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On the Lindelöf property of spaces of continuous

functions over a Tychonoff space and its subspaces

Oleg Okunev

Abstract. We study relations between the Lindelöf property in the spaces of continuous
functions with the topology of pointwise convergence over a Tychonoff space and over its
subspaces. We prove, in particular, the following: a) if Cp(X) is Lindelöf, Y = X ∪ {p},
and the point p has countable character in Y , then Cp(Y ) is Lindelöf; b) if Y is a cozero
subspace of a Tychonoff space X, then l(Cp(Y )ω) ≤ l(Cp(X)ω) and ext(Cp(Y )ω) ≤
ext(Cp(X)ω).
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Classification: 54C35, 54D20

All spaces below are assumed to be Tychonoff (that is, completely regular
Hausdorff). We use terminology and notation as in [Eng].

Given two spaces X and Z, we denote by Cp(X, Z) the space of all continuous
functions from X to Z equipped with the topology of pointwise convergence (that

is, the topology of the subspace of the space ZX of all functions from X to Z
endowed with the Tychonoff product topology). The space Cp(X, R) is denoted
as Cp(X).

If p : X → Y is a continuous mapping, the dual mapping p∗ : Cp(Y, Z) →
Cp(X, Z) is defined by the rule: p∗(f) = f ◦ p for all f ∈ Cp(Y ). The dual
mapping is always continuous, is a homeomorphic embedding if p is onto, and is
a closed embedding if p is quotient; see [Arh2].

A space X is a Kσδ-space if it is an Fσδ-set in βX ; K-analytic spaces are
continuous images of Kσδ-spaces.

In [Buz] Buzyakova raised some questions about the behavior of the Lindelöf
property of the spaces Cp(X) and Cp(X, Y ) for some simple spaces Y under
“slight changes” of the spaces X and Y . In this article we give complete or
partial answers to a few of these questions.

The author acknowledges support from CONACyT (Consejo Nacional de Ciencia y Tec-
noloǵıa de México) research project 61161/2006.
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1. Adding a point of countable character

Proposition 1.1. Let X be a non-pseudocompact space. Then Cp(X) × ωω is

homeomorphic to a closed subspace of Cp(X).

Proof: Since X is not pseudocompact, there is a discrete family {Un : n ∈ ω}
of non-empty open sets in X . Choose a point xn in each Un; then the set D =
{xn : n ∈ ω} is closed and discrete in X . For every n ∈ ω choose a continuous
function from φn : X → [0, 1] so that φn(xn) = 1 and φn(X \ Un) = {0}. For
every f ∈ R

D put

h(f)(x) =
∞
∑

n=1

f(xn)φn(x).

Note that, by the discreteness of the family {Un : n ∈ ω}, in a neighborhood of
every x ∈ X at most one term in the sum in the definition of h(f) is distinct from
zero; clearly, h(f)(xn) = f(xn). It follows that h is a linear extension operator

from Cp(D) = R
D → Cp(X). Since the value of h(f) at a point x ∈ X is

completely and continuously determined by the value of f at at most one point
of D (the one such that x ∈ Ūn, if there is any), h is continuous.
By Proposition 2.1 in [Ar1], the space Cp(X) is homeomorphic to C×Cp(D) =

C×R
ω where C is the subset of Cp(X) consisting of all functions equal to 0 on D.

Thus, we have homeomorphisms Cp(X) = C×R
ω = C×R

ω ×R
ω = Cp(X)×R

ω.
Since ωω is homeomorphic to a closed subspace of R

ω, we get the statement of
the proposition. �

Corollary 1.2. If X is a non-pseudocompact space, Cp(X) is Lindelöf , and Y
is a K-analytic space, then Cp(X)× Y is Lindelöf.

Proof: Every K-analytic space is an image of ωω under a compact-valued upper
semicontinuous mapping (see e.g. [RJ]). Hence, by Proposition 1.1, Cp(X) × K
is an image under a compact-valued upper semicontinuous mapping of a closed
subspace of Cp(X). The statement of the corollary now follows from the well-
known fact that compact-valued upper semicontinuous mappings do not raise the
Lindelöf number. �

Corollary 1.3. Let X be a non-pseudocompact space such that Cp(X) is Lin-
delöf, and P an Fσδ-subspace of Cp(X). Then P is Lindelöf.

Proof: Let P =
⋂

n∈ω

⋃

m∈ω Fnm where each Fnm is a closed set in Cp(X).
Then P is the image under the projection onto Cp(X) of the closed subset

B = {(f, φ) : ∀n ∈ ω f ∈ Fnφ(n)}

of Cp(X)× ωω. �

The next theorem provides a positive answer to Question 3.1 in [Buz].



Spaces of continuous functions 631

Theorem 1.4. Let Y = X ∪ {p} and assume that the point p has countable
character in Y . If Cp(X) is Lindelöf, then Cp(Y ) is Lindelöf.

Proof: If p is an isolated point in Y , then Cp(Y ) = Cp(X) × R, and Cp(Y ) is
Lindelöf. So assume that p is not isolated. Then X is not pseudocompact, by the
well-known fact that a pseudocompact space is Gδ-dense in any its extension.
Let C0 = {f ∈ Cp(Y ) : f(p) = 0}. Then Cp(Y ) is homeomorphic to C0×R (by

virtue of the homeomorphism f 7→ (f − f(p), f(p)) for every f ∈ Cp(Y )). There-
fore, it suffices to show that C0 is Lindelöf. The restriction mapping r : Cp(Y )→
Cp(X) embeds C0 homeomorphically into Cp(X), so we need to show that the sub-
space C = r(C0) of Cp(X) is Lindelöf. Clearly, C = {f ∈ Cp(X) : limx→p f(x) =
0}.
Let {Vn : n ∈ ω} be a countable open base for p in Y , and let Un = Vn ∩ X ,

n ∈ ω. Then

C = {f ∈ Cp(X) : ∀n ∈ ω ∃m ∈ ω ∀x ∈ Um |f(x)| ≤ 1/(n+ 1)}.

Thus,

C =
⋂

n∈ω

⋃

m∈ω

⋂

x∈Um

{f ∈ Cp(X) : |f(x)| ≤ 1/(n+ 1)}

is an Fσδ-set in Cp(X), hence is Lindelöf by Corollary 1.3. �

Theorem 1.4 may be slightly generalized:

Theorem 1.5. Let Y = X ∪ K where K is a metrizable compact space, X is
dense in Y , K ∩ X = ∅, and χ(K, Y ) ≤ ω. If Cp(X) is Lindelöf, then Cp(Y ) is
Lindelöf.

Proof: Since K is compact metrizable, there is a continuous linear extension
operator h : Cp(K) → Cp(Y ) [Ar1], so by Proposition 2.1 in [Ar1], Cp(Y ) is
homeomorphic to C0×Cp(K) where C0 is the set of all functions in Cp(Y ) whose
restrictions to K are zero.
Let Z = Y/K be the quotient space, q : Y → Z the natural mapping, and

{p} = q(K). SinceK is compact, q is a perfect mapping, the space Z is Tychonoff,
and since the character ofK in Y is countable, the character of p in Z is countable.
Furthermore, X = q−1(q(Z \{p})), so q|X is a perfect bijection from X to Z \{p}.
Thus, Z \ {p} is homeomorphic to X . By Theorem 1.4, Cp(Z) is Lindelöf.
The dual mapping q∗ : Cp(Z) → Cp(Y ) is a closed embedding and C0 is con-

tained in q∗(Cp(Z)). Since C0 is closed in Cp(Y ), it is homeomorphic to a closed
subspace of Cp(Z). By the density of X in Y , X is not pseudocompact (except
the trivial case K = ∅). The space Cp(K) is K-analytic (in fact, a Kσδ-space, see
[Arh2]), so by Corollary 1.2, Cp(Z)× Cp(K) is Lindelöf. Since C0 is homeomor-
phic to a closed set in Cp(Z), C0 × Cp(K) is Lindelöf, and Cp(Y ) is Lindelöf.

�
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Theorem 1.5 does not hold if we only require that K be an Eberlein compact
space. Indeed, if Y is the one-point compactification of a Mrówka space, then
it is the union of a countable discrete subspace X and the compact space K
homeomorphic to the one-point compactification of a discrete space, which is an
Eberlein compact space; K has countable character in Y , because its complement
is countable (so it is a Gδ-set) and Y is compact. That Cp(Y ) for such Y cannot
be Lindelöf was proved in [Pol].
On the other hand, a statement similar to Theorem 1.5 holds, with a similar

proof, if we require the existence of an extension operator.

Theorem 1.6. Let Y = X ∪ K where K is an Eberlein compact space, X is

dense in Y , K ∩ X = ∅, and χ(K, Y ) ≤ ω. If Cp(X) is Lindelöf, and there is a
continuous extension operator h : Cp(K)→ Cp(Y ), then Cp(Y ) is Lindelöf.

2. Spaces of functions on cozero sets

In [Buz], Buzyakova proved that If X is zero-dimensional compact, Cp(X)
is Lindelöf, and p is a point of countable character in X , then Cp(X \ {p}) is
Lindelöf , and asks if the same holds for every compact space, or for any space X .
In this section we prove some statements in this direction, which generalize the

theorem of Buzyakova.

Theorem 2.1. Let X be a space such that Cp(X)
ω is Lindelöf, and Y a cozero

set in X . Then Cp(Y )
ω is Lindelöf.

Proof: Let h : X → [0, 1] be a continuous function such that Y = h−1((0, 1]).
For each n ∈ ω put Fn = h−1([1/(n+ 1), 1]) and F = X \ Y . Clearly, F and

Fn, n ∈ ω, are zero sets, Fn ⊂ IntFn+1, and Y =
⋃

{Fn : n ∈ ω}.
Put

P = {G ∈ Cp(X)
ω : G(n)|Fn = G(m)|Fn for all m, n ∈ ω, m ≥ n}.

Then
P =

⋂

n∈ω

⋂

m≥n

⋂

x∈Fn

{G ∈ Cp(X)
ω : G(m)(x) = G(n)(x)},

so P is closed in Cp(X)
ω, and Pω is Lindelöf.

Define T : P → R
Y by the rule:

T (G)(x) = G(n)(x) if x ∈ Fn.

Obviously, T is well-defined. Let G ∈ P and x ∈ Y . Then x ∈ Fn for some
n, and x ∈ IntFn+1. Since T (G)|Fn+1 = G(n + 1)|Fn+1, T (G) coincides with
the continuous function G(n+1) in the neighborhood Fn+1 of x, and therefore is
continuous at x. Thus, G is continuous on Y , and we have proved T (P ) ⊂ Cp(Y ).
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Let us verify the inverse inclusion. Let f ∈ Cp(Y ). Fix a continuous function
θ : [0, 1] → [0, 1] so that θ(1) = 1 and θ([0, 1/2]) = {0}. For every n ∈ ω fix a
continuous function hn : X → [0, 1] so that hn(Fn) ⊂ {1} and hn(F ) ⊂ {0}, and
let sn(x) = θ ◦ hn. Then sn : X → [0, 1] is continuous, sn(Fn) ⊂ {1}, and sn is
zero in a neighborhood of F . It follows that the function gn : X → R defined by
the rule

gn(x) =

{

f(x)sn(x) if x ∈ Y,

0 if x ∈ F

is continuous onX , and coincides with f on Fn. Thus, f = T (G) whereG(n) = gn

for all n ∈ ω. This finishes the proof that T (P ) = Cp(Y ).

Finally, let us verify that T is continuous. For an open set W in R and x ∈ Y
denote O(x, W ) = {f ∈ Cp(Y ) : f(x) ∈ W}. The sets O(x, W ) form an open
subbase for the topology of Cp(Y ), so it suffices to verify that their preimages
under T are open in P . So fix x and W ; find an m ∈ ω so that x ∈ Fm. Then
x ∈ Fn for all n ≥ m, so G(n)(x) = G(m)(x) for all G ∈ P and n ≥ m. We have
therefore

T−1(O(x, W )) = {G ∈ P : G(m)(x) ∈ W}

= P ∩ {H ∈ Cp(X)
ω : H(m)(x) ∈ W},

an open set in P .

Thus, Cp(Y ) is a continuous image of the set P , whence Cp(Y )
ω is Lindelöf.

�

The condition “Cp(X)
ω is Lindelöf” appears much stronger than “Cp(X) is

Lindelöf”; however, as far as the author knows by the moment, whether the
two conditions are equivalent is an open problem, both for compact spaces X
and in the general case. In some particular cases, however, it is known that the
two conditions are equivalent. Thus, R. Pol showed in [Pol] that if X is zero-
dimensional compact and Cp(X) is Lindelöf, then Cp(X)

ω is Lindelöf. We can
slightly improve this statement.

Theorem 2.2. Let X be a σ-compact zero-dimensional space. If Cp(X) is Lin-
delöf, then Cp(X)

ω is Lindelöf.

Proof: Since the Cantor cube 2ω is homeomorphic to a closed subspace of R, the
space Cp(X, 2ω) is homeomorphic to a closed subspace of Cp(X), and therefore is
Lindelöf. We have Cp(X, 2ω) = Cp(X, 2)ω, so Cp(X, 2)ω is Lindelöf. Since X is
zero-dimensional, Cp(X, 2) separates points and closed sets of X . It follows that

the diagonal product Φ = ∆Cp(X, 2): X → R
Cp(X,2) is an embedding; obviously,

Φ(X) ⊂ Cp(Cp(X, 2)). Thus, X is homeomorphic to a σ-compact subspace of
Cp(Y ) where Y = Cp(X, 2). Then X × ω is σ-compact and homeomorphic to



634 O.Okunev

a subspace of Cp(Y
+) = Cp(Y ) × R, where Y + is the space obtained by adding

an isolated point to Y . The space (Y +)ω is Lindelöf: Y + is a continuous image
of Y × 2, so (Y +)ω is a continuous image of Y ω × 2ω. By Corollary 2.8 in [Oku],
Cp(X)

ω = Cp(X × ω) is Lindelöf. �

Corollary 2.3. Let X be a zero-dimensional σ-compact space such that Cp(X)
is Lindelöf. Then for every cozero set Y in X , Cp(Y ) is Lindelöf.

This corollary can also be deduced directly from Theorem 2.2 and Corollary 2.8
in [Oku], using the observation that a cozero set in a σ-compact space is σ-
compact.

Corollary 2.4. Let X be a zero-dimensional σ-compact space such that Cp(X)
is Lindelöf. Then for every compact Gδ-set K in X , Cp(X \ K) is Lindelöf.

The proof of Theorem 2.1 actually gives the following statement:

Theorem 2.5. Let Y be a cozero set in X . Then Cp(Y ) is a continuous image
of a closed subset of Cp(X)

ω.

We now can deduce various other corollaries, related to classes of spaces invari-
ant with respect to countable powers, closed subspaces, and continuous images.

Corollary 2.6. If Cp(X) is a Lindelöf Σ-space, and Y a cozero set in X , then
Cp(Y ) is a Lindelöf Σ-space.

Corollary 2.7. If Cp(X) is a K-analytic space, and Y a cozero set in X , then
Cp(Y ) is a K-analytic space.

Corollary 2.8. If Y is a cozero subspace of X , then l(Cp(Y )
ω) ≤ l(Cp(X)

ω)
and ext(Cp(Y )

ω) ≤ ext(Cp(X)
ω).

Corollary 2.9. If Cp(X) is a LΣ(≤ ω)-space, and Y a cozero set in X , then
Cp(Y ) is an LΣ(≤ ω)-space.

(See [KOS] for definition and basic properties of LΣ(≤ ω)-spaces.)

And, generally,

Corollary 2.10. Let P be a class of spaces invariant with respect to countable
powers, closed subspaces and continuous images. If Cp(X) ∈ P , and Y is a cozero
set in X , then Cp(Y ) ∈ P .

A similar argument applies to the spaces Cp(X, I) where I = [0, 1]:

Theorem 2.11. Let Y be a cozero set in X . Then Cp(Y, I) is a continuous image
of a closed subset of Cp(X, I)ω.
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3. Some open problems

Question 3.1. Let X be a pseudocompact space such that Cp(X) is Lindelöf.
Must the product Cp(X)× ωω be Lindelöf?

Question 3.2. Let Y = X ∪ K where K is a metrizable compact space, X is
dense in Y , χ(K, Y ) ≤ ω, and Cp(X) is Lindelöf. Must Cp(Y ) be Lindelöf?

The question here is if we can omit the condition “X∩K = ∅” in Theorem 1.5.
If we assume that Cp(X)

ω is Lindelöf and that X \ K is dense in Y , the answer
is “yes” by Theorems 1.5 and 2.1.

Question 3.3. Let X be a space such that Cp(X)
ω is Lindelöf, and Y an open

Fσ-subspace of X . Must Cp(Y ) be Lindelöf?

Note that for normal spaces X an affirmative answer to this question follows
from Theorem 2.1.
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