Fixed point property on symmetric products of chainable continua

Alejandro Illanes

Abstract. We prove that the third symmetric product of a chainable continuum has the fixed point property.

Keywords: chainable continuum, fixed point property, symmetric product, universal map

Classification: Primary 54B20; Secondary 54F15

1. Introduction

A continuum is a nondegenerate compact connected metric space. Given a continuum X and a positive integer n, the nth-symmetric product of X is defined as

 $F_n(X) = \{A \subset X : A \text{ is nonempty and } A \text{ has at most } n \text{ points}\}.$

The hyperspace $F_n(X)$ is considered with the Hausdorff metric H.

Given $\varepsilon > 0$, an ε -chain in the continuum X is a finite family of open subsets U_1, \ldots, U_n of X such that diameter $(U_i) < \varepsilon$, for each $i \in \{1, \ldots, n\}$, and $U_i \cap U_j \neq \emptyset$ if and only if $|i-j| \leq 1$. A continuum X is said to be chainable provided that, for each $\varepsilon > 0$, there exists an ε -chain which covers X.

A map is a continuous function. A continuum X has the fixed point property, provided that, for each map $f: X \to X$ there exists $p \in X$ such that f(p) = p. A map between continua $f: X \to Y$ is said to be universal, provided that for each map $g: X \to Y$, there exists a point $p \in X$ such that g(p) = f(p). The induced map $f_n: F_n(X) \to F_n(Y)$ is the map defined as $f_n(A) = f(A)$ (the image of A under f).

Symmetric products were introduced by K. Borsuk and S. Ulam in [2], where they asked if every symmetric product of a continuum with the fixed point property must have the fixed point property. J. Oledzki ([8]) constructed a 2-dimensional continuum to answer this question in the negative. On the other hand, the author and G. Higuera have recently constructed a continuum X such that X does not have, but $F_2(X)$ has the fixed point property.

In [6, Exercise 22.25], it is asked to show that the second symmetric product of a chainable continuum has the fixed point property and in [7, p. 77] it is asked if, for each $n \geq 3$, the *n*-th symmetric product of a chainable continuum has the

fixed point property. Some other related questions on this topic can be found in [5] and [7]. A detailed study on the hyperspaces $F_n([0,1])$ can be found in [1].

Let \mathbb{N} be the set of positive integers. Given $n \in \mathbb{N}$, consider the following property Q(n) that may be or may not be true:

Q(n): For every map $f:[0,1] \to [0,1]$ such that f(0)=0 and f(1)=1, the induced map $f_n:F_n([0,1]) \to F_n([0,1])$ is universal.

In this paper we prove the following.

Theorem 3. Let $n \in \mathbb{N}$. If Q(n) holds, then the n-th symmetric product of every chainable continuum has the fixed point property.

Theorem 4. Q(3) holds.

Corollary 5. The third symmetric product of each chainable continuum has the fixed point property.

2. An auxiliary construction

Given $r, n \in \mathbb{N}$, we consider the uniform partition P_r of [0, 1] given by

$$P_r = \{\frac{k}{r} : k \in \{0, \dots, r\}\}.$$

Define $F_n(P_r)=\{A\in F_n([0,1]):A\subset P_r\}$. That is, $F_n(P_r)$ is the family of nonempty subsets of P_r with at most n points. Given $A,B\in F_n(P_r)$, notice that the inequality $H(A,B)\leq \frac{1}{r}$ means that, for each element $\frac{k}{r}\in A$ either $\frac{k}{r},\frac{k+1}{r}$ or $\frac{k-1}{r}$ belongs to B and for each element $\frac{j}{r}\in B$ either $\frac{j}{r},\frac{j+1}{r}$ or $\frac{j-1}{r}$ belongs to A. Let

$$\Delta = \{ (A_1, \dots, A_s, t_1, \dots, t_s) : s \in \mathbb{N}, A_1, \dots, A_s \in F_n(P_r), t_1, \dots, t_s \in [0, 1],$$

$$t_1 + \dots + t_s = 1 \text{ and } H(A_i, A_j) \le \frac{1}{r} \text{ for every } i, j \in \{1, \dots, s\} \}.$$

Given an element $(A_1, ..., A_s, t_1, ..., t_s) \in \Delta$, where $s \ge 2$, and $i \in \{1, ..., s\}$, we define $A(i) = (A_1, ..., A_{i-1}, A_{i+1}, ..., A_s)$ and $t(i) = (t_1, ..., t_{i-1}, t_{i+1}, ..., t_s)$.

In this section we define a convex structure on the set Δ and we prove some of its properties.

Given a nonempty subset B of P_r , a block of B is a nonempty subset D of B such that, if $x, y \in D$ and $x \leq y$, then $[x, y] \cap P_r \subset D$ and D is maximal with this property. We can see the blocks in the following way: let G be the graph in which the points of B are the vertices and the edges are the pairs of adjacent (those at distance $\frac{1}{r}$) points of B. Then a block of B are those vertices that belong to a component of G.

Note that the blocks of B are pairwise disjoint and every point of B belongs to a block of B, so the blocks of B form a partition of B. Given $x \in B$, let C(x,B) be the block of B containing x and let m(x,B) (resp., M(x,B)) be the

minimum (resp., maximum) of C(x, B). Hence $C(x, B) = [m(x, B), M(x, B)] \cap P_r$ and $B = \bigcup \{C(x, B) : x \in B\}.$

Lemma 1. Let $s \in \mathbb{N}$ and $A_1, \ldots, A_s \in F_n(P_r)$ be such that $H(A_i, A_j) \leq \frac{1}{r}$ for every $i, j \in \{1, ..., s\}$. Let $A = A_1 \cup ... \cup A_s$ and let D be a block of A. Then

- (a) $D \cap A_i \neq \emptyset$ for each $i \in \{1, ..., s\}$,
- (b) diameter(D) $\leq \frac{3n}{r}$, (c) $\{C(a,A): a \in A_i\} = \{C(a,A): a \in A_j\}$, for every $i, j \in \{1, ..., s\}$.

PROOF: (a) Let $i \in \{1, ..., s\}$. Let $p \in D$. Then there exists $j \in \{1, ..., s\}$ such that $p \in A_j$. Since $H(A_i, A_j) \leq \frac{1}{r}$, there exists $q \in A_i$ such that $|p-q| \leq \frac{1}{r}$, we may assume that $p \leq q$. Then $q \in \{p, p + \frac{1}{r}\}$. Thus $[p, q] \cap P_r = \{p, q\} \subset A$. Since D is a block of $A, q \in D$. We have shown that $D \cap A_i \neq \emptyset$ and that, for each $p \in D$ there exists $q \in A_i$ such that $|p - q| \leq \frac{1}{r}$.

- (b) Let $m = \min D$ and $M = \max D$. Then $D = [m, M] \cap P_r$ and diameter (D) = (D)M-m. If $M-m>\frac{3n}{r}$, then we consider the intervals $[m-\frac{1}{r},m+\frac{1}{r}],[m+\frac{2}{r},m+\frac{4}{r}]$ $[m+\frac{5}{r},m+\frac{7}{r}],\ldots,[m-\frac{3n-1}{r},m+\frac{3n+1}{r}].$ Since $m+\frac{3n}{r}< M$ and all the elements $m+\frac{3\cdot 0}{r},m+\frac{3\cdot 1}{r},\ldots,m+\frac{3\cdot n}{r}$ belong to D, by the fact we proved in the paragraph above, each one of these intervals contains an element of A_1 . This is a contradiction since A_1 has at most n elements. Therefore, $M-m \leq \frac{3n}{r}$.
- (c) Given $i \in \{1, ..., s\}$, by (a) each block of A contains an element of A_i . Then $\{C(a,A): a \in A_i\}$ coincides with the set of blocks of A. This proves (c).

Lemma 2 is devoted to define a convex structure on Δ .

Lemma 2. There exists a function $\sigma: \Delta \to F_n([0,1])$ such that for every $(A_1, \ldots, A_s, t_1, \ldots, t_s) \in \Delta$, the following properties hold:

- (a) the function defined by $\sigma(A_1, \ldots, A_s, u_1, \ldots, u_s)$ from the set $\{(u_1, \ldots, u_s)\}$ $\in [0,1]^s : u_1 + \cdots + u_s = 1$ into $F_n([0,1])$ is continuous,
- (b) for each $A \in F_n(P_r)$, $\sigma(A, 1) = A$,
- (c) if $i \in \{1, ..., s\}$ and $t_i = 0$, then $\sigma(A_1, ..., A_s, t_1, ..., t_s) = \sigma(A(i), t(i))$,
- (d) if $\alpha: \{1,\ldots,s\} \to \{1,\ldots,s\}$ is bijective, then $\sigma(A_1,\ldots,A_s,t_1,\ldots,t_s) =$ $\sigma(A_{\alpha(1)},\ldots,A_{\alpha(s)},t_{\alpha(1)},\ldots,t_{\alpha(s)})$ (generalized commutativity),
- (e) if $A = A_1 \cup ... \cup A_s$ and $i \in \{1,...,s\}$, then $\sigma(A_1,...,A_s,t_1,...,t_s)$ is contained in the union of, and intersects each one of the intervals of the family $\{[m(a, A), M(a, A)] : a \in A_i\} = \{[m(a, A), M(a, A)] : a \in A\},\$
- (f) if $i \in \{1, ..., s\}$, then $H(A_i, \sigma(A_1, ..., A_s, t_1, ..., t_s)) \leq \frac{3n}{r}$,
- (g) if $A_1 = A_2$, then $\sigma(A_1, \dots, A_s, t_1, \dots, t_s) = \sigma(A_2, \dots, A_s, t_1 + t_2, t_3, \dots, t_s)$, that is, if some A_i coincide, then they can be grouped.

PROOF: We define σ by induction on s.

If $(A, 1) \in \Delta$, define

$$(2.1) \sigma(A,1) = A.$$

Clearly, properties (a)–(g) hold for the case s=1.

If $(A_1, A_2, t_1, t_2) \in \Delta$ and $A_1 = A_2$, let

(2.2)
$$\sigma(A_1, A_2, t_1, t_2) = A_1.$$

If $(A_1, A_2, t_1, t_2) \in \Delta$ and $A_1 \neq A_2$, let $A = A_1 \cup A_2$ and

(2.3)
$$\sigma(A_1, A_2, t_1, t_2) = \begin{cases} \{(1 - 2t_1)a + 2t_1 m(a, A) : a \in A_2\}, & \text{if } t_1 \in [0, \frac{1}{2}], \\ \{(2t_1 - 1)a + (2 - 2t_1)m(a, A) : a \in A_1\} & \text{if } t_1 \in [\frac{1}{2}, 1]. \end{cases}$$

We check that properties (a)-(g) hold for s=2.

In (2.3), if $t_1 = 0$, then $t_2 = 1$ and $\sigma(A_1, A_2, t_1, t_2) = A_2$; if $t_1 = 1$, then $t_2 = 0$ and $\sigma(A_1, A_2, t_1, t_2) = A_1$. These equalities, (2.1) and (2.2) imply property (c). If $t_1 = \frac{1}{2}$, the first line in the definition gives the set $\{m(a, A) : a \in A_2\}$ and the second line gives $\{m(a, A) : a \in A_1\}$. By Lemma 1(c), both sets coincide, so σ is well defined. Clearly, σ depends continuously on (t_1, t_2) .

Properties (d) and (g) follow from the equality $t_1 + t_2 = 1$.

Now we prove (e). In the case that $A_1 = A_2$, we have that $A = A_1 = \sigma(A_1, A_2, t_1, t_2)$. Then $\bigcup \{ [m(a, A), M(a, A)] : a \in A_1 \} \cap P_r = A$. Hence (e) holds. So, we take $(A_1, A_2, t_1, t_2) \in \Delta$ with $A_1 \neq A_2$, let $A = A_1 \cup A_2$ and take $i \in \{1, 2\}$. By Lemma 1(c), we may assume that i = 1.

Let $B = \sigma(A_1, A_2, t_1, t_2)$. Take $p \in B$. If $p = (1 - 2t_1)a + 2t_1m(a, A)$, for some $a \in A_2$, by Lemma 1(c), there exists a point $x \in A_1$ such that C(x, A) = C(a, A). Thus p belongs to the interval [m(x, A), M(x, A)]. In the case that $p = (2t_1 - 1)b + (2 - 2t_1)m(b, A)$, for some $b \in A_1$, we obtain that $p \in [m(b, A), M(b, A)]$. We have shown that $B \subset \bigcup \{[m(a, A), M(a, A)] : a \in A_1\}$. Now, take $w \in A_1$. By Lemma 1(a), there exists a point $y \in A_2 \cap C(w, A)$. Thus C(w, A) = C(y, A). If $t_1 \in [0, \frac{1}{2}]$, then the point $u = (1 - 2t_1)y + 2t_1m(y, A)$ belongs to $B \cap [m(w, A), M(w, A)]$, and if $t_1 \in [\frac{1}{2}, 1]$, then the point $v = (2t_1 - 1)w + (2 - 2t_1)m(w, A)$ belongs to $B \cap [m(w, A), M(w, A)]$. Hence B intersect each one of the intervals of the form [m(w, A), M(w, A)], where $w \in A$. This completes the proof of (e).

Finally, we prove that (e) implies (f). Let $i \in \{1,2\}$ and $A = A_1 \cup A_2$. Given a point $x \in \sigma(A_1, A_2, t_1, t_2)$, by (e), there exists $a \in A_i$ such that $x \in [m(a,A), M(a,A)]$. By Lemma 1(b), $|x-a| \leq \frac{3n}{r}$. Similarly, for each point $b \in A_i$, there exists $y \in \sigma(A_1, A_2, t_1, t_2)$ such that $|b-y| \leq \frac{3n}{r}$. Therefore, $H(A_i, \sigma(A_1, A_2, t_1, t_2)) \leq \frac{3n}{r}$.

Now, suppose that $s \geq 2$, suppose also that we have defined σ for all the elements in Δ with length at most 2s and that properties (a)–(g) are satisfied for these elements. We define σ for elements of Δ with length 2(s+1) in the following way. Take $(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1}) \in \Delta$. Let $A = A_1 \cup \ldots \cup A_{s+1}$. We consider two cases.

Case 1. The set $\{A_1, \ldots, A_{s+1}\}$ has less than s+1 elements.

In this case let $\{A_1, \ldots, A_{s+1}\} = \{B_1, \ldots, B_k\}$, where $k \leq s$ and $B_i \neq B_j$, if $i \neq j$. For each $j \in \{1, \ldots, k\}$, let u_j be the sum of all the elements t_i such that $i \in \{1, \ldots, s+1\}$ and $A_i = B_j$. Then define

(2.4)
$$\sigma(A_1, \dots, A_{s+1}, t_1, \dots, t_{s+1}) = \sigma(B_1, \dots, B_k, u_1 \dots, u_k).$$

Notice that $\sigma(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1})$ is well defined since we are assuming that the property (d) holds for the integer k.

Case 2. The sets A_1, \ldots, A_{s+1} are pairwise different.

For each $j \in \{1, ..., s+1\}$, let $R_j = \bigcup \{A_k : k \in \{1, ..., s+1\} - \{j\}\}$. Fix $i \in \{1, ..., s+1\}$ such that $t_i = \min\{t_j : j \in \{1, ..., s+1\}\}$. Let $u = (s+1)t_i$. Then $0 \le u \le 1$.

Subcase 2.1. u < 1.

For each $j \in \{1, \ldots, s+1\}$, let $x_j = \frac{1}{1-u}(t_j - t_i)$. Since $1 - t_j = t_1 + \cdots + t_{j-1} + t_{j+1} + \cdots + t_{s+1} \ge st_i$, we have $u - t_i \le 1 - t_j$ and $t_j - t_i \le 1 - u$. Hence $0 \le x_j \le 1$. Notice that $x_i = 0$ and $x_1 + \cdots + x_{s+1} = \frac{1}{1-u}(1 - (s+1)t_i) = 1$.

Given $w \in \sigma(A(i), x(i))$, by property (e) for the integer s, there exists $a_w \in R_i \subset A$ with the property that $w \in [m(a_w, R_i), M(a_w, R_i)]$. Then define

$$(2.5) \ \sigma(A_1,\ldots,A_{s+1},t_1,\ldots,t_{s+1}) = \{(1-u)w + um(a_w,A) : w \in \sigma(A(i),x(i))\}.$$

In order to see that σ is well defined for this case, we need to show that it depends neither on the choice of i nor on the choice of the numbers a_w . So, suppose that $1 \le i \le k \le s+1$ and $t_i = t_k = \min\{t_i : j \in \{1, ..., s+1\}\}$. Then $u = (s+1)t_i = (s+1)t_k$ and the points x_1, \ldots, x_{s+1} do not depend on the choice of i or k. Notice that $x_i = x_k = 0$. In the case that i < k, we define $W = (A_1, ..., A_{i-1}, A_{i+1}, ..., A_{k-1}, A_{k+1}, ..., A_{s+1})$ and we define Y = $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{s+1})$, by property (c) for the integer s, $\sigma(A(i),x(i)) = \sigma(W,Y) = \sigma(A(k),x(k))$. And in the case that i=k, clearly, $\sigma(A(i), x(i)) = \sigma(A(k), x(k))$. Given $w \in \sigma(A(i), x(i))$, let $a_w \in R_i$ and $b_w \in R_k$ be such that $w \in [m(a_w, R_i), M(a_w, R_i)]$ and $w \in [m(b_w, R_k), M(b_w, R_k)]$. We may assume that $m(a_w, R_i) \leq m(b_w, R_k)$. Then $m(b_w, R_k)$ belongs to both sets $[m(a_w, R_i), M(a_w, R_i)] \cap A$ and $[m(b_w, R_k), M(b_w, R_k)] \cap A$ which are contained in A. Moreover, since $R_i, R_k \subset A$, each one of the sets $[m(a_w, R_i), M(a_w, R_i)] \cap A$ and $[m(b_w, R_k), M(b_w, R_k)] \cap A$ is contained in block of A and they intersect each other. Hence, we have that they are contained in the same block of A. Thus $C(a_w, A) = C(b_w, A)$ and $m(a_w, A) = m(b_w, A)$. This implies that the definition of $\sigma(A_1,\ldots,A_{s+1},t_1,\ldots,t_{s+1})$ ((2.5)) does not depend either on the choice of i nor on the choice of the elements a_w which were taken for each $w \in \sigma(A(i), x(i))$. Thus $\sigma(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1})$ is well defined.

Subcase 2.2. u = 1.

In this case $t_i = \frac{1}{s+1}$. By the minimality of t_i and the fact that $t_1 + \ldots + t_{s+1} = 1$, we have $(t_1, \ldots, t_{s+1}) = (\frac{1}{s+1}, \ldots, \frac{1}{s+1})$. Then define

(2.6)
$$\sigma(A_1, \dots, A_{s+1}, t_1, \dots, t_{s+1}) = \{m(a, A) : a \in A_1\}.$$

This completes the definition of σ .

We show that $\sigma(A_1,\ldots,A_{s+1},t_1,\ldots,t_{s+1})$ depends continuously on the variables (t_1,\ldots,t_{s+1}) . Fix elements $A_1,\ldots,A_{s+1}\in F_n(P_r)$ such that $H(A_i,A_j)\leq \frac{1}{r}$ for every $i,j\in\{1,\ldots,s+1\}$. In the case that $\{A_1,\ldots,A_{s+1}\}$ has less than s+1 elements, the continuity follows from the property (a) in the induction hypothesis. Thus suppose that the sets A_1,\ldots,A_{s+1} are pairwise different. Notice that the number $u=(s+1)\min\{t_j:j\in\{1,\ldots,s+1\}\}$ depends continuously on (t_1,\ldots,t_{s+1}) . Let $\{(t_1^{(k)},\ldots,t_{s+1}^{(k)})\}_{k=1}^{\infty}$ be a sequence of elements of $[0,1]^{s+1}$ such that $t_1^{(k)}+\cdots+t_{s+1}^{(k)}=1$ and $\lim(t_1^{(k)},\ldots,t_{s+1}^{(k)})=(t_1^{(0)},\ldots,t_{s+1}^{(0)})$. We may assume that there exists $i\in\{1,\ldots,s+1\}$ such that $t_i^{(k)}=\min\{t_j^{(k)}:j\in\{1,\ldots,s+1\}\}$, for every $k\in\mathbb{N}$. Thus $t_i^{(0)}=\min\{t_j^{(0)}:j\in\{1,\ldots,s+1\}\}$.

First we consider the case that $u_0 = (s+1)t_i^{(0)} < 1$. Since the numbers $u_k = (s+1)\min\{t_j^{(k)}: j \in \{1, \dots, s+1\}\}$ tend to u_0 , we may assume that $u_k < 1$ for every $k \in \mathbb{N}$. Thus we apply definition (2.5) to compute $\sigma(A_1, \dots, A_{s+1}, t_1^{(k)}, \dots, t_{s+1}^{(k)})$ and $\sigma(A_1, \dots, A_{s+1}, t_1^{(0)}, \dots, t_{s+1}^{(0)})$. For each $k \in \mathbb{N} \cup \{0\}$ and each $j \in \{1, \dots, s+1\}$, let $x_j^{(k)} = \frac{1}{1-u_k}(t_j^{(k)} - t_i^{(k)})$. Then $\lim x_j^{(k)} = x_j^{(0)}$. By the property (a) for the integer s, we have that $\lim \sigma(A(i), x^{(k)}(i)) = \sigma(A(i), x^{(0)}(i))$. Thus, we assume that $H(\sigma(A(i), x^{(k)}(i)), \sigma(A(i), x^{(0)}(i))) < \frac{1}{r}$, for each $k \in \mathbb{N}$.

Given $w \in \sigma(A(i), x^{(0)}(i))$ and $k \in \mathbb{N}$, let w_k be the element of $\sigma(A(i), x^{(k)}(i))$ which is closest to w, then $\lim w_k = w$ and $|w - w_k| < \frac{1}{r}$. Let $a_w, a_{w_k} \in R_i$ be such that $w \in [m(a_w, R_i), M(a_w, R_i)]$ and $w_k \in [m(a_{w_k}, R_i), M(a_{w_k}, R_i)]$. Since the elements $m(a_w, R_i), M(a_w, R_i), m(a_{w_k}, R_i), M(a_{w_k}, R_i)$ belong to P_r , if $[m(a_w, R_i), M(a_w, R_i)] \cap [m(a_{w_k}, R_i), M(a_{w_k}, R_i)] = \emptyset$, the distance from each element of $[m(a_w, R_i), M(a_w, R_i)]$ to each element of $[m(a_{w_k}, R_i), M(a_{w_k}, R_i)]$ is at least $\frac{1}{r}$. We have shown that $[m(a_w, R_i), M(a_w, R_i)] \cap [m(a_{w_k}, R_i), M(a_{w_k}, R_i)] \neq \emptyset$. Since both sets $[m(a_w, R_i), M(a_w, R_i)] \cap P_r$ and $[m(a_{w_k}, R_i), M(a_{w_k}, R_i)] \cap P_r$ are blocks of R_i , they must coincide. Thus $C(a_w, R_i) = C(a_{w_k}, R_i), m(a_w, R_i) = m(a_{w_k}, R_i)$, $C(a_w, A) = C(a_{w_k}, A)$ and $C(a_w, A) = m(a_{w_k}, A)$. Thus

$$|(1 - u_0)w + u_0m(a_w, A) - ((1 - u_k)w_k + u_km(a_{w_k}, A))|$$

$$< |(1 - u_0)w - (1 - u_k)w_k| + |u_0 - u_k|.$$

Similarly, for each $w_k \in \sigma(A(i), x^{(k)}(i))$, there exists $w \in \sigma(A(i), x^{(0)}(i))$ such that

$$|(1 - u_0)w + u_0 m(a_w, A) - ((1 - u_k)w_k + u_k m(a_{w_k}, A))|$$

$$\leq |(1 - u_0)w - (1 - u_k)w_k| + |u_0 - u_k|.$$

Since $\lim |(1 - u_0)w - (1 - u_k)w_k| + |u_0 - u_k| = 0$, we conclude that

$$\lim \sigma(A_1, \dots, A_{s+1}, t_1^{(k)}, \dots, t_{s+1}^{(k)}) = \sigma(A_1, \dots, A_{s+1}, t_1^{(0)}, \dots, t_{s+1}^{(0)}).$$

Now consider the case that $u_0 = (s+1)t_i^{(0)} = 1$. In this case $(t_1^{(0)}, \dots, t_{s+1}^{(0)}) = (\frac{1}{s+1}, \dots, \frac{1}{s+1})$. Thus $\lim(t_1^{(k)}, \dots, t_{s+1}^{(k)}) = (\frac{1}{s+1}, \dots, \frac{1}{s+1})$ and $u_k = (s+1)t_i^{(k)}$ tends to 1. Since the formula (2.6) is clearly continuous in the variables t_1, \dots, t_{s+1} , we may assume that $u_k < 1$ for each $k \in \mathbb{N}$. So we compute $\sigma(A_1, \dots, A_{s+1}, t_1^{(k)}, \dots, t_{s+1}^{(k)})$ with (2.5). For each $k \in \mathbb{N}$ and for each $j \in \{1, \dots, s+1\}$, let $x_j^{(k)} = \frac{1}{1-u_k}(t_j^{(k)} - t_i^{(k)})$. Fix $i_0 \in \{1, \dots, s+1\} - \{i\}$.

Let $k \in \mathbb{N}$. For each $w \in \sigma(A(i), x^{(k)}(i))$, fix $a_w \in R_i$ such that $w \in [m(a_w, R_i), M(a_w, R_i)]$. We show that

$$\{m(a_w, A) : w \in \sigma(A(i), x^{(k)}(i))\} = \{m(a, A) : a \in A_{i_0}\}.$$

Given $w \in \sigma(A(i), x^{(k)}(i))$, $a_w \in A_l$ for some $l \in \{1, \ldots, s+1\}$. By Lemma 1(c), there exists $a \in A_{i_0}$ such that $m(a_w, A) = m(a, A)$. On the other hand, given $a \in A_{i_0}$, by property (e) for the integer s, there exists an element $w \in \sigma(A(i), x^{(k)}(i)) \cap [m(a, R_i), M(a, R_i)]$. Since $a \in R_i$ and a and w are in the block $[m(a, R_i), M(a, R_i)] \cap R_i$ of R_i , we obtain that $m(a, R_i) = m(a_w, R_i)$. Since $[m(a, R_i), M(a, R_i)] \cap R_i$ is contained in a block of A, we conclude that $m(a, A) = m(a_w, A)$. This completes the proof of (*).

Notice that $\sigma(A_1, \ldots, A_{s+1}, t_1^{(k)}, \ldots, t_{s+1}^{(k)})$ is computed by using (2.5). So,

$$\lim \sigma(A_1, \dots, A_{s+1}, t_1^{(k)}, \dots, t_{s+1}^{(k)})$$

$$= \lim \{ (1 - u_k) w + u_k m(a_w, A) : w \in \sigma(A(i), x^{(k)}(i)) \}$$

$$= \{ m(a, A) : a \in A_{i_0} \} \text{ (by property (*))}$$

$$= \{ m(a, A) : a \in A_1 \} \text{ (by Lemma 1(c))}$$

$$= \sigma(A_1, \dots, A_{s+1}, t_1^{(0)}, \dots, t_{s+1}^{(0)}) \text{ (by (2.6))}.$$

This completes the proof that $\sigma(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1})$ depends continuously on (t_1, \ldots, t_{s+1}) . Therefore, property (a) holds for the integer s+1.

Property (b) holds by definition (2.1).

We prove property (c) for s+1. Let $(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1}) \in \Delta$ and $A = A_1 \cup \ldots \cup A_{s+1}$. Suppose that $l \in \{1, \ldots, s+1\}$ is such that $t_l = 0$. We consider two cases.

Case 1. The set $\{A_1, \ldots, A_{s+1}\}$ has less than s+1 elements.

Let $\{A_1, \ldots, A_{s+1}\} = \{B_1, \ldots, B_k\}$, where $k \leq s$ and $B_i \neq B_j$, if $i \neq j$. For each $j \in \{1, \ldots, k\}$, let u_j be the sum of all the elements t_i such that $i \in \{1, \ldots, s+1\}$ and $A_i = B_j$. We may assume that $A_l = B_k$. We consider two subcases.

Subcase 1.1. $A_i \neq B_k$ for each $j \neq l$.

In this subcase $u_k = 0$. Using (2.4) and property (c) for k and properties (d) and (g) for s, we obtain

$$\sigma(A_1, \dots, A_{s+1}, t_1, \dots, t_{s+1}) = \sigma(B_1, \dots, B_k, u_1, \dots, u_k)$$

= $\sigma(B_1, \dots, B_{k-1}, u_1, \dots, u_{k-1}) = \sigma(A(l), t(l)).$

Subcase 1.2. There exists $j \neq l$ such that $A_j = A_l = B_k$.

We have $\{A_1, \ldots, A_{s+1}\} = \{B_1, \ldots, B_k\} = \{A_1, \ldots, A_{l-1}, A_{l+1}, \ldots, A_{s+1}\}, u_k$ is the sum of all the elements t_i such that $i \in \{1, \ldots, s+1\}$ and $A_i = B_k$ and u_k is also the sum of all the elements t_i such that $i \in \{1, \ldots, s+1\} - \{l\}$ and $A_i = B_k$. Using (2.4) and properties (d) and (g) for s, we obtain that

$$\sigma(A_1, \dots, A_{s+1}, t_1, \dots, t_{s+1}) = \sigma(B_1, \dots, B_k, u_1, \dots, u_k) = \sigma(A(l), t(l)).$$

Case 2. The sets A_1, \ldots, A_{s+1} are pairwise different.

In this case, $t_l = \min\{t_j : j \in \{1, ..., s+1\}\}$ and $u = (s+1)t_l = 0 < 1$. For each $j \in \{1, ..., s+1\}$, $x_j = \frac{1}{1-u}(t_j - t_l) = t_j$. Applying (2.5), we have $\sigma(A_1, ..., A_{s+1}, t_1, ..., t_{s+1}) = \sigma(A(l), x(l)) = \sigma(A(l), t(l))$. This completes the proof of (c).

We prove (d). Let $(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1}) \in \Delta$, let $\alpha: \{1, \ldots, s+1\} \to \{1, \ldots, s+1\}$ be a permutation and $A = A_1 \cup \ldots \cup A_{s+1} = A_{\alpha(1)} \cup \ldots \cup A_{\alpha(s+1)}$. In the case that the set $\{A_1, \ldots, A_{s+1}\}$ has less than s+1 elements, property (d) follows easily from property (d) applied to the number s. Thus suppose that the sets A_1, \ldots, A_{s+1} are pairwise different. Let $i \in \{1, \ldots, s+1\}$ be such that $t_{\alpha(i)} = \min\{t_j: j \in \{1, \ldots, s+1\}\} = \min\{t_{\alpha(j)}: j \in \{1, \ldots, s+1\}\}$. Let $u = (s+1)t_{\alpha(i)}$. First, we analyze the case that u < 1. Given $j \in \{1, \ldots, s+1\}$, let $x_j = \frac{1}{1-u}(t_j - t_{\alpha(i)})$ and $x'_j = \frac{1}{1-u}(t_{\alpha(j)} - t_{\alpha(i)}) = x_{\alpha(j)}$. Since

$$\{1, \ldots, \alpha(i) - 1, \alpha(i) + 1, \ldots, s + 1\} = \{\alpha(1), \ldots, \alpha(i-1), \alpha(i+1), \ldots, \alpha(s+1)\},\$$

by property (d) for s, the set

$$\sigma(A(\alpha(i)), x(\alpha(i))) = \sigma(A_1, \dots, A_{\alpha(i)-1}, A_{\alpha(i)+1}, \dots, A_{s+1}, x_1, \dots, x_{\alpha(i)-1}, x_{\alpha(i)+1}, \dots, x_{s+1})$$

is the set

$$\sigma(A_{\alpha(1)}, \dots, A_{\alpha(i-1)}, A_{\alpha(i+1)}, \dots, A_{\alpha(s+1)}, x_{\alpha(1)}, \dots, x_{\alpha(i-1)}, x_{\alpha(i+1)}, \dots, x_{\alpha(s+1)}).$$

Given $w \in \sigma(A(\alpha(i)), x(\alpha(i)))$, let

$$a_w \in R_{\alpha(i)} = A_1 \cup \ldots \cup A_{\alpha(i)-1} \cup A_{\alpha(i)+1} \cup \ldots \cup A_{s+1}$$
$$= A_{\alpha(1)} \cup \ldots \cup A_{\alpha(i-1)} \cup A_{\alpha(i+1)} \cup \ldots \cup A_{\alpha(s+1)}$$

be such that $w \in [m(a_w, R_{\alpha(i)}), M(a_w, R_{\alpha(i)})]$. By (2.5), we have

$$\sigma(A_1, \dots, A_{s+1}, t_1, \dots, t_{s+1}) = \{(1-u)w + um(a_w, A) : w \in \sigma(A(\alpha(i)), x(\alpha(i)))\}$$

and this set is also equal to $\sigma(A_{\alpha(1)}, \ldots, A_{\alpha(s+1)}, t_{\alpha(1)}, \ldots, t_{\alpha(s+1)}).$

On the other hand, in the case that u = 1, $t_j = \frac{1}{s+1} = t_{\alpha(j)}$ for each $j \in \{1, \ldots, s+1\}$. In this case we apply (2.6) and Lemma 1(c) to obtain that

$$\sigma(A_1, \dots, A_{s+1}, t_1, \dots, t_{s+1}) = \{m(a, A) : a \in A_1\}$$

= $\{m(a, A) : a \in A_{\alpha(1)}\} = \sigma(A_{\alpha(1)}, \dots, A_{\alpha(s+1)}, t_{\alpha(1)}, \dots, t_{\alpha(s+1)}).$

This completes the proof of (d).

We prove (e). Let $(A_1, ..., A_{s+1}, t_1, ..., t_{s+1}) \in \Delta, A = A_1 \cup ... \cup A_{s+1}$ and $i_0 \in \{1, \ldots, s+1\}$. In the case that the set $\{A_1, \ldots, A_{s+1}\}$ has less than s+1 elements, property (e) follows easily from (2.4) and property (e) in the induction hypothesis. Thus suppose that the sets A_1, \ldots, A_{s+1} are pairwise different. Let $i \in \{1, ..., s+1\}$ be such that $t_i = \min\{t_i : j \in \{1, ..., s+1\}\}$. By Lemma 1(c), the intervals described in property (e) are independent of the choice of i_0 , thus we may assume that $i \neq i_0$. Let $u = (s+1)t_i$. In the case that u = 1, property (e) follows immediatly from (2.6) and Lemma 1(a). So, suppose that u < 1. For each $j \in \{1, \ldots, s+1\}$, let $x_j = \frac{1}{1-u}(t_j - t_i)$. Notice that (see (2.5)) each element p of $\sigma(A_1,\ldots,A_{s+1},t_1,\ldots,t_{s+1})$ is a convex combination of an element $w \in [m(a_w, R_i), M(a_w, R_i)] \subset [m(a_w, A), M(a_w, A)]$ and $m(a_w, A)$. Thus $p \in [m(a_w, A), M(a_w, A)]$. Since $a_w \in R_i \subset A$, this interval is of the form [m(a,A), M(a,A)] for some $a \in A_{i_0}$ (by Lemma 1(c)). Thus $\sigma(A_1,\ldots,A_{s+1},t_1,\ldots,t_{s+1})$ is contained in the union of these intervals. In order to see that $\sigma(A_1,\ldots,A_{s+1},t_1,\ldots,t_{s+1})$ intersects each one of these intervals, let $x \in A_{i_0} \subset R_i$. By property (e) in the induction hypothesis, there exists an element $w \in \sigma(A(i), x(i)) \cap [m(x, R_i), M(x, R_i)]$. Then the element (1-u)w + um(x, A) belongs to the set $\sigma(A_1, \ldots, A_{s+1}, t_1, \ldots, t_{s+1}) \cap [m(x, A), M(x, A)]$. This completes the proof of (e).

The proof that (e) implies (f) is similar to the proof where we showed the same implication for s = 2. Thus (f) also holds.

Finally, property (g) follows from definition (2.4) and properties (d) and (g) in the induction hypothesis. This completes the proof of the lemma.

3. Main results

PROOF OF THEOREM 3: Let $n \in \mathbb{N}$. Suppose that Q(n) holds. Let X be a chainable continuum and suppose that there exists a map $g: F_n(X) \to F_n(X)$ without fixed points. Thus there exists $\varepsilon > 0$ such that $H(A, g(A)) > (3n+4)\varepsilon$ for each $A \in F_n(X)$. Let $\mathfrak{F} = \{U_0, \ldots, U_r\}$ be an ε -chain such that r > 1, $X = U_0 \cup \ldots \cup U_r$, there exists a point $p_0 \in U_0 - \operatorname{cl}_X(U_1 \cup \ldots \cup U_r)$, there exists a point $q_0 \in U_r - \operatorname{cl}_X(U_0 \cup \ldots \cup U_{r-1})$ and $\operatorname{cl}_X(U_i) \cap \operatorname{cl}_X(U_j) \neq \emptyset$ if and only if $|i-j| \leq 1$.

Let d be a metric for X. For two nonempty closed subsets A and B of X, let $\operatorname{dist}(A,B)=\min\{d(a,b):a\in A\text{ and }b\in B\}$. Let $\eta=\min\{\operatorname{dist}(\operatorname{cl}_X(U_i),\operatorname{cl}_X(U_j)):i,j\in\{0,\ldots,r\}\text{ and }i+1< j\}$. Since g is uniformly continuous, there is $\delta>0$ with $\delta<\frac{1}{4}\min\{\operatorname{dist}(\{p_0\},\operatorname{cl}_X(U_1\cup\ldots\cup U_r)),\operatorname{dist}(\{q_0\},\operatorname{cl}_X(U_0\cup\ldots\cup U_{r-1})),\frac{1}{9r}\}$ and, if $A,B\in F_n(X)$ and $H(A,B)<\delta$, then $H(g(A),g(B))<\eta$.

Let \mathfrak{G} be a $(\min\{\frac{\delta}{4}, \frac{\delta d(p_0, q_0)}{3}\})$ -chain covering X such that \mathfrak{G} refines \mathfrak{F} . Let \mathfrak{H} be a subchain of \mathfrak{G} such that $p_0 \in V_0 - (V_1 \cup \ldots \cup V_m)$, $q_0 \in V_m - (V_0 \cup \ldots \cup V_{m-1})$. Then $m \geq 3$ and $\frac{1}{m+1} < \delta$. For each $i \in \{0, \ldots, m\}$, choose an element $j(i) \in \{0, \ldots, r\}$ such that $V_i \subset U_{j(i)}$ and choose a point $p_i \in V_i - (\bigcup\{V_k : k \in \{0, \ldots, m\} - \{i\}\})$, where $p_m = q_0$. Notice that, if $i, j \in \{0, \ldots, m\}$ and $|i - j| \leq 1$, then p_i, p_j belong to a set of the form V_k , so $d(p_i, p_j) < \frac{\delta}{4}$. We use the points p_0, \ldots, p_m to define a function $P: F_n(P_m) \to F_n(X)$ as follows.

For each $A = \{\frac{a_1}{m}, \dots, \frac{a_s}{m}\} \in F_n(P_m)$, where $a_1, \dots, a_s \in \{0, \dots, m\}$, let

(3.1)
$$P(A) = \{p_{a_1}, \dots, p_{a_s}\} \in F_n(X).$$

Notice that, if $A, B \in F_n(P_m)$ and $H(A, B) \leq \frac{1}{m}$, then $H(P(A), P(B)) < \frac{\delta}{4}$. For each $x \in g(P(A))$, choose an index $e(x) \in \{0, \ldots, r\}$ such that

$$(3.2) x \in U_{e(x)}.$$

Define $\varphi_0: F_n(P_m) \to F_n(P_r)$ by

(3.3)
$$\varphi_0(A) = \{ \frac{e(x)}{r} : x \in g(P(A)) \}.$$

We are going to extend φ_0 to a continuous function φ from $F_n([0,1])$ into itself. It is known that $F_n([0,1])$ is an AR ([3, Korollar 2]). However, we need an extension of φ_0 which will have a property derived from property (f) of Lemma 2, so we use the convex structure defined in the previous section and a Dugundji-type construction.

Define, for each $E \in F_n(P_m)$,

(3.4)
$$\varphi(E) = \varphi_0(E).$$

Given $A \in F_n([0,1]) - F_n(P_m)$, define

(3.5)
$$\mathfrak{B}(A) = \left\{ E \in F_n([0,1]) : H(A, E) \\ < \min\left\{ \frac{1}{2} (\min\{H(A, G) : G \in F_n(P_m)\}), \frac{1}{16m} \right\} \right\}.$$

Let $\mathfrak{W} = \{\mathfrak{W}_{\alpha} : \alpha \in \Lambda\}$ be a locally finite refinement of the open cover $\{\mathfrak{B}(A) : A \in F_n([0,1]) - F_n(P_m)\}$, of the set $F_n([0,1]) - F_n(P_m)$. Let $\mathfrak{P} = \{\Psi_{\alpha} : \alpha \in \Lambda\}$ be a partition of the unity subordinated to \mathfrak{W} .

For each $\alpha \in \Lambda$, choose an element $C_{\alpha} \in \mathfrak{W}_{\alpha}$, also choose an element $A_{\alpha} \in F_n(P_m)$ such that

$$(3.6) H(C_{\alpha}, A_{\alpha}) = \min\{H(C_{\alpha}, A) : A \in F_n(P_m)\}.$$

Since for each element t of [0,1] there exists an element s of P_m such that $|t-s| \leq \frac{1}{2m}$, we have that $H(C_\alpha, A_\alpha) \leq \frac{1}{2m}$.

Given $E \in F_n([0,1]) - F_n(P_m)$, let $\alpha_1(E), \ldots, \alpha_{k_E}(E)$ be the elements in Λ such that $\Psi_{\alpha}(E) > 0$. Then define

(3.7)
$$\varphi(E) = \sigma(\varphi_0(A_{\alpha_1(E)}), \dots, \varphi_0(A_{\alpha_{k_E}(E)}), \Psi_{\alpha_1(E)}(E), \dots, \Psi_{\alpha_{k_E}(E)}(E)),$$

where φ_0 was previously defined on $F_n(P_m)$ and σ is as in Lemma 2.

We check that φ is well defined. In order to do this, we need to verify that

$$(\varphi_0(A_{\alpha_1(E)}), \dots, \varphi_0(A_{\alpha_{k-1}(E)}), \Psi_{\alpha_1(E)}(E), \dots, \Psi_{\alpha_{k-1}(E)}(E)) \in \Delta,$$

that is, we need to show that, if $i, j \in \{1, \dots, k_E\}$, then $H(\varphi_0(A_{\alpha_i(E)}), \varphi_0(A_{\alpha_j(E)})) \leq \frac{1}{r}$. Since $\Psi_{\alpha_i(E)}(E) > 0$, there exists $D \in F_n([0,1]) - F_n(P_m)$ such that $E \in \mathfrak{W}_{\alpha_i(E)} \subset \mathfrak{B}(D)$. Since $C_{\alpha_i(E)} \in \mathfrak{W}_{\alpha_i(E)} \subset \mathfrak{B}(D)$, $H(E, C_{\alpha_i(E)}) < \frac{1}{4m}$ (see (3.5)). Thus $H(E, A_{\alpha_i(E)}) < \frac{3}{4m}$. Similarly, $H(E, A_{\alpha_j(E)}) < \frac{3}{4m}$. Hence, $H(A_{\alpha_i(E)}, A_{\alpha_j(E)}) < \frac{3}{2m}$. Since, for each two points $t, s \in P_m$, the inequality $|t-s| < \frac{3}{2m}$ implies $|t-s| \leq \frac{1}{m}$; and $A_{\alpha_i(E)}, A_{\alpha_j(E)} \subset P_m$, we obtain that $H(A_{\alpha_i(E)}, A_{\alpha_j(E)}) \leq \frac{1}{m}$. As we noticed after (3.1), this implies that $H(P(A_{\alpha_i(E)}), P(A_{\alpha_j(E)})) < \frac{\delta}{2}$. By the choice of δ , $H(g(P(A_{\alpha_i(E)})), g(P(A_{\alpha_j(E)}))) < \eta$. Let $u = \frac{e(x)}{r} \in \varphi_0(A_{\alpha_i(E)})$, with $x \in g(P(A_{\alpha_i(E)}))$. Then there exists $y \in g(P(A_{\alpha_j(E)}))$ such that $d(x, y) < \eta$. Since $x \in U_{e(x)}$ and $y \in U_{e(y)}$ (see (3.2)), by the choice of η , $|e(x) - e(y)| \leq 1$. Thus $v = \frac{e(y)}{r} \in \varphi_0(A_{\alpha_j(E)})$ and $|u-v| \leq \frac{1}{r}$. Similarly, for each $v \in \varphi_0(A_{\alpha_j(E)})$, there exists $u \in \varphi_0(A_{\alpha_i(E)})$ such that $|u-v| \leq \frac{1}{r}$. Therefore, $H(\varphi_0(A_{\alpha_i(E)}), \varphi_0(A_{\alpha_j(E)})) \leq \frac{1}{r}$. We have shown that

$$(\varphi_0(A_{\alpha_1(E)}), \dots, \varphi_0(A_{\alpha_{k_E}(E)}), \Psi_{\alpha_1(E)}(E), \dots, \Psi_{\alpha_{k_E}(E)}(E)) \in \Delta.$$

Combining this with property (d) of Lemma 2, we obtain that φ is well defined and it does not depend on the way we order the indexes $\alpha_1(E), \ldots, \alpha_{k_E}(E)$.

We see that φ is continuous. Let $E \in F_n([0,1]) - F_n(P_m)$. Let \mathfrak{U} be an open neighborhood of E in $F_n([0,1])$ such that $\mathfrak{U} \cap F_n(P_m) = \emptyset$ and \mathfrak{U} intersects only finitely many sets, $\mathfrak{W}_{\beta_1}, \ldots, \mathfrak{W}_{\beta_l}$, of the family \mathfrak{W} . Notice that for each $D \in \mathfrak{U}$, $\{\alpha_1(D), \ldots, \alpha_{k_D}(D)\} \subset \{\beta_1, \ldots, \beta_l\}$. By properties (c) and (d) of Lemma 2,

$$\varphi(D) = \sigma(\varphi_0(A_{\alpha_1(D)}), \dots, \varphi_0(A_{\alpha_{k_D}(D)}), \Psi_{\alpha_1(D)}(D), \dots, \Psi_{\alpha_{k_D}(D)}(D))$$
$$= \sigma(\varphi_0(A_{\beta_1}), \dots, \varphi_0(A_{\beta_l}), \Psi_{\beta_1}(D), \dots, \Psi_{\beta_l}(D)).$$

Hence, property (a) of Lemma 2 implies that φ is continuous on \mathfrak{U} . Therefore, φ is continuous at E for each $E \in F_n([0,1]) - F_n(P_m)$.

Now, take $E \in F_n(P_m)$. Let

$$\mathfrak{B} = \left\{ D \in F_n([0,1]) : H(D,E) < \frac{1}{16m} \right\}.$$

Given $D \in \mathfrak{B} - \{E\}$, $D \in F_n([0,1]) - F_n(P_m)$. If $i \in \{1,\ldots,k_D\}$, there exists $G \in F_n([0,1]) - F_n(P_m)$ such that $D \in \mathfrak{W}_{\alpha_i(D)} \subset \mathfrak{B}(G)$. Thus, by (3.5),

$$H(D,G) < \frac{1}{2}(\min\{H(G,L) : L \in F_n(P_m)\}) \le \frac{1}{2}(H(E,G))$$

$$\le \frac{1}{2}(H(E,D) + H(D,G)) < \frac{1}{32m} + \frac{1}{2}(H(D,G)).$$

Hence $H(D,G) < \frac{1}{16m}$, $H(E,G) < \frac{1}{8m}$ and $\min\{H(G,L) : L \in F_n(P_m)\} < \frac{1}{8m}$. Since $C_{\alpha_i(D)} \in \mathfrak{W}_{\alpha_i(D)}$, $H(C_{\alpha_i(D)},G) < \frac{1}{8m}$. Thus $H(E,C_{\alpha_i(D)}) \leq H(E,G) + H(G,C_{\alpha_i(D)}) < \frac{1}{4m}$. Therefore ((3.6)) $H(A_{\alpha_i(D)},C_{\alpha_i(D)}) < \frac{1}{4m}$. Hence $H(A_{\alpha_i(D)},E) < \frac{1}{2m}$. Since $A_{\alpha_i(D)}$ and E belong to $F_n(P_m)$, this implies that $A_{\alpha_i(D)} = E$. From (3.7), for each $D \in \mathfrak{B} - \{E\}$,

$$\varphi(D) = \sigma(\varphi_0(E), \dots, \varphi_0(E), \Psi_{\alpha_1(D)}(D), \dots, \Psi_{\alpha_{k_D}(D)}(D)) = \varphi_0(E)$$

(see properties (g) and (b) in Lemma 2). This implies that φ is continuous at E. This completes the proof that φ is continuous.

Define $f:[0,1] \to [0,1]$ as the piecewise linear extension of the function defined on P_m by

$$(3.8) f(\frac{i}{m}) = \frac{j(i)}{r}.$$

Since $p_0 \in U_0 - \operatorname{cl}_X(U_1 \cup \ldots \cup U_r)$ and $q_0 \in U_r - \operatorname{cl}_X(U_0 \cup \ldots \cup U_{r-1})$, f(0) = 0 and f(1) = 1. Let $f_n : F_n([0,1]) \to F_n([0,1])$ be the induced map. Given $i \in \{0,\ldots,m-1\}$, $V_i \subset U_{j(i)}$ and $V_{i+1} \subset U_{j(i+1)}$. Since $V_i \cap V_{i+1} \neq \emptyset$, $|j(i) - j(i+1)| \leq 1$. This proves that

$$|f(\frac{i}{m}) - f(\frac{i+1}{m})| \le \frac{1}{r}.$$

Since we are assuming that Q(n) is true, there exists an element $D \in F_n([0,1])$ such that $f_n(D) = \varphi(D)$.

We consider two cases.

Case 1. $D \notin F_n(P_m)$.

Let $D_0 = A_{\alpha_1(D)}$. By property (f) of Lemma 2 and (3.7), $H(\varphi_0(D_0), \varphi(D)) \leq$ $\frac{3n}{r}$. For each $x \in D$, choose $k(x) \in \{0, \dots, m-1\}$ such that $x \in \left[\frac{k(x)}{m}, \frac{k(x)+1}{m}\right]$. Let $D_1 = \{\frac{k(x)}{m} \in [0,1] : x \in D\}$ and $D_2 = \{\frac{k(x)+1}{m} \in [0,1] : x \in D\}$. Then $D_1, D_2 \in F_n(P_m)$ and $H(D,D_1), H(D,D_2) \le \frac{1}{m}$. Let $G \in F_n([0,1]) - F_n(P_m)$ be such that $\mathfrak{W}_{\alpha_1(D)} \subset \mathfrak{B}(G)$. Then H(D,G), $H(C_{\alpha_1(D)},G) < \frac{1}{16m}$. Thus $H(D_1,G) < \frac{9}{8m}$ and $H(A_{\alpha_1(D)},C_{\alpha_1(D)}) \leq H(D_1,C_{\alpha_1(D)}) < \frac{10}{8m}$. Hence $H(D_0,D_1) < \frac{20}{8m}$. Since $D_0, D_1 \in F_n(P_m), H(D_0, D_1) \leq \frac{2}{m}$. Given $\frac{i}{m} \in D_0$, there exists $\frac{j}{m} \in D_1$ such that $|\frac{i}{m} - \frac{j}{m}| \leq \frac{2}{m}$. By (**), $|f(\frac{i}{m}) - f(\frac{j}{m})| \leq \frac{2}{r}$. Similarly, Given $\frac{j}{m} \in D_1$, there exists $\frac{i}{m} \in D_0$ such that $|f(\frac{i}{m}) - f(\frac{j}{m})| \leq \frac{2}{r}$. Thus $H(f_n(D_0), f_n(D_1)) \leq \frac{2}{r}$. Given $x \in D$, since $x \in [\frac{k(x)}{m}, \frac{k(x)+1}{m}]$ and $|f(\frac{k(x)}{m}) - f(\frac{k(x)+1}{m})| \leq \frac{1}{r}$, we have that $|f(\frac{k(x)}{m}) - f(x)| \leq \frac{1}{r}$. This implies that $H(f_n(D), f_n(D_1)) \leq \frac{1}{r}$. Since $\varphi(D) = f_n(D),$

$$H(\varphi_0(D_0), f_n(D_0)) \le H(\varphi_0(D_0), \varphi(D)) + H(\varphi(D), f_n(D_1)) + H(f_n(D_1), f_n(D_0)) \le \frac{3n+3}{r}.$$

Thus $H(\varphi_0(D_0), f_n(D_0)) \leq \frac{3n+3}{r}$. Since $D_0 \in F_n(P_m)$, we can put $D_0 = \{\frac{a_1}{m}, \dots, \frac{a_s}{m}\}$. Then $f_n(D_0) = \{\frac{a_1}{m}, \dots, \frac{a_s}{m}\}$. $\{\frac{j(a_1)}{r},\ldots,\frac{j(a_s)}{r}\}$ (see (3.8)) and $P(D_0)=\{p_{a_1},\ldots,p_{a_s}\}$ (see (3.1)). Given $x\in$ $g(P(D_0)), \frac{e(x)}{r} \in \varphi_0(D_0)$ ((3.3)). So, there exists $v \in f_n(D_0)$ such that $\left|\frac{e(x)}{r} - v\right| \le c$ $\frac{3n+3}{r}$. Then there exists $i \in \{0,\ldots,s\}$ such that $v = f(\frac{a_i}{m}) = \frac{j(a_i)}{r}$ ((3.8)). Thus $|e(x)-j(a_i)| \leq 3n+3$. Recall that $x \in U_{e(x)}$ ((3.2)) and $p_{a_i} \in V_{a_i} \subset U_{j(a_i)}$. Hence $d(x, p_{a_i}) < (3n+4)\varepsilon$. We have shown that, for each $x \in g(P(D_0))$, there exists $p_{a_i} \in P(D_0)$ such that $d(x, p_{a_i}) < (3n+4)\varepsilon$. Similarly, for each $p_{a_i} \in P(D_0)$ there exists $x \in g(P(D_0))$ such that $d(x, p_{a_i}) < (3n+4)\varepsilon$. This proves that $H(P(D_0), g(P(D_0))) < (3n+4)\varepsilon$. Contrary to the choice of ε .

Case 2. $D \in F_n(P_m)$.

In this case, $H(\varphi_0(D), f_n(D)) = 0 \leq \frac{3n+3}{r}$. Thus we can repeat the argument in the paragraph above with D instead D_0 to obtain a contradiction.

We have obtained a contradiction from assuming that $F_n(X)$ does not have the fixed point property. Thus Theorem 3 is proved.

PROOF OF THEOREM 4: Let $\mathfrak{B} = \{A \in F_3([0,1]) : A \cap \{0,1\} \neq \emptyset\}$ and $\mathfrak{C} = \{A \in F_3([0,1]) : A \cap \{0,1\} \neq \emptyset\}$ $F_3([0,1]): \{0,1\} \subset A\}$. Using Theorem 6 in [2], it is easy to show that there exists a homeomorphism $h: F_3([0,1]) \to D^3$, where D^3 is the unit ball, centered at the

origin, in the Euclidean space \mathbb{R}^3 , such that $h(\mathfrak{B})$ is the unit sphere $S^2 \subset D^3$ and $h(\mathfrak{C})$ is the equator E which results of intersecting S^2 with the plane z = 0 in \mathbb{R}^3 .

Suppose that Q(3) does not hold, then there exists a map $f: [0,1] \to [0,1]$ such that f(0) = 0 and f(1) = 1, and there exists a map $g: F_3([0,1]) \to F_3([0,1])$ such that $g(A) \neq f_3(A)$ for each $A \in F_3([0,1])$, where f_3 is the induced map of f from $F_3([0,1])$ into itself.

Notice that $f_3(\mathfrak{B}) \subset \mathfrak{B}$ and $f_3(\mathfrak{C}) \subset \mathfrak{C}$. Let $G = h \circ g \circ h^{-1}$ and $F = h \circ f_3 \circ h^{-1}$. Then $G, F : D^3 \to D^3$, $F|S^2 : S^2 \to S^2$, and $G(p) \neq F(p)$ for each $p \in D^3$. Define $\varphi : D^3 \to S^2$ by $\varphi(p)$ is the only point in the intersection of S^2 and the convex ray which starts in G(p) and passes through F(p). Then φ is continuous and $\varphi(p) = F(p)$ for each $p \in S^2$.

Consider the map $K: S^2 \times [0,1] \to S^2$ given by $K(p,t) = \varphi(tp)$. Then, for each $p \in S^2$, K(p,1) = F(p) and $K(p,0) = \varphi(0)$. Thus $F|S^2$ is homotopic to a constant map.

Let $\lambda:[0,1]\times[0,1]\to[0,1]$ be given by $\lambda(x,t)=tx+(1-t)f(x)$. Then λ is continuous, $\lambda(0,t)=0$ and $\lambda(1,t)=1$ for each $t\in[0,1]$. Let $\Lambda:S^2\times[0,1]\to S^2$ be given by $\Lambda(p,t)=h(\lambda(h^{-1}(p)\times\{t\}))$. Then Λ is continuous, $\Lambda(p,0)=F(p)$ and $\lambda(p,1)=p$, for each $p\in S^2$. Thus $F|S^2$ is homotopic to the identity map defined on S^2 . This is impossible since S^2 is not contractible. Hence Q(3) holds and Theorem 4 is proved.

Question 6. Does Q(n) hold for each $n \geq 4$?

Acknowledgment. The author wishes to thank Professor Jorge M. Martínez-Montejano for useful discussions on the topic of this paper.

References

- Andersen R.S., Marjanović M.M., Schori R.M., Symmetric products and higher-dimensional dunce hats, Topology Proc. 18 (1993), 7–17.
- [2] Borsuk K., Ulam S., Symmetric products of topological spaces, Bull. Amer. Math. Soc. 37 (1931), 875–882.
- [3] Ganea T., Symmetrische Potenzen topologischer Räume, Math. Nachr. 11 (1954), 305–316.
- [4] Higuera G., Illanes A., Fixed point property on symmetric products, preprint.
- [5] Illanes A., Hyperspaces of continua, Open Problems in Topology II, Elliot Pearl (Ed.), pp. 279–288, Elsevier B.V., Amsterdam, 2007.
- [6] Illanes A., Nadler S.B., Jr., Hyperspaces, Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, Inc., New York, N.Y., 1999.
- [7] Nadler S.B., Jr., The fixed point property for continua, Aportaciones Matemáticas: Textos
 [Mathematical Contributions: Texts] 30. Sociedad Matemática Mexicana, México, 2005.
- [8] Oledski J., On symmetric products, Fund. Math. 131 (1988), 185–190.

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México, 04510, D.F. Mexico

Email: illanes@matem.unam.mx