) and (2.20) ensure us that

distd(Fm, Fn) ≤ 2

∫ +∞

−∞

w(t) dt− 2

∫ bm

am

w(t) dt.

But the right-hand side expression tends to 0 if m→ +∞. Indeed, if inf Ã = −∞,
then limn→+∞ an = − limn→+∞ bn = −∞, while if inf Ã = 0, then, by (2.14),

this expression is equal to 2
∫ +∞

0
w(t) dt− 2

∫ bm

0
w(t) dt, which tends to 0 as well.

So, (Fn)n is a fundamental sequence and therefore there is a nonempty and closed
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subset F of X such that limn→+∞ distd(Fn, F ) = 0. By (2.12), F =
⋂∞

n=1 Fn,
which simply implies that F ⊂ SX(A ∪B, f). �

We end the paper with the following

Question. Does the assertion of Proposition 2.17 remain true if we replace
the assumption that A is isometrically embeddable in R by A has the collinearity

property?
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pp. 323–330.

[11] Kirk W., Sims B., Eds., Introduction to hyperconvex spaces, in Handbook of Metric Fixed
Point Theory, Chapter 13, Kluwer Academic Publishers, Dordrecht, 2001.

[12] Melleray J. On the geometry of Urysohn’s universal metric space, Topology Appl. 154

(2007), 384–403.
[13] Melleray J., Some geometric and dynamical properties of the Urysohn space, Topology

Appl. 155 (2008), no. 14, 1531–1560.
[14] Pestov V. Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phe-

nomenon, University Lecture Series 40, AMS, Providence, RI, 2006.
[15] Urysohn P.S. Sur un espace métrique universel , Bull. Sci. Math. 51 (1927), 43–64, 74–96.
[16] Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Com-

ment. Math. Univ. Carolin. 31 (1990), no. 1, 181–182.
[17] Uspenskij V.V., The Urysohn universal metric space is homeomorphic to a Hilbert space,

Topology Appl. 139 (2004), no. 1–3, 145–149.
[18] Uspenskij V.V., On subgroups of minimal topological groups, Topology Appl. 155 (2008),

1580–1606.

Jagiellonian University, Institute of Mathematics, ul.  Lojasiewicza 6, 30-348

Kraków, Poland

Email: piotr.niemiec@uj.edu.pl

(Received March 18, 2009, revised May 15, 2009)


