FC-modules with an application to cotorsion pairs

Yonghua Guo

Abstract. Let R be a ring. A left R-module M is called an FC-module if $M^+ = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is a flat right R-module. In this paper, some homological properties of FC-modules are given. Let n be a nonnegative integer and \mathcal{FC}_n the class of all left R-modules M such that the flat dimension of M^+ is less than or equal to n. It is shown that $({}^{\perp}(\mathcal{FC}_n^{\perp}), \mathcal{FC}_n^{\perp})$ is a complete cotorsion pair and if R is a ring such that $\operatorname{fd}((_RR)^+) \leq n$ and \mathcal{FC}_n is closed under direct sums, then $(\mathcal{FC}_n, \mathcal{FC}_n^{\perp})$ is a perfect cotorsion pair. In particular, some known results are obtained as corollaries.

Keywords: character modules, flat modules, cotorsion pairs

Classification: 16D40, 16D80, 16E99

1. Introduction

Throughout this note, R is an associative ring with identity and all modules are unitary. For an R-module M, the character module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is denoted by M^+ . The left R-module category is denoted by $_R\mathcal{M}$. The projective (resp., injective, flat) dimension of M is denoted by $\operatorname{pd}(M)$ (resp., $\operatorname{id}(M)$, $\operatorname{fd}(M)$). The symbol \mathcal{P}_n (resp., $\mathcal{I}_n, \mathcal{F}_n$) stands for the class of all left R-modules with projective (resp., injective, flat) dimension less than or equal to a fixed nonnegative integer n.

Let \mathcal{C} be a class of R-modules and M an R-module. A homomorphism ϕ : $M \to F$ with $F \in \mathcal{C}$ is called a \mathcal{C} -preenvelope of M [9] if for any homomorphism $f: M \to F'$ where $F' \in \mathcal{C}$, there is a homomorphism $g: F \to F'$ such that $g\phi = f$. A \mathcal{C} -preenvelope $\phi: M \to F$ is said to be a \mathcal{C} -envelope if every endomorphism $g: F \to F$ such that $g\phi = \phi$ is an isomorphism. Following [9, Definition 7.1.6], a monomorphism $\alpha: M \to C$ with $C \in \mathcal{C}$ is said to be a special \mathcal{C} -preenvelope of M if $\operatorname{coker}(\alpha) \in {}^{\perp}\mathcal{C}$. Dually we have the definitions of a (special) \mathcal{C} -precover and a \mathcal{C} -cover. Special \mathcal{C} -preenvelopes (resp. special \mathcal{C} -precovers) are obviously \mathcal{C} preenvelopes (resp., \mathcal{C} -precovers). If every R-module has a \mathcal{C} -(pre)envelope (resp., \mathcal{C} -(pre)cover), we say that \mathcal{C} is (pre)enveloping (resp., (pre)covering).

A pair $(\mathcal{F}, \mathcal{C})$ of classes of *R*-modules is called a *cotorsion pair* (or *cotorsion the*ory) [9, 12] if $\mathcal{F}^{\perp} = \mathcal{C}$ and ${}^{\perp}\mathcal{C} = \mathcal{F}$, where $\mathcal{F}^{\perp} = \{C : \operatorname{Ext}^{1}_{R}(F, C) = 0 \text{ for all } F \in \mathcal{F}\}$, and ${}^{\perp}\mathcal{C} = \{F : \operatorname{Ext}^{1}_{R}(F, C) = 0 \text{ for all } C \in \mathcal{C}\}$. A cotorsion pair $(\mathcal{F}, \mathcal{C})$

This research was partially supported by NSFC (No. 10771096) and National Science Foundation of Jiangsu Province of China (No. 2008365).

is called *complete* (resp., *perfect*) provided that every *R*-module has a special C-preenvelope and a special \mathcal{F} -precover (resp., a C-envelope and an \mathcal{F} -cover).

In what follows, we write wD(R) for the weak dimension of the ring R. Recall that a left R-module M is called FP-injective (or absolutely pure) [18] if $\operatorname{Ext}^{1}_{R}(N, M) = 0$ for all finitely presented left R-modules N. A ring R is called right IF-ring [14] if every injective right R-module is flat.

For unexplained concepts and notations, we refer the reader to [1], [9].

2. Some results on FC-modules

Following Ramamurthi [16] we call an *R*-module M an FC-module if M^+ is a flat *R*-module on the opposite side.

Let $\mathcal{FI} = \{M \mid M \text{ is an FP-injective left } R\text{-module}\}\$ and $\mathcal{FC}_n = \{M \mid M \text{ is a left } R\text{-modules with } \mathrm{fd}(M^+) \leq n\}$, thus $\mathcal{FC}_0 = \{M \in {}_R\mathcal{M} \mid M \text{ is an FC-module}\}$.

We note that if M is an FC-module then M is FP-injective (Proposition 2.1).

Proposition 2.1. Let *M* be a left *R*-module. Consider the following statements:

- (1) M is an FC-module;
- (2) $M^+ \twoheadrightarrow S^+$ is a flat precover for every submodule S of M;
- (3) there exists a pure exact sequence $0 \to M \to N \to L \to 0$ with $N \in \mathcal{FC}_0$; (4) M is ED injection
- (4) M is FP-injective.

Then $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Rightarrow (4)$. And $(4) \Rightarrow (3)$ holds in case R is a left coherent ring.

PROOF: $(1) \Rightarrow (3)$ and $(2) \Rightarrow (1)$ are trivial.

 $(1) \Rightarrow (2)$ For a flat right *R*-module *F*, $(F \otimes_R M)^+ \to (F \otimes_R S)^+ \to 0$ is exact, equivalently, $\operatorname{Hom}_R(F, M^+) \to \operatorname{Hom}_R(F, S^+) \to 0$ is exact. So $M^+ \twoheadrightarrow S^+$ is a flat precover.

 $(3) \Rightarrow (1)$ Let $0 \to M \to N \to L \to 0$ be a pure exact sequence with $N \in \mathcal{FC}_0$. $0 \to L^+ \to N^+ \to M^+ \to 0$ is split by [11, Theorem 3.1]. Thus M^+ is flat since N^+ is flat.

 $(1) \Rightarrow (4)$ Since $0 \rightarrow M \rightarrow M^{++}$ is a pure embedding and M^{++} is injective, M is FP-injective by [18, Proposition 2.6].

If R is left coherent, then $(4) \Rightarrow (1)$ follows from [4, Theorem 1].

Remark 2.2. Given an exact sequence $F \xrightarrow{f} N \longrightarrow 0$ with F flat, in general, $f: F \longrightarrow N$ need not be a flat precover. For example, $\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \longrightarrow 0$ is exact, and $\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2$ is not a flat precover.

It is not true in general that a submodule of an FC_n -module is an FC_n -module. However, we have the following proposition.

Proposition 2.3. Let R be a ring. If S is a pure submodule of a right FC_n -module M, then S and M/S are FC_n -modules.

PROOF: Since S is a pure submodule of $M, 0 \to (M/S)^+ \to M^+ \to S^+ \to 0$ is a split exact sequence by [11, Theorem 3.1]. Hence $\operatorname{fd}(S^+) \leq n$ and $\operatorname{fd}((M/S)^+) \leq n$. Let \mathcal{C} be a class of modules. \mathcal{C} is called *coresolving* [12, Definition 2.2.8(ii)], provided that \mathcal{C} is closed under extensions, $\mathcal{I}_0 \subset \mathcal{C}$ and $C \in \mathcal{C}$ whenever $0 \to A \to B \to C \to 0$ is a short exact sequence such that $A, B \in \mathcal{C}$.

Theorem 2.4. Let R be a ring. Then the following are equivalent:

- (1) R is left coherent;
- (2) \mathcal{FI} is coresolving;
- (3) \mathcal{FC}_0 is coresolving;
- (4) $\mathcal{I}_0 \subseteq \mathcal{FC}_0$.

PROOF: Since \mathcal{FI} is closed under extensions and $\mathcal{I}_0 \subseteq \mathcal{FI}$, (1) \Leftrightarrow (2) follows from [6, Theorem 1.5].

 $(1) \Rightarrow (3)$ By [4, Theorem 1], $\mathcal{FC}_0 = \mathcal{FI}$ since R is left coherent. Therefore \mathcal{FC}_0 is coresolving by (2).

 $(3) \Rightarrow (4)$ is clear.

 $(4) \Rightarrow (1)$ It is enough to prove $\mathcal{FC}_0 = \mathcal{FI}$ by [4, Theorem 1]. By Proposition 2.1, we have $\mathcal{FC}_0 \subseteq \mathcal{FI}$. For any $F \in \mathcal{FI}$, there is a pure short exact sequence $0 \to F \to E \to C \to 0$ with E injective. Hence $F \in \mathcal{FC}_0$ by Proposition 2.1. It follows that $\mathcal{FC}_0 = \mathcal{FI}$, as desired.

Remark 2.5. If R is not a left coherent ring, then there exists an injective right R-module M such that M is not an FC-module by Theorem 2.4.

Corollary 2.6. *R* is left coherent if and only if every left *R*-module has a monomorphic \mathcal{FC}_0 -preenvelope.

PROOF: If R is left coherent, then $\mathcal{FI} = \mathcal{FC}_0$. By [10, Corollary 1.4], every left R-module has a monomorphic \mathcal{FC}_0 -preenvelope. On the other hand, if every left R-module has a monomorphic \mathcal{FC}_0 -preenvelope, then every injective left R-module is an FC-module. Hence, R is left coherent by Theorem 2.4.

Proposition 2.7. Let R be a ring. Then the following are equivalent:

- (1) R is a right IF-ring; (2) $\mathcal{F}_0 \subseteq \mathcal{FC}_0$;
- (3) $\mathcal{P}_0 \subseteq \mathcal{FC}_0$.

PROOF: (1) \Rightarrow (2) Let F be a flat left R-module. Since F^+ is injective as a right R-module, F^+ is flat and hence F is an FC-module.

 $(2) \Rightarrow (3)$ is trivial.

 $(3) \Rightarrow (1)$ follows from [5, Theorem 1(4)].

Remark 2.8. The conditions in Proposition 2.7 are equivalent to $\mathcal{F}_n \subseteq \mathcal{FC}_0$ by [7, Theorem 3.5] for every positive integer n.

Y. Guo

Corollary 2.9. Let R be a ring. If R is a two-sided IF-ring, then R is two-sided coherent. Moreover, commutative IF-rings are coherent.

A coherent ring need not be an IF-ring. \mathbb{Z} is not an IF-ring since \mathbb{Q}/\mathbb{Z} is injective (divisible) but not flat ($\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z} = 0$). It is an open question whether a right IF-ring is left coherent [14, P442]. The next theorem gives a partial answer to this question.

Theorem 2.10. Let R is a right IF-ring. If $fd(E^{++}) < \infty$ for every injective left R-module E, then R is left coherent.

PROOF: Let *E* be an injective left *R*-module. Note that $id(E^{+++}) = fd(E^{++}) < \infty$ by hypothesis, and so E^{+++} is flat by [5, Proposition 4]. Since E^+ is a pure submodule of E^{+++} , E^+ is flat. Thus *R* is left coherent by Theorem 2.4.

Proposition 2.11. The following are equivalent for a commutative ring *R*:

- (1) R is an IF-ring;
- (2) M is flat if and only if M is an FC-module;
- (3) $\mathcal{F}_0 = \mathcal{FC}_n$ for any integer $n \ge 0$.

PROOF: It follows from Proposition 2.7 and the proof of Theorem 2.10. \Box

Remark 2.12. If R is a coherent and self-injective commutative ring, then R is an IF-ring by Proposition 2.7. According to above propositions, in this ring, an R-module is flat if and only if it is FP-injective. Hence [3, Theorem 12] allows us to get examples of rings over which every finitely presented module has an FP-injective envelope but not every module has an FP-injective envelope.

Proposition 2.13. The following are equivalent for a ring R:

- (1) R is von Neumann regular;
- (2) every left R-module is an FC-module;
- (3) M^+ is an FC-module for every pure injective right R-module M.

PROOF: $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are trivial.

(3) \Rightarrow (2) For any left *R*-module *N*, *N*⁺ is pure injective right *R*-module. Therefore *N*⁺⁺ is an FC-module. Since *N* is a pure submodule of *N*⁺⁺, *N* is an FC-module by Proposition 2.1.

 $(2) \Rightarrow (1)$ For any left *R*-module *M*, let $f : F \to M$ be a flat cover of *M*. Then F^+ is injective and the exact sequence $0 \to M^+ \to F^+ \to (\operatorname{Ker}(f))^+ \to 0$ is split since $(\operatorname{Ker}(f))^+$ is flat by assumption. Thus M^+ is injective, and hence *M* is flat.

Proposition 2.14. Let R a commutative ring such that $wD(R_{\mathfrak{p}}) < \infty$ for each prime ideal \mathfrak{p} of R. The following are equivalent:

- (1) R is von Neumann regular;
- (2) every *R*-module has a monomorphic flat envelope;
- (3) R is an IF-ring such that very R-module has an \mathcal{FC}_0 -envelope.

PROOF: $(1) \Rightarrow (2)$ is trivial.

 $(2) \Rightarrow (1)$ If every *R*-module has a monomorphic flat envelope, then *R* is an IF-ring. Now by using [2, Theorem 9], we get that $wD(R) \leq 2$. Hence *R* is von Neumann regular by [5, Proposition 5].

 $(1) \Rightarrow (3)$ follows from Proposition 2.13.

 $(3) \Rightarrow (2)$ By Proposition 2.11, every *R*-module has a flat envelope. Since every injective module is flat, the flat envelope must be monomorphic.

3. An application to cotorsion pairs

We begin with the following

Proposition 3.1. For a family $\{F_i\}$ of right *R*-modules, if ΠF_i is a right FC_n -module, then $\oplus F_i$ is a right FC_n -module.

PROOF: The result follows since $\oplus F_i$ is a pure submodule of $\prod F_i$.

Remark 3.2. By [17, Corollary 3.5(c)], if a class \mathcal{G} of modules over a ring is closed under pure submodules, then \mathcal{G} is preenveloping if and only if it is closed under direct products. If a class \mathcal{F} is closed under pure quotient modules, then \mathcal{F} is precovering if and only if it is covering if and only if \mathcal{F} is closed under direct sums by [13, Theorem 2.5]. From Proposition 3.1, we know that if \mathcal{FC}_n is preenveloping, then \mathcal{FC}_n is covering. Moreover, \mathcal{FC}_n is a Kaplansky class by [13, Proposition 3.2].

Lemma 3.3. \mathcal{FC}_n is covering if and only if \mathcal{FC}_n is closed under direct sums.

PROOF: This follows from Proposition 2.3 and [13, Theorem 2.5].

Corollary 3.4. For a left coherent ring R, every left R-module has an FP-injective cover.

Theorem 3.5. $(^{\perp}(\mathcal{FC}_n^{\perp}), \mathcal{FC}_n^{\perp})$ is a complete cotorsion pair. Moreover, if R is a ring such that $\operatorname{fd}((_RR)^+) \leq n$ and \mathcal{FC}_n is closed under direct sums, then $(\mathcal{FC}_n, \mathcal{FC}_n^{\perp})$ is a perfect cotorsion pair.

PROOF: Let E be a right R-module with $\operatorname{fd}(E^+) \leq n$. By [9, Lemma 5.3.12], if $\operatorname{Card} R \leq \aleph_{\beta}$, then, for each $x \in E$, there is a pure submodule $S \subseteq E$ with $x \in S$ such that $\operatorname{Card} S \leq \aleph_{\beta}$ (simply let N = Rx and $f = \operatorname{id}_N$ in the lemma). By Proposition 2.3, $S \in \mathcal{FC}_n$ and $E/S \in \mathcal{FC}_n$. So we can write E as a union of a continuous chain $(E_{\alpha})_{\alpha < \lambda}$ of pure submodules of E such that $\operatorname{Card} E_0 \leq$ \aleph_{β} and $\operatorname{Card}(E_{\alpha+1}/E_{\alpha}) \leq \aleph_{\beta}$ whenever $\alpha + 1 < \lambda$. Moreover $E_0 \in \mathcal{FC}_n$ and $E_{\alpha+1}/E_{\alpha} \in \mathcal{FC}_n$. By [9, Theorem 7.3.4], we see that if C is a right R-module such that $\operatorname{Ext}^1(E_0, C) = 0$ and $\operatorname{Ext}^1(E_{\alpha+1}/E_{\alpha}, C) = 0$ whenever $\alpha + 1 < \lambda$, then $\operatorname{Ext}^1(E, C) = 0$. So if Y is a set of representatives of all right R-modules $G \in \mathcal{FC}_n$ with $\operatorname{Card} G \leq \aleph_{\beta}$, then $C \in \mathcal{FC}_n^{\perp}$ if and only if $\operatorname{Ext}^1(G, C) = 0$ for all $G \in Y$. But then this just says that the given cotorsion pair $(^{\perp}(\mathcal{FC}_n^{\perp}), \mathcal{FC}_n^{\perp})$ is cogenerated by the set Y. Hence $(^{\perp}(\mathcal{FC}_n^{\perp}), \mathcal{FC}_n^{\perp})$ is a complete cotorsion pair by [8, Theorem 10].

 \square

Y. Guo

By Proposition 2.3 and hypothesis, \mathcal{FC}_n is closed under direct limits. Since $R \in \mathcal{FC}_n$, we may assume $R \in Y$. So the class $^{\perp}(\mathcal{FC}_n^{\perp})$ consists of direct summands of Y-filtered modules by [12, Corollary 3.2.4]. By an induction on the length of the Y-filtration, we get that $^{\perp}(\mathcal{FC}_n^{\perp}) = \mathcal{FC}_n$. Therefore, $(\mathcal{FC}_n, \mathcal{FC}_n^{\perp})$ is perfect by [12, Corollary 2.3.7].

Corollary 3.6 ([15, Theorem 3.4(1)]). For a left coherent ring R with FP-id($_{R}R$) $\leq n$, $(\mathcal{FI}_{n}, \mathcal{FI}_{n}^{\perp})$ is a perfect cotorsion pair.

Corollary 3.7 ([12, Theorem 4.1.13]). Let R be a left noetherian ring. Then $\mathfrak{C}_n = (^{\perp}(\mathcal{I}_n^{\perp}), \mathcal{I}_n^{\perp})$ is a complete cotorsion pair. Moreover, if $\mathrm{id}(_RR) \leq n$, then $\mathfrak{C}_n = (\mathcal{I}_n, \mathcal{I}_n^{\perp})$ is a perfect cotorsion pair.

Let C be a class of modules. Then C is *definable* [12, Definition 3.1.9] provided that C is closed under direct limits, direct products and pure submodules.

Theorem 3.8. If R is a right IF-ring such that \mathcal{FC}_n is closed under direct products, then \mathcal{FC}_n is definable and $(\mathcal{FC}_n, \mathcal{FC}_n^{\perp})$ is a perfect cotorsion pair.

PROOF: By hypothesis and Proposition 3.1, \mathcal{FC}_n is closed under direct sums. Thus \mathcal{FC}_n is definable by Proposition 2.3 and $(\mathcal{FC}_n, \mathcal{FC}_n^{\perp})$ is a perfect cotorsion pair by Theorem 3.5.

Remark 3.9. If R is a ring such that $(\mathcal{FC}_0, \mathcal{FC}_0^{\perp})$ is a cotorsion pair, then R is a right IF-ring.

Acknowledgments. The author wishes to express his gratitude to the referee for his/her careful reading and comments which improve the presentation of this article. Also the author would like to thank Professor Nanqing Ding for his constant encouragement.

References

- Anderson F.W., Fuller K.R., *Rings and Categories of Modules*, 2nd ed., Graduate Texts in Mathematics, 13, Springer, New York, 1992.
- [2] Asensio Mayor J., Martinez Hernandez J., Flat envelopes in commutative rings, Israel J. Math. 62 (1988), no. 1, 123–128.
- [3] Asensio Mayor J., Martinez Hernandez J., Monomorphic flat envelopes in commutative rings, Arch. Math. (Basel) 54 (1990), no. 5, 430–435.
- [4] Cheatham T.J., Stone D.R., Flat and projective character modules, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175–177.
- [5] Colby R.R., Rings which have flat injective modules, J. Algebra 35 (1975), 239-252.
- [6] Couchot F., Exemples d'anneaux auto-fp-injectifs, Comm. Algebra 10 (1982), no. 4, 339– 360.
- [7] Ding N.Q., Chen J.L., The flat dimensions of injective modules, Manuscripta Math. 78 (1993), 165–177.
- [8] Eklof P.C., Trlifaj J., How to make Ext vanish, Bull. London Math. Soc. 33 (2001), no. 1, 41–51.
- [9] Enochs E.E., Jenda O.M.G., *Relative Homological Algebra*, de Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000.

- [10] Enochs E.E., Jenda O.M.G., Xu J., The existence of envelopes, Rend. Sem. Mat. Univ. Padova 90 (1990), 45–51.
- [11] Fieldhouse D.J., Character modules, Comment. Math. Helv. 46 (1971), 274-276.
- [12] Göbel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Mathematics, 41, de Gruyter, Berlin, 2006.
- [13] Holm H., Jøgensen P., Covers, preenvelopes, and purity, Illinois J. Math. 52 (2008), 691– 703.
- [14] Jain S., Flat and FP-injectivity, Proc. Amer. Math. Soc. 41 (1973), no. 2, 437-442.
- [15] Mao L.X., Ding N.Q., Envelopes and covers by modules of finite FP-injective and flat dimensions, Comm. Algebra 35 (2007), 835–849.
- [16] Ramamurthi V.S., On modules with projective character modules, Math. Japon. 23 (1978), 181–184.
- [17] Rada J., Saorín M., Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), 899–912.
- [18] Stenström B., Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323–329.

DEPARTMENT OF MATHEMATICS, GUANGXI NORMAL UNIVERSITY, GUILIN, GUANGXI 541004, CHINA

and

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, CHINA *Email:* gyonghua@yahoo.com

(Received June 10, 2009, revised October 30, 2009)