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A note on Gδ ideals of compact sets

Maya Saran

Abstract. Solecki has shown that a broad natural class of Gδ ideals of compact
sets can be represented through the ideal of nowhere dense subsets of a closed
subset of the hyperspace of compact sets. In this note we show that the closed
subset in this representation can be taken to be closed upwards.
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Let E be a compact Polish space and let K(E) denote the hyperspace of its
compact subsets, equipped with the Vietoris topology. A set I ⊆ K(E) is an ideal

of compact sets if it is closed under the operations of taking subsets and finite
unions. An ideal I is a σ-ideal if it is also closed under countable unions whenever
the union itself is compact. Ideals of compact sets arise commonly in analysis out
of various notions of smallness; see [3] for a survey of results and applications.

Following [4], we say that an ideal I has property (∗) if, for any sequence of sets
Kn ∈ I, there exists a Gδ set G such that

⋃

n Kn ⊆ G and K(G) ⊆ I. Property
(∗) holds in a broad class of Gδ ideals that includes all natural examples, including
the ideals of compact meager sets, measure-zero sets, sets of dimension ≤ n for
fixed n ∈ N, and Z-sets. (See [4] for these and other examples and a discussion
of property (∗).) Solecki has shown in [4] that any ideal in this class can be
represented via the meager ideal of some closed subset of K(E). The following
definition is essential for the representation: for A ⊆ E,

A∗ = {K ∈ K(E) : K ∩ A 6= ∅}.

Theorem 1 (Solecki). Suppose I is coanalytic and non-empty. Then I has

property (∗) iff there exists a closed set F ⊆ K(E) such that, for any K ∈ K(E),

K ∈ I ⇐⇒ K∗ ∩ F is meager in F .

This representation is analogous to a result of Choquet [1] that establishes a
correspondence between alternating capacities of order ∞ on E and probability
Borel measures on K(E).

Note that the set F in Theorem 1 is not unique. We hope to determine prop-
erties for F that make it a canonical representative, perhaps up to some notion
of equivalence. One property of interest is that of being closed upwards , i.e., for
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any A, B ∈ K(E), if B ⊇ A ∈ F then B ∈ F . This property ensures that the
map K 7→ K∗∩F , a fundamental function in this context, is continuous. In some
examples of Gδ ideals with property (∗), the natural choice of the set F is in fact
closed upwards. For example, let µ be an atomless finite probability measure on
E and let I be the σ-ideal of compact µ-null sets. Assume that µ(U) > 0 for all
non-empty open U ⊆ E, so that all sets in I have empty interior. Fix a countable
basis of the topology on E and let s ∈ (0, 1) be chosen so that it is not the measure
of any finite union of basic sets. Then the set F = {K ∈ K(E) : µ(K) ≥ s} works
to characterize membership in the ideal.

In the following result we show that as long as the ideal I in Theorem 1 contains
only meager sets, we may always find an F representing it that is closed upwards.
We use the following notation in the proof: if A ⊆ E and δ > 0, A + δ denotes
the set

⋃

x∈A B(x, δ). Int(A) denotes the interior of A in E.

Theorem 2. For a non-empty closed set F ⊆ K(E), the following are equivalent:

(1) ∀K ∈ K(E), K has non-empty interior ⇒ K∗ non-meager in F ;

(2) ∃F ′ ⊆ K(E), non-empty, closed and closed upwards, such that

∀K ∈ K(E), K∗ non-meager in F ′ ⇐⇒ K∗ non-meager in F .

Proof: It is clear that (2)⇒(1), simply because, if F ′ ⊆ K(E) is non-empty and
closed upwards, and U ⊆ E is non-empty and open, then F ′ ∩ U∗ is non-empty
and open in F ′. To prove the other direction, let

I = {K ∈ K(E) : K∗ is meager in F}.

I is a σ-ideal with property (∗). Let {Vn} be a basis of non-empty sets for the
relative topology on F , and let Kn = Vn. We now have:

K ∈ I ⇒ ∀n, K∗ meager in Kn;(1)

K /∈ I ⇒ ∃n, Kn ⊆ K∗.(2)

Assume that I contains some infinite set. In this case, we fix a sequence {xi}
and a point x ∈ E such that the xi are all distinct, xi → x, {x} ∈ I and each
{xi} ∈ I. (We can just pick the xi from some fixed infinite set in I.) Let U ′

i be

open such that xi ∈ U ′

i , U ′

i → {x} and the sets U ′

i are pairwise disjoint. We will
pick a subsequence U ′

ni
and define sets (Ui, Fi, Wi), i ∈ N, satisfying each of these

conditions:

• Ui, Wi are open,
• Ui ⊆ U ′

ni
, so the sets Ui are pairwise disjoint,

• Fi ∈ Ki,
• Fi ⊆ Wi,
• if j ≤ i then Wj ∩ Ui = ∅.
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Let n0 = 0 and note that since {x, x0} ∈ I, K0 * {x, x0}∗. Let F0 be a set in

K0 * {x, x0}∗. Let W0 be an open superset of F0 such that x, x0 /∈ W0, and let

U0 ⊆ U ′

0 be an open set containing x0 such that U0 ∩ W0 = ∅.
Pick n1 > 0 such that for every m ≥ n1, W0 ∩ U ′

m = ∅.
To define (Ui, Fi, Wi) for i > 0, consider Ki and U ′

ni
. Again, we may pick

Fi ∈ Ki \ {x, xni
}∗. Let Wi ⊇ Fi be open such that x, xni

/∈ Wi. Let Ui ⊆ U ′

ni
be

an open set containing xni
and such that Ui ∩ Wi = ∅. Pick ni+1 > ni such that

for any m ≥ ni+1, Wi ∩ U ′
m = ∅.

Now note that

K ∈ I ⇒ ∀n, K∗ meager in Kn ∩ K(Wn);

K /∈ I ⇒ ∃n, Kn ∩ K(Wn) ⊆ K∗.

In other words, conditions (1) and (2) hold with the sets Kn replaced by the sets
Kn ∩ K(Wn). Therefore we may simply assume that Kn ⊆ K(Wn).

We now define L ⊆ K(E). For n, j ∈ N, first define closed sets

An,j =

{

Uj if j < n,

E \
⋃

i<n(Ui + 1/j) if j ≥ n.

Also, for every n ∈ N, let Un,j, j ∈ N, be non-empty disjoint open subsets of Un.
(This is possible because, since {xn} is not open, it must be a limit point of E.)

Define sets Ln,j as follows: for L ∈ K(E),

L ∈ Ln,j ⇐⇒ ∃F ∈ Kn such that F ∩ An,j ⊆ L and L intersects Un,j.

Let L =
⋃

n,j Ln,j . Since each Ln,j is closed upwards, so is L.

Claim: K ∈ I ⇐⇒ K∗ is nowhere dense in L.

Let K ∈ I. We want to show that L \ K∗ is dense in L. Let L1 ∈ Ln,j , i.e.,
L1 intersects Un,j and there exists a set F ∈ Kn such that F ∩ An,j ⊆ L1. Let

L ⊇ L1 be close to L1, satisfying L1 ⊆ Int(L) and Int(L) = L. Note that L is
non-meager in Un,j.

Consider the set D = Kn ∩ {F : F ∩ An,j ⊆ Int(L)}. D is a non-empty open
subset of Kn. (Openness follows from this easily checked fact about K(E): if
A ⊆ E is closed and U ⊆ E is open, then {F ∈ K(E) : F ∩ A ⊆ U} is open.)
Since K ∈ I, K∗ is meager in Kn. So D * K∗. Let F1 ∈ D \ K∗. Now we can
remove from L an open U ⊇ K where U is chosen small enough so that U∩F1 = ∅
and L \ U is still non-meager in Un,j . The set L \ U is in Ln,j \ K∗ and is close
to L.

Conversely, suppose K /∈ I. We want to show that there exists an open set
U ⊆ K(E) such that ∅ 6= U ∩ L ⊆ K∗.
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Let C =
⋃

n Un ∪ {x}, a closed set. Write K \ C =
⋃

j Kj , where Kj =

K \ (C + 1/j), which is closed. Now,

K = (K ∩ {x}) ∪
⋃

n

(K ∩ Un) ∪
⋃

j

Kj .

Since I is a σ-ideal and {x} ∈ I, we have two possible cases: either some
K ∩ Un /∈ I or some Kj /∈ I.

Case 1: There exists n such that K ∩ Un /∈ I.

In this case we fix such an n, and fix m such that Km ⊆ (K ∩ Un)∗. If m ≤ n
then Un ∩ Wm = ∅. So m > n. This means that Un is one of the sets Am,j .

Let V ⊇ Un be open such that V ∩ Ui = ∅ for all i 6= n and V ∩ Wn = ∅. Let
W = V ∪ Um,j.

Claim: ∅ 6= L ∩ K(W ) ⊆ K∗.

It is clear that Lm,j ∩ K(W ) 6= ∅. Let L ∈ K(W ) ∩ L. For any i /∈ {n, m},
L∩Ui = ∅. Also, L∩Wn = ∅ and L∩Um,j′ = ∅ for all j′ 6= j. So the only possibility

is that L ∈ Lm,j , i.e., there exists a set F ∈ Km such that F ∩Am,j = F ∩Un ⊆ L.

Since F ∩ Un ∩ K 6= ∅, we have L ∩ K 6= ∅.

Case 2: There exists j such that Kj /∈ I. Fix m such that Km ⊆ K∗

j . Fix δ > 0

such that Kj ∩
⋃

i<m (Ui + δ) = ∅ and let k ∈ N such that k ≥ m and 1/k < δ.

Let W = (Wm \
⋃

i<m Ui) ∪ Um,k.

Claim: ∅ 6= L ∩ K(W ) ⊆ K∗.

It is clear that K(W )∩Lm,k 6= ∅. (To get something in this set, we can simply
take any F ∈ Km and join some piece of Um,k to F ∩ Am,k.) So K(W ) ∩ L 6= ∅.

Now let L ∈ K(W ) ∩ L. As before, the only possibility is that L ∈ Lm,k, i.e.,
there exists a set F ∈ Km such that F ∩ Am,k = F \

⋃

i<m (Ui + 1/k) ⊆ L. Since
F ∈ Km, F ∩ Kj 6= ∅. Let x ∈ F ∩ Kj. Since 1/k < δ, we have x ∈ L. Therefore
L ∈ K∗

j ⊆ K∗.
So in both cases, K∗ contains a non-empty relatively open subset of L. Finally,

set F ′ = L.
To deal with the case where I has no infinite set, we note that in this situation

I is of the form K(A), where A is a countable Gδ set. (In fact, A is just
⋃

I,
which is Gδ since I is Gδ.) In this case, we let Cn, n ∈ N, be closed subsets of E
such that E \ A =

⋃

i Ci, and set Kn = {Cn}. The sets Kn satisfy the conditions
(1) and (2). Now let x ∈ A. (If no such x exists then I = {∅}; for this ideal we
may simply set F ′ = {E}.) Since {x} is in I, it is not open and we may find a
sequence of distinct points xi in the dense set E \ A, converging to x. For any
n, Cn does not contain x. So by replacing {xi} with a suitable subsequence, we
may assume that Cn is disjoint from {x} ∪ {xi : i ≥ n}. We may now let U ′

i be



A note on Gδ ideals of compact sets 573

open neighbourhoods of xi with disjoint closures, and exactly as in the case where
I had an infinite set, proceed to define sets (Ui, Fi, Wi) satisfying all the listed
properties. The construction of these sets succeeds because it remains true that
if ni ≥ i, then Ki \ {x, xni

}∗ 6= ∅.
At this point we deal with two subcases. Suppose first that the sequence {xn}

contains infinitely many non-isolated points. In this case we assume that in fact
each xn is non-isolated; this allows us to construct the sets Un,j and carry out the
rest of the proof exactly as before.

Now consider the alternative: all but finitely many xn are isolated. In this case
we assume that every xn is isolated. For n ∈ N, define

Ln = {F ∈ K(E) : Cn \ {x0, . . . , xn−1} ⊆ F and xn ∈ F},

and set L =
⋃

n Ln, which is obviously closed upwards. Now for any K ∈ K(E),
K∗ is nowhere dense in L if and only if K ∈ I. To see this, let K ∈ I. K consists
of finitely many points of A, which are all non-isolated. So if F ∈ Ln we may
remove a small open superset of K from F without removing xn or any point of
Cn, resulting in a set in Ln \ K∗ that is close to F . (Recall that xn /∈ A.)

Conversely, if K /∈ I, pick y ∈ K \ A. If y = xn for some n, then {y} is open,
and {y}∗ ∩ L is a non-empty open subset of L, which is all we need. If on the
other hand y ∈ E \ {xn : n ∈ N}, fix m such that y ∈ Cm. Consider the open set
V = Wm \ {xi : 0 ≤ i < m} ∪ {xm}; it is immediate that ∅ 6= K(V ) ∩ L ⊆ {y}∗.
The set L is thus as required, and we may set F ′ = L. �

Corollary 3. Let I ⊆ K(E) be a coanalytic ideal with property (∗) containing

no non-meager sets. Then there exists a closed set F ⊆ K(E) such that F is

closed upwards and for any K ∈ K(E),

K ∈ I ⇐⇒ K∗ ∩ F is meager in F .

Proof: An immediate consequence of Theorem 1 and Theorem 2. �
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