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Symmetric difference on orthomodular

lattices and Z2-valued states

Milan Matoušek, Pavel Pták

Abstract. The investigation of orthocomplemented lattices with a symmetric dif-
ference initiated the following question: Which orthomodular lattice can be em-
bedded in an orthomodular lattice that allows for a symmetric difference ? In
this paper we present a necessary condition for such an embedding to exist. The
condition is expressed in terms of Z2-valued states and enables one, as a conse-
quence, to clarify the situation in the important case of the lattice of projections
in a Hilbert space.
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1. Introduction and preliminaries

In the paper [11] the author introduces algebras that can be viewed as “ortho-
modular lattices with a symmetric difference”. Their definition is as follows (the
standard definition of an orthocomplemented lattice can be found in [9], [10], [16],
etc.).

Definition 1.1. Let L = (X,∧,∨,⊥ , 0, 1,△), where (X,∧,∨,⊥ , 0, 1) is an or-
thocomplemented lattice and △ : X2 → X is a binary operation. Then L is said
to be an orthocomplemented difference lattice (abbr., an ODL) if the following
formulas hold in L:

(D1) x △ (y △ z) = (x △ y) △ z,
(D2) x △ 1 = x⊥, 1 △ x = x⊥,
(D3) x △ y ≤ x ∨ y.

Let us first formulate basic properties of ODLs as we shall use them in the
sequel (see also [11]). We shall adopt the convention that in writing a formula
with △ and ⊥, we give the preference to the operation ⊥ over the operation △.
Thus, for instance, x △ y⊥ means x △ (y⊥), etc.

Proposition 1.2. Let L = (X,∧,∨,⊥ , 0, 1,△) be an ODL. Then the following

statements hold true:
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(1) x △ 0 = x, 0 △ x = x,

(2) x △ x = 0,

(3) x △ y = y △ x,

(4) x △ y⊥ = x⊥ △ y = (x △ y)⊥,

(5) x⊥ △ y⊥ = x △ y,

(6) x △ y = 0 ⇔ x = y,

(7) (x ∧ y⊥) ∨ (y ∧ x⊥) ≤ x △ y ≤ (x ∨ y) ∧ (x ∧ y)⊥.

Proof: Suppose that x, y ∈ L and verify the properties (1)–(7).

(1) Let us first see that the property (D2) yields 1 △ 1 = 1⊥ = 0. Using this,
we have x△ 0 = x △ (1 △ 1) = (x △ 1)△ 1 = x⊥ △ 1 = (x⊥)⊥ = x. Analogously,
0 △ x = (1 △ 1) △ x = 1 △ (1 △ x) = 1 △ x⊥ = (x⊥)⊥ = x.

(2) Let us first show that x⊥△x⊥ = x△x. We consecutively obtain x⊥△x⊥ =
(x△ 1)△ (1△ x) = (x△ (1△ 1))△ x = (x△ 0)△ x = x△ x. Moreover, we have
x△x ≤ x as well as x△x = x⊥△x⊥ ≤ x⊥. This implies that x△x ≤ x∧x⊥ = 0.

(3) x△y = (x△y)△0 = (x△y)△[(y△x)△(y△x)] = x△(y△y)△x△(y△x) =
x △ 0 △ x △ (y △ x) = x △ x △ (y △ x) = 0 △ (y △ x) = y △ x.

(4) x△y⊥ = x△(y△1) = (x△y)△1 = (x△y)⊥. The equality x⊥△y = (x△y)⊥

follows from x △ y⊥ = (x △ y)⊥ by using the equality (3).

(5) Applying (4), we obtain x⊥ △ y⊥ = (x⊥ △ y)⊥ = (x △ y)⊥⊥ = x △ y.

(6) If x = y, then x △ y = 0 by the condition (2). Conversely, suppose that
x △ y = 0. Then x = x △ 0 = x △ (y △ y) = (x △ y) △ y = 0 △ y = y.

(7) The property (D3) together with the properties (4), (5) imply that x△y ≤
x ∨ y, x △ y ≤ x⊥ ∨ y⊥ = (x ∧ y)⊥, x ∧ y⊥ ≤ x △ y, x⊥ ∧ y ≤ x △ y. �

Our interest in this paper is the relationship of ODLs to orthomodular lattices
(OMLs). Let us recall the definition of OML (the acquaintance with basic facts
about OMLs will be helpful in the sequel — see [1], [9], [10], etc.).

Definition 1.3. Let L be an orthocomplemented lattice. If L satisfies the
orthomodular law,

x ≤ y ⇒ y = x ∨ (y ∧ x⊥),

then L is said to be an orthomodular lattice (abbr., an OML).

Though the orthomodular law is not explicitly stated among the axioms of
ODL, it can be easily shown ([11]) that an ODL is automatically orthomodular.
More precisely, if K is an ODL and Ksupp is the orthocomplemented lattice ob-
tained from K by forgetting △, then Ksupp is an OML. A question arises: Given
an OML, L, can L be made an ODL? Or, in case the above question answers in
the negative too often, can L be at least enlarged to an ODL? If L allows for
such an enlargement, the algebraic “calculus” of L would be enriched and these
ODL-enlargeable OMLs might find an application in quantum logic theory, or
elsewhere (see [3], [6], [18], etc.).
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Let us comment on “the state of art” in this line of problems and agree on some
terminology. In [11] the author shows that several OMLs are ODL-convertible,
i.e. they are such OMLs that can be endowed with △ to become ODLs. Such are,
for instance, the lattices MOκ for κ = 2n − 1, the lattice MOκ for any infinite
cardinal κ, certain pastings of Boolean algebras (this will also be commented on
later), several “non-concrete” OMLs, etc. On the other hand, there are OMLs
that are far from being ODL-convertible (such as, for instance, each finite OML
the cardinality of which differs from 2n). In fact, there are even OMLs that are
not ODL-embeddable (an OML, L, is said to be ODL-embeddable if there is an
ODL, K, such that L is a sub-OML of Ksupp) — a rather elaborate construction
presented in [12] provides such an example. In considering the ODL-embeddable
OMLs a rather interesting connection came into existence. It turned out that if L
is ODL-embeddable then it has to possess an abundance of Z2-states. This allows
us to show, in an interplay with [15], that if n ≥ 4 then the projection lattice L(Rn)
is not ODL-embeddable. The same question about L(R3) remains open (see also
[8], [15]). However, a purely ODL consideration (Theorem 3.10) clarifies the ODL-
convertibility of L(R3): The lattice L(R3) is not ODL-convertible (Theorem 3.11).
The lattice L(R2) is ODL-convertible and, of course, so is L(R1).

Let L be an OML. Let us recall that two elements a, b ∈ L are called compatible

in L (a C b) if they lie in a Boolean subalgebra of L (see [1] and [9] for the
properties of compatible pairs). If a, b ∈ L are not compatible, we write a¬ C b.
Further, let us recall that by a block in L we mean a maximal Boolean subalgebra
of L. Finally, let us call the set C(L) = {c ∈ L; c C a for any a ∈ L} the centre

of L (i.e., C(L) is the set of all “absolutely compatible” elements of L). Obviously,
C(L) is the intersection of all blocks of L.

It is convenient to adopt the following convention.

Convention 1.4. Let L be an ODL. Then any OML notion can be referred to
L as well by applying this notion to the corresponding OML Lsupp.

Proposition 1.5. Let L be an ODL and let a, b ∈ L with a C b. Then a △ b =
(a ∧ b⊥) ∨ (b ∧ a⊥) = (a ∨ b) ∧ (a ∧ b)⊥. A corollary: If a C b, then a C a △ b.

Proof: It follows from Proposition 1.2(7). �

In concluding this paragraph let us observe the following consequence of Propo-
sition 1.5: For each block B of L, the operation △ on L acts on B as the standard
symmetric difference.

2. OMLs with 8-element blocks

In this section we shall be interested in some intrinsic properties of the OMLs
whose blocks are of cardinality 8 and whose pairs of atoms, a and b, satisfy the
inequality a∨ b < 1. We will then apply the results obtained in the constructions
enabling us to prove our main result formulated in Theorem 3.10. (It should be
noted that the class of OMLs considered in this section contains, as an important
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example, the lattice L(R3) of projections of R3. The paper [17] studies, with the
motivation coming from theoretical physics, the existence of sub-orthoposets of
L(R3). Incidentally, our result of Theorem 2.5 adds to Proposition 6.5 of [17].)

Proposition 2.1. Let L be an OML such that the cardinality of each block of L
is 8. Then

(i) for any pair a and b of atoms in L, the following statement holds true:

a ∨ b < 1 if and only if there is an atom c such that a C c and b C c;
(ii) for any pair of distinct atoms a and b in L there is at most one atom c

such that a C c and b C c.

Proof: The statement (i) is trivial. For the statement (ii) suppose that a, b are
atoms and a 6= b. Suppose that c, d are such atoms that c C a, c C b, d C a and
d C b. Then we have 0 < a < a ∨ b ≤ c⊥ ∧ d⊥ ≤ c⊥ < 1. Since each block of L
has 8 elements, we infer that c⊥ ∧ d⊥ = c⊥. Thus, c⊥ ≤ d⊥ and therefore d ≤ c.
As c, d are atoms, it follows that c = d. �

Definition 2.2. An OML L is said to be a 3-star if L is isomorphic with the
product {0, 1} × MOκ for κ ≥ 1.

The figure below indicates the Greechie diagram of the 3-star {0, 1} × MOκ.
Note that the number of blocks of this 3-star is κ.
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Proposition 2.3. Let L be an OML. Then L is a 3-star if and only if the

cardinality of each block of L is 8 and C(L) 6= {0, 1}.

Proof: The proof is evident. �

Prior to the main result of this section, let us recall some notions of orthomo-
dular combinatorics (see also [4] and [16]).

Definition 2.4. Let L be an OML such that the cardinality of each block of
L is 8. For three mutually distinct and compatible atoms a1, a2, a3 of L, let us
denote by [a1, a2, a3]L the block of L generated by these atoms.

An n-path in L (n ≥ 1) is a sequence B1, . . . , Bn of blocks of L such that there
are pairwise distinct atoms b1, a1, b2, . . . , an, bn+1 ∈ L with Bi = [bi, ai, bi+1]L,
i = 1, . . . , n.

An n-loop in L (n ≥ 3) is a sequence B1, . . . , Bn of blocks of L such that
there are pairwise distinct atoms b1, a1, b2, . . . , an ∈ L with Bi = [bi, ai, bi+1]L,
i = 1, . . . , n − 1, Bn = [bn, an, b1]L.
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We shall also need the following corollary of Greechie’s lemma ([4]): An OML
satisfying the assumptions of Def. 2.4 cannot contain any n-loop for n ≤ 4.

Theorem 2.5. Let L be an OML. Let the cardinality of each block of L be 8
and let C(L) = {0, 1}. Let for any pair a, b of atoms in L the inequality a∨ b < 1
hold true. Then any block of L is contained in a 5-loop.

Proof: We shall need three lemmas (the OML L dealt with in the lemmas
satisfies the assumptions of Theorem 2.5).

Lemma 1. Each block in L is contained in a 2-path.

Proof: Consider a block B = [a1, a2, a3]L. Since L is not a Boolean algebra, we
see that L 6= B. Hence there is an atom b ∈ L with b /∈ B. The assumptions
required for L obviously guarantee the existence of an atom c ∈ L such that a1 C c
and b C c. Let us complete the lemma arguing by cases. If c ∈ {a1, a2, a3}, then
the couple [a1, a2, a3]L, [c, b, c⊥ ∧ b⊥]L is a 2-path. If c /∈ {a1, a2, a3}, then the
couple [a1, a2, a3]L, [c, a1, c

⊥ ∧ a⊥

1 ]L is a 2-path. The proof is done. �

Lemma 2. Each 2-path in L is contained in a 3-path.

Proof: Consider a 2-path, some B1 = [b1, a1, b2]L, B2 = [b2, a2, b3]L. Since b2 /∈
C(L), there is an atom d ∈ L such that b2¬ C d. It follows that d /∈ {b1, a1, a2, b3}.
We have two possibilities to argue.

(I) First, d is compatible with some of the atoms b1, a1, a2, b3. Without any loss of
generality, suppose that d C b1. Then a1¬ C d, a2¬ C d and b3¬ C d. Indeed, if
a1 C d then d = b. If a2 C d or b3 C d then L contains a 4-loop which is excluded
by the Greechie lemma. Thus, we obtain the following Greechie diagram:

s s s

b2 a2 b3

s

s

a1

b1
s s

d

(II) Second, d is not compatible with any of the elements b1, a1, a2, b3. By our
assumption, there is an atom c ∈ L such that b1 C c and d C c. Since d is not
compatible with any of the elements b1, a1, b2, a2, b3 and since d C c, we see that
c /∈ {b1, a1, b2, a2, b3}. Mimicking the reasoning of the part (I) we obtain a 3-path
portrayed below:



540 M.Matoušek, P.Pták

s s s

b2 a2 b3

s

s

a1

b1
s s

c

This completes the proof of Lemma 2. �

Lemma 3. Each 3-path in L is contained in a 5-loop.

Proof: Consider a 3-path, some B1 = [b1, a1, b2]L, B2 = [b2, a2, b3]L, B3 =
[b3, a3, b4]L. By our assumption on L, there is an atom d ∈ L such that d C b1

and d C b4. Obviously, d /∈ {a1, b2, a2, b3, a3}. In other words, we have completed
the proof of Lemma 3 by constructing a 5-loop in L with the following Greechie
diagram:

s s s

b3 a3 b4

s

s

a2

b2
s

s

b1a1
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Let us return to the proof of Theorem 2.5. Let us choose a block B of L. Then a
consecutive application of Lemma 1, Lemma 2 and Lemma 3 allows us to obtain
the desired 5-loop. �

3. Results

Let Z2 stand for the group {0, 1} understood with the modulo 2 addition ⊕
(thus, 1⊕ 1 = 0⊕ 0 = 0, 1⊕ 0 = 0⊕ 1 = 1). Let L be an OML and let s : L → Z2

be a mapping. Then s is said to be a Z2-valued state (abbr., a Z2-state) provided
s(1) = 1 and s(x ∨ y) = s(x) ⊕ s(y) whenever x, y ∈ L, x ≤ y⊥. The following
definition is a variant of “fullness” dealt with in the quantum logic theory ([7])
and it is crucial in our consideration.

Definition 3.1. Let L be an OML. Then L is called Z2-full if for any x, y ∈ L,
x 6= y, x 6= 0, y 6= 1 there exists a Z2-state, s, on L such that s(x) = 1 and
s(y) = 0.

Our first result reads as follows.
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Theorem 3.2. Let L be an OML. If L is ODL-embeddable then L is Z2-full.

The proof of Theorem 3.2 will be obtained in a series of propositions. Let us
first examine a certain type of ideals in ODLs. They will correspond to Z2-states.

Definition 3.3. Let K be an ODL and let I be a subset of K. Then I is said
to be a △-ideal if 0 ∈ I and whenever a, b ∈ I, then a △ b ∈ I. Further, if 1 /∈ I,
then I is called a proper △-ideal . Finally, I is called maximal if I is proper and
for any proper △-ideal J with I ⊆ J we have I = J .

Proposition 3.4. Suppose that K is an ODL and I is a proper △-ideal in K.

Suppose that x ∈ K and neither x nor x⊥ belongs to I. Let us write J =
I ∪ {a △ x; a ∈ I}. Then J is also a proper △-ideal in K and, moreover, x ∈ J
and x⊥ /∈ J .

Proof: The set J is obviously a △-ideal. Let us see that 1 /∈ J . Suppose
on the contrary that 1 ∈ J . Then 1 = a △ x for some element a ∈ I. The
equality 1 = a △ x implies that a = x⊥ (indeed, by Proposition 1.2 we have
0 = (a △ x)⊥ = a △ x⊥ and therefore a = x⊥). But x⊥ does not belong to I
which is a contradiction. Thus, 1 /∈ J . Further x = 0 △ x ∈ J . If x⊥ ∈ J , then
1 = x △ x⊥ ∈ J — a contradiction again. �

Proposition 3.5. Let K be an ODL and let I be a maximal △-ideal in K. Then

card({x, x⊥} ∩ I) = 1 for any x ∈ K.

Proof: Suppose that I is maximal and x ∈ K. Suppose further that x /∈ I and,
also x⊥ /∈ I. Then (Proposition 3.4) there is a △-ideal, J , such that I ⊆ J and
I 6= J . As a result, at least one element of the set {x, x⊥} belongs to I. Looking
for a contradiction, suppose that {x, x⊥} ⊆ I. Then x △ x⊥ = 1 which means
that 1 ∈ I — a contradiction (I is supposed to be proper). �

Proposition 3.6. Let K be an ODL and let a, b ∈ K, a 6= b, a < 1 and 0 < b.
Then there is a maximal △-ideal, J , such that a ∈ J and b /∈ J .

Proof: Write I = {I ⊆ K; I is a proper △-ideal, a ∈ I and b /∈ I}. Then
{0, a} ∈ I and therefore I 6= ∅. By a standard application of Zorn’s lemma,
the set I ordered by inclusion contains a maximal element, J . Of course, J is a
proper △-ideal. Moreover, b⊥ ∈ J (otherwise the △-ideal J ′ = J∪{c△b⊥; c ∈ J}
extends J , Proposition 3.4, and J ′ belongs to the system I). Let us show that J is
maximal. Suppose therefore that J ⊆ I for a proper △-ideal I, J 6= I. Thus, I is
strictly larger than J and therefore I /∈ I. Therefore b ∈ I and since b⊥ ∈ J ⊆ I,
we see that 1 = b △ b⊥ ∈ I. This means that I is not proper and the proof is
complete. �

Proposition 3.7. Let K be an ODL and I be a maximal △-ideal in K. Let

us define a mapping s : K → Z2 as follows: s(a) = 0 (resp., s(a) = 1) if a ∈ I
(resp., a /∈ I). Then s(x△ y) = s(x)⊕ s(y) for any x, y ∈ L. A consequence: The

mapping s is a Z2-state on Ksupp.
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Proof: Let us consider two elements x, y ∈ K. We are to prove the equality
s(x△ y) = s(x)⊕ s(y). We will argue by cases. If both x and y belong to I, then
x △ y ∈ I and therefore s(x △ y) = 0 = 0 ⊕ 0 = s(x) ⊕ s(y). If x ∈ I and y /∈ I,
then x△y /∈ I (indeed, should x△y be an element of I, then y = x△ (x△y) ∈ I
which is a contradiction). Hence s(x△ y) = 1 = 0 ⊕ 1 = s(x) ⊕ s(y). The case of
x /∈ I and y ∈ I argues analogously. Let us suppose that x /∈ I and y /∈ I. Since
I is a maximal △-ideal, we infer that x⊥ ∈ I and y⊥ ∈ I. Then x⊥ △ y⊥ ∈ I.
But x⊥ △ y⊥ = x △ y (Proposition 1.2(5)) and therefore x △ y ∈ I. Hence
s(x △ y) = 0 = 1 ⊕ 1 = s(x) ⊕ s(y).

It remains to show that the mapping s defined above is a Z2-state on Ksupp.
Of course, s(1) = 1. Let us take x, y ∈ K with x ≤ y⊥. Then x C y and therefore
(Proposition 1.5) we see that x △ y = (x ∨ y) ∧ (x ∧ y)⊥ = (x ∨ y) ∧ 0⊥ = x ∨ y.
Then s(x ∨ y) = s(x △ y) = s(x) ⊕ s(y) by the analysis above. The proof of
Proposition 3.7 is complete. �

Proof of Theorem 3.2: Let L be an ODL-embeddable OML. Then there is
an ODL, K, such that L is a sub-OML of Ksupp. Let x, y be elements of L with
x 6= y, x 6= 0 and y 6= 1. According to Proposition 3.6 there is a maximal △-ideal
J in K such that y ∈ J and x /∈ J . Let us set s(a) = 0 for a ∈ J and s(a) = 1 for
a ∈ K, a /∈ J . Then, according to Proposition 3.7, the mapping s is a Z2-state on
Ksupp. If we denote by s1 the restriction of s to the OML L, then s1 is a Z2-state
on L. Moreover, s1(x) = s(x) = 1 and s1(y) = s(y) = 0. �

The link of ODL-embeddable OMLs with Z2-states revealed in Theorem 3.2
allows us to shed light on the ODL embeddability of the lattice L(H) of projections
in a (real) Hilbert space H .

Theorem 3.8. Let H be a Hilbert space. If dimH ≥ 4, then L(H) is not

ODL-embeddable.

Proof: In [15] it is shown that for dimH ≥ 4 the OML L(H) does not allow for
any Z2-state. The rest follows from Theorem 3.2. �

The case of L(R3) remains open — it seems still open whether or not L(R3)
possesses a Z2-state (see [8] and [15]). However, it is not difficult to show that
L(R3) cannot be made an ODL (i.e., it can be proved that L(R3) is not ODL-
convertible). In fact, even relatively mild lattice-theoretic conditions shared by
L(R3) prevent us from introducing △ on L(R3). We are going to prove this by
deriving a characterization of 3-stars — a result which may be of separate interest
in the theory of ODLs.

Recall first a result already referred to in the introduction (for a detailed proof,
see [11]; let us provide a sketch for the convenience of the reader).

Proposition 3.9. Let κ be a cardinal number. Let κ = 2n − 1 for a natural

number n ∈ N or let κ be infinite. Then the horizontal sum MOκ is, up to an

ODL-isomorphism, uniquely ODL-convertible.
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Proof: Let κ = 2n − 1 (resp. κ be infinite). Then there is a Boolean algebra,
B, with card(B) = 2n+1 (resp. card(B) = κ). Take a prime-ideal on B, some
I and set, for any a ∈ I \ {0}, Ba = {0, a, a⊥, 1}. Since card(I \ {0}) = κ, we
see that MOκ is OML-isomorphic with the horizontal sum of Ba, a ∈ I \ {0}.
Moreover, MOκ and B have the same underlying set. Thus, elements c, d ∈ MOκ

can be viewed as elements of B and hence we can define c△d as the corresponding
symmetric difference in B (understood in MOκ this time). It can be shown that
MOκ endowed with this symmetric difference is an ODL and that △ is (up to an
ODL-isomorphism) the only one which converts MOκ to an ODL. �

Before we formulate the main result of this section let us again make use of
Convention 1.4 allowing ourselves to call an ODL K a 3-star provided so is Ksupp.

Theorem 3.10. Let K be an ODL. Then the following two statements are equi-

valent:

(i) K is a 3-star,

(ii) the cardinality of each maximal Boolean subalgebra of K is 8, and for

any pair a, b ∈ K of atoms in K the inequality a ∨ b < 1 holds true.

Proof: The implication (i)⇒(ii) is obvious. Let us launch on (ii)⇒(i). Let us
first formulate and prove a few auxiliary propositions.

Lemma 1. Suppose that K is as in Theorem 3.10(ii). Let a, b be atoms of K.

Then

(i) a △ b is a co-atom of K if and only if a 6= b and a C b,
(ii) if a is not compatible with b, then a △ b is an atom of K.

Proof: (i) If a 6= b and a C b, then a ≤ b⊥ and therefore a △ b = a ∨ b. Since
both a, b belong to an 8-element Boolean subalgebra of K, the element a△b must
be a co-atom.

Suppose for the reverse implication that a△b = d⊥ for an atom d ∈ K. Choose
an atom, c, such that a C c and b C c. Then a ≤ c⊥ and b ≤ c⊥. It follows that
a △ b ≤ a ∨ b ≤ c⊥. Thus, d⊥ ≤ c⊥ and therefore c ≤ d. Since c, d are atoms,
we see that c = d. The equality a △ b = c⊥ gives us a △ a △ b = a △ c⊥.
According to Proposition 1.2 we have b = a △ c⊥. Since a C c⊥, we see in view
of Proposition 1.5 that a C a △ c⊥. Hence a C b.

(ii) Suppose that a¬ C b. As known ([1] and [9]), a C b precisely when a C b⊥.
It follows that a 6= b⊥ and a 6= b. Then a △ b 6= 1 and a △ b 6= 0. If a △ b were a
co-atom, the part (i) gives us a C b. This implies that a△ b is an atom in K. �

Lemma 2. Suppose that K is as in Theorem 3.10(ii). Let a, b, c be atoms in K.

Then a△b△c = 1 if and only if the atoms a, b, c are pairwise distinct and pairwise

compatible.

Proof: If a, b, c are pairwise distinct and pairwise compatible, they must be the
atoms of a block of K. In this case a △ b △ c = 1.
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Suppose that a △ b △ c = 1. Then a, b, c are pairwise distinct. Indeed, if e.g.
a = b, then a △ b △ c = a △ a △ c = 0 △ c = c 6= 1. Further, a △ b = c⊥ and
therefore a△ b is a co-atom. It follows that a C b (Lemma 1). Analogously, a C c
and b C c and this completes the proof. �

Lemma 3. Suppose that K is as in Theorem 3.10(ii). Then K does not contain

a 5-loop.

Proof: Suppose that it is not the case. Then there must be a configuration of
blocks indicated by the following figure.

s s s

b1 a1 b2

s

s

a5

b5

s

s

a2

b3









s

s

a4

b4

J
J

J
JJ

s a3

We see that we obtain the following collection of identities:
b1 △ a1 △ b2 = 1, b2 △ a2 △ b3 = 1, b3 △ a3 △ b4 = 1, b4 △ a4 △ b5 = 1, and
b5 △ a5 △ b1 = 1.
As a result, we have the equality
(b1 △ a1△ b2)△ (b2△ a2△ b3)△ (b3△ a3△ b4)△ (b4△ a4△ b5)△ (b5△ a5△ b1) =
1 △ 1 △ 1 △ 1 △ 1. Since x △ x = 0 for any x in K, the right-hand side of the
equality above equals to 1 and the left-hand side equals to a1△a2△a3△a4△a5.
Thus, a1 △ a2 △ a3 △ a4 △ a5 = 1. Let us rewrite the last equality as follows:
(a1 △ a2)△ (a3 △ a4)△ a5 = 1. Lemma 1 gives us that a1 △ a2 as well as a3 △ a4

are atoms in K. Further, Lemma 2 implies that a1 △ a2 and a5 are compatible
atoms. Moreover, a1 ≤ b⊥2 and a2 ≤ b⊥2 . This means that a1 △ a2 ≤ a1 ∨a2 ≤ b⊥2 .
We therefore see that b2 C (a1 △ a2). But then b1 and a1 △ a2 are distinct atoms
that are compatible with a5 and b2. This contradicts Proposition 2.1(ii). The
proof of Lemma 3 is complete. �

Proof of Theorem 3.10: It is easily seen that the proof of Theorem 3.10 can
be obtained as an interplay of the Lemma 3 and Theorem 2.5. Indeed, suppose K
satisfies the conditions of Theorem 3.10(ii). Then as K does not contain a 5-loop,
to avoid a contradiction with Theorem 2.5 we must have C(K) 6= {0, 1}. But this
means that K is a 3-star (Proposition 2.3). �

Theorem 3.11. The OML L(R3) is not ODL-convertible.
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Proof: Suppose that L(R3) is ODL-convertible. Then L(R3) must be a 3-star
(Theorem 3.10). But C(L(R3)) = {0, 1} and we have reached a contradiction.
The proof is complete. �

Theorem 3.12. The OMLs L(R2) and L(R1) are ODL-convertible.

Proof: Of course, L(R1) = {0, 1} and there is nothing to prove. Let us consider
L(R2). Obviously, L(R2) is nothing but MOκ, where κ = 2ω0 (= the cardinality
of continuum). This OML is ODL-convertible (Proposition 3.9). �

We have seen that a lack of Z2-states on L prevents L from being ODL-
embeddable (and, in turn, from being ODL-convertible). It should be noted
that in [14] and [19] the authors construct finite OMLs without any group-valued
state at all. Their technique therefore provides another type of OMLs that are not
ODL-embeddable. However, the technique is very involved and even computer-
proved in places. A relatively simple OML without any Z2-states can be con-
structed on the ground of the following proposition. This proposition allows us to
extend the class of non-embeddable OMLs, and it also slightly adds to the area of
orthomodular peculiarities (see [4], [13], etc.). It should be noted that the result
generalizes Proposition 7.2 of the paper [12].

Proposition 3.13. Suppose that L is an OML. Suppose that there are blocks

B1, B2, . . . , Bn of L such that the following two conditions are satisfied:

(1) each Bi, 1 ≤ i ≤ n is finite and n is an odd number,

(2) if a ∈ L is an atom in L, then a lies in an even number of blocks

B1, B2, . . . , Bn (i.e. the cardinality of the set {i; a ∈ Bi} is even).

Then there is no Z2-state on L.

Proof: Seeking a contradiction, let s : L → Z2 be a Z2-state. Let {ai,1, . . . , ai,ki
}

be the set of all atoms of the algebra Bi, i = 1, . . . , n. Then the elements
ai,1, . . . , ai,ki

are mutually orthogonal and, moreover, ai,1 ∨ . . .∨ai,ki
= 1L. Since

s is a Z2-state, we have s(ai,1 ∨ . . . ∨ ai,ki
) = s(ai,1) ⊕ . . . ⊕ s(ai,ki

). Since
ai,1 ∨ . . . ∨ ai,ki

= 1L, we obtain s(ai,1 ∨ . . . ∨ ai,ki
) = s(1L) = 1. Summarizing,

s(ai,1) ⊕ . . . ⊕ s(ai,ki
) = 1 for any i ∈ {1, . . . , n}. As a consequence,

(s(a1,1) ⊕ . . . ⊕ s(a1,k1
)) ⊕ . . . ⊕ (s(an,1) ⊕ . . . ⊕ s(an,kn

)) = 1 ⊕ . . . ⊕ 1.

The right-hand side of the latter identity contains the element 1 exactly n-many
times. Since n is odd, the right-hand side equals to 1. Moreover, if a is an arbitrary
atom of L, then the assumption of Proposition 3.13 gives us that the left-hand
side of the identity contains the expression s(a) an even number of times. By
the property of the operation ⊕, the left-hand side must be equal to 0. We have
derived a contradiction and the proof is complete. �

This result enables us to construct OMLs that do not possess a Z2-state (and,
as a consequence, the OMLs that are not ODL-embeddable). Let us conclude
our paper by exhibiting a simple example of an OML in this class (the OML
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portrayed below by its Greechie diagram obviously satisfies the assumptions of
Proposition 3.13; a proper class of such OMLs can be constructed in an analogous
manner).
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[3] Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Kluwer Academic

Publishers, Dordrecht, and Ister Science, Bratislava, 2000.
[4] Greechie R.J., Orthomodular lattices admitting no states, J. Combinatorial Theory 10

(1971), 119–132.
[5] Hamhalter J., Quantum Measure Theory , Kluwer Academic Publishers, Dordrecht, Boston,

London, 2003.
[6] Handbook of Quantum Logic and Quantum Structures, ed. by K. Engesser, D.M. Gabbay

and D. Lehmann, Elsevier, 2007.
[7] Gudder S.P., Stochastic Methods in Quantum Mechanics, North-Holland, New York-

Oxford, 1979.
[8] Harding J., Jager E., Smith D., Group-valued measures on the lattice of closed subspaces

of a Hilbert space, Internat. J. Theoret. Phys. 44 (2005), 539–548.
[9] Kalmbach G., Orthomodular Lattices, Academic Press, London, 1983.

[10] Maeda F., Maeda S., Theory of Symmetric Lattices, Springer, Berlin-Heidelberg-New York,
1970.
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