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On some equivalent geometric properties
in the Besicovitch-Orlicz space of almost

periodic functions with Luxemburg norm

FAziA BEDOUHENE, MOHAMED MORSLI, MANNAL SMAALI

Abstract. The paper is concerned with the characterization and comparison of
some local geometric properties of the Besicovitch-Orlicz space of almost periodic
functions. Namely, it is shown that local uniform convexity, H-property and
strict convexity are all equivalent. In our approach, we first prove some metric
type properties for the modular function associated to our space. These are then
used to prove our main equivalence result.

Keywords: locally uniform convexity, strict convexity, H-property, Besicovitch-
Orlicz space, almost periodic functions

Classification: 46B20, 42A75

1. Preliminaries

We start with some notations and definitions.

In what follows ¢ is a Young function i.e., an even convex function such that
©(0) =0, p(u) > 0iff u > 0 and lim|,| o p(u) = +oo0.

Let M(R) be the space of Lebesgue locally integrable functions on R. The
functional

— 1 [T
e s MOR) = 0.4 poe() = T oz [ s

is a convex pseudomodular and the associated modular space

B*R) = {feM®)lm pps(af) =0}
{f € M(R), ppe(Af) < +00, for some A > 0},

is called the Besicovitch-Orlicz space.
We endow B?(R) with the Luxemburg pseudonorm (cf. [5], [12])

1f e = inf{k = 0. ppe (%) < 1} .

Beside the norm convergence, we may define in B?(R) the modular conver-
gence: a sequence { f,,} is modular convergent to some f if there exists k£ > 0 such
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that limy, o0 ppe (k(fn — f)) = 0. It is well known that norm convergence implies
modular convergence and these are equivalent when ¢ satisfies the As-condition:

(Ag) there exist K > 2 and ug > 0 such that ¢(2u) < Ke(u), for all u > .

Let C°a.p. be the class of Bohr’s almost periodic functions. The Besicovitch-
Orlicz space of almost periodic functions denoted by B¥a.p. (resp. B®a.p.) is the
closure of C°a.p. in B¥(R) with respect to the pseudonorm ||.||pe (resp. to the
modular convergence), more exactly:

B?a.p. = {f € B¥ (R) : 3(pn);2, CC°a.p., lim [|f —pul 5. = 0}
={f € B*(R) : 3(pn)p2y CC°ap., Yk >0, im ppe (k(f —pn)) =0},

B¥a.p. = {f€B?(R):3(pn)s_, CC°up., Ik >0, lim ppe (k(f—pn)) =0}

It is clear that
ij.p. - ij.p. C B?(R).

When o(z) = |x|, we denote by B(R) and Bla.p.(R) the respective associated
spaces. The notation pg: is used for the corresponding pseudomodular.

From [5] and [12] we know that ¢(|f|) € Bla.p. when f € B%a.p. Then by a
classical result (cf. [1]) the limit exists (and is finite) in the expression of ppe(f),
ie.

+T
(1) pue(f) = lim 5 [ (s dr, £ € Brap.

T—+o0 -7

This fact is very useful in our computations.

We now recall some convexity notions that will be considered below.
Let (X,].]|) be a Banach space and dx : [0,2] x S(X) — [0, 1] be the function
defined by

1
ox(e,z) = inf{l - H§(x+y)H y € B(X),||lz -yl > 5},

where the notations S(X) and B(X) are used for the unit sphere and unit ball
respectively.

Then X is called locally uniformly convex (write LUC) if §x (g, z) > 0 whenever
e €]0,2] and x € S(X). The function dx is the modulus of local uniform convexity
of X.

There are also sequential characterization of LUC (cf. [11]):
The space (X, ||.||) is LUC if and only if for each x € S(X) and every sequence
(yn) in S(X) (or B(X)) such that ||3(z +y,)| — 1 it follows that ||y, — z|| — 0.
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We recall that a Banach space (X, ||.||) is strictly convex (write SC) if for any
xz,y € S(X) with ||z — y|| > 0, we have ||z + y|| < 2. It has the H-property
if, whenever a sequence (x,,) is weakly convergent in X to some z € X (write

w . .
xn — x) and ||z,|| — ||z, it follows that z,, — 2 in norm.

Clearly, every uniformly convex space is LUC. We also know from [8] that LUC
spaces are SC and have the H-property (also called the Radon-Riesz property or
Kadec Klee property).

These properties among others from the geometry of Banach spaces, have some
important applications to approximation and optimization theory.

A full characterization and some comparison results concerning these properties
in the case of Orlicz spaces may be found in [3], [4], [6], [7], [9], [10], [16].

In [12], we characterized the strict and uniform convexity of the space Ewa.p.,
namely it is shown that

(1) the space Ewa.p. is SC'if and only if ¢ is strictly convex and satisfies the
As-condition;

(2) the space E‘/’a.p. is UC if and only if ¢ is strictly convex on R, uniformly
convex for large u (i.e. for |u| > d with some fixed d > 0) and satisfies the
As-condition.

The papers [13], [14] are respectively concerned with similar characterizations
in the case where the space B¥a.p. is endowed with the so called Orlicz norm.

In this work, completing the results in [12], it is stated that SC, LUC and
H-property are all equivalent in the Besicovitch-Orlicz space of almost periodic
functions B¥a.p.

2. Auxiliary results

Let P(R) be the family of all subsets of R and 3(R) the X-algebra of its
Lebesgue measurable sets. We define the set function:

_ — 1 [T — 1
A = T, o7 [ xadi= T (40T 47)

where x4 denotes the characteristic function of A € E(R).

Clearly, @ is null on sets with finite measure p and is not additive.
As usual, a sequence of X-measurable functions { f }x>1 is called T-convergent
to f when, for all ¢ > 0

lim 7 {t € R, |fi (1) — ()] > e} = 0.

Let now {4;};>1, 4; € ¥ be such that A;NA; =0ifi # j and UZ-21 A; C[0,q],
a < 1. Put f =35 aixa, with > 5, ¢p(a;)u(4i) < +oo and let f be the
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periodic extension of f to the whole R (with period 7 = 1). Then for all ¢ > 0
there exists a Bohr almost periodic function P such that

.]?_Pa

(2.1) PBé < ) <e (see[12]).

The following technical results are of importance in the proof of our main
theorem.

Lemma 1. Let f € B¥a.p. Then for all € > 0 there exists § > 0 such that for
each Q € ¥ with i(Q) < § we have ppe(fxq) <e.

PRrOOF: We first prove the result in the case when f € C a.p.
Let M = sup,cg ©(|f(z)]) and 0 = 7. If Q € ¥ is such that 77(Q) < ¢ we will
have

pBe (fxQ) = pp (p(|f1)x@) < ppr (Mxq) = Mu(Q) < e.

Now, if f € Bfa.p. we take P € C a.p. such that ppge (2(f = P)) < € and the
result follows directly from the inequality

1 1
pBe (fXxq) < SPBe 2(f—=P)xq)+ 5PBe (2Pxq) -
0

Lemma 2. Let {f,}n>1 be a sequence in B?(R). Then:
(i) if {fn}n>1 is modular convergent to f € B¥(R) it is also fi-convergent
to f.
(i) If {fn}n>1 is @-convergent to f € B¥(R) and there exists g € B¥a.p.
satistying max(| fn|, |f]) < g. Then
lim ppe (fu) = ppe(f).

n—oo

(iii) If {fn}n>1 is modular convergent to f € B¥a.p., we have

lim  ppe(fn) > ppe(f).
n—-+o0o
(iv) If f € B¥a.p. and P, is its sequence of Bochner-Fejér’s polynomials we
have lim,, o0 ppe (Ppn) = ppe(f).
PROOF: These properties are proved in [15] (see Lemma 1, Lemma 4, Proposi-
tion 6 and Corollary 7 respectively of this reference). O

Remark 1. Using Lemma 1, we may prove the following property which is in

some sense the converse to (i):
(i)' If {fn}n>1 is G-convergent to f € B¥(R) and there exists g € B¥a.p.
such that max(|fyn|,|f]) < g, then {fn}n>1 is also modular convergent

to f.
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Indeed, let e > 0 and E,, = {t € R : |fa(t) — f(t)| > €}. Then in view of
Lemma 1, there exists § > 0 such that:

7 (En) <0 = max (ppe (2fnXE,)pBe (2fXE,)) < pBe (29XE,) < ¢(€).

Now, since {fn}n>1 is G-convergent to f, we have f(E,) < d, Vn > ng (for
some fixed ng). It follows that

pge (fn—f) < ppe (fn = ) xE,) + pBe (o — f) XEE)

< 3o+ (2faxs,) + ppe (2Fxs,)] + 9T ()

< ppe (29xE,) + ©(e)
< 2¢(e).

Then, since € > 0 is arbitrary we get lim,, o ppe (fr — f) = 0.

Lemma 3. For f € B¥a.p., the following equivalences hold:

(i) |IfllBe <1 ifand only if ppe(f) < 1.
(ii) ||fllge = 1 if and only if ppe(f) = 1.

PROOF: This lemma was initially proved in [12, Corollary 2], under the additional
condition ¢ € Ay. The proof of the present statement may be found in [13,
Lemma 4.2]. O

Lemma 4. Let {f.}, {gn} be sequences in B¥a.p. such that ppe(fn) < 1,

pBe(gn) < 1landlim, . ppe (%(fn + gn)) = 1. Suppose that y is strictly convex.
Then the sequence { f,, — gn}n is i-convergent to zero.

PROOF: Suppose the assertion is false. Then, there exist ¢ > 0, ¢ > 0 and a
sequence (ny)x increasing to infinity such that z(Ey) > €, where E, = {t € R :
|fnk(t) — 9ny, (t)| > U}'

Let k. > 1 be such that

_ 1
i(E) > — = ppe (XE) > =
(>

= ™

Then putting

Ap ={t e R:|fn, ()] >k},
Br={t e R:|gn, ()] > ke},
we obtain

1 > PBe (fnk> > PB¥ (fnkXAk> > kEPB*" (XAk) .
It follows that ppe (x4,) < k—li and then

7 (Ag) <



30 F. Bedouhene, M. Morsli, M. Smaali

In the same way we may show that

R(Br) < 7
Now, define the set
Q= {(u,v) €R*: Ju| < ke, o] < ke, |u—v] > 0},

and consider the function

20 (%)
@ (u)+¢(v)

Since ¢ is strictly convex we have F(u,v) < 1 for all (u,v) € Q. Then using the
continuity of ¢ on @ (where Q is a compact set of R?), it follows that

F(u,v) =

sup F(u,v) =1—4§ for some 4§ €]0,1].
Q

More precisely, we have

u+v p(u) + ¢(v)
w( ) <(1-9)E2s 2 V() € Q.

2

Let now t € Ei\(Ax U By). Then f,, (1), gn,(t) € Q and consequently

22) @ (M) <14 sa<|fnk<t>|>;so<|gm<t>|> |

It follows that

2
> PBe (fnk)—i_pB“’ (gnk) (fnk +gnk>
z 2 B G

> lim  —
T—too 2T Jg\(A,UBL)N[-T.+T)

[so<|fnk<t>|>;w<|gnk<t>|> ., <|fnk<t> ;gnk@lﬂ dt

[ (I fri ()]) + @ (Ign, (D)])] dt
T—+oo 2T /[Ek\mkum)]m[:nm * *

>4 Tim i/ o (M) "
T—+o0 2T Jip\(A UBW)IN[-T,+T] 2
g & 13 13 g
Soo(I) (S _5Y=55,(2
—5@(2) (E 4 4) 52@(2)’

a contradiction with the hypothesis lim,, 1 PBV’(@) =1. O
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Lemma 5. Let {f,}n,>1 be a sequence in B¥a.p. Suppose that {fn}n>1 is [i-
convergent to some f in B¥a.p. and lim,,—, 1o ppe (fn) = ppe(f). Then

e (B ) =0

PROOF: It is clear that {¢( Lfn

e (fal) +o (D) (lfn I)
¥
2

1 )}n is Ti-convergent to 0 and that the sequence

gn = D)
is Ti-convergent to g = (| f]).
Now, we shall prove that

lim ppi(gn) > pB1(g) = pBe(f)-

n—-+4+oo

For, let
if
(1) = 9(t) : lgn(t)] > 1g
gn(t) if g (@) < g
Then,

if |gn(t)| > 1g9(t)],

ot "{|gn<>g<t>| it Jga(0)] < o))

It follows that |, (t) — g(t)| < |gn(t) —g(t)| and, consequently, the sequence {h, },
is p-convergent to g.

Now, since |h,(t)| < |g(t)] and g € Bla.p., using Lemma 2 we deduce that
limy,— 400 pB1(hn) = pp1(g). Hence,

[ () =

ppe (f) =ppi(9) = lim ppi(h,) < Lm  ppi(gn).

n—+00 n—+o00

Then

pae(f) = ppr(e(|f])
< lim pBl<M <|fn >

n—-4o0o 2

< lim {%pgw(fn)+%/)3¢(f) pw( f>}

n—-+o0o

<ppe(f)— m  ppe (f"_f)-

n——+oo 2

Thus limy,— 10 ppe (£25L) = 0. 0
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Let L#([0, 1]) be the usual Orlicz space of functions defined on [0, 1]. We denote
by p, and ||.||, the respective associated modular and Luxemburg norm. We will
show that L¥([0,1]) is isometrically embedded in the Besicovitch-Orlicz space of
almost periodic functions B¥a.p.

Proposition 1. Let f € L¥([0,1]). Then
(1) jffis the periodic extension of f to the whole R (with period 7 = 1), we
have f € B%a.p., N B
(2) the injection map i : L¥([0,1]) — B¥a.p., i(f) = f is an isometry with

respect to the modulars and for the respective Luxemburg norms.

PRrROOF: Let f € L¥([0,1]) and Exy = {t € [0,1] : |f(¢)] > N}. It is known that
f € LY([0,1]) (see [3]) and consequently imy_ o u(En) = 0.
It follows that

lir_ri_l Al f@)|) dt = 0 for some A > 0.

N En

Let fn = fxgg, where E; denotes the complement to Ex. Then, for a given
€ > 0, there is an N. € N such that

| e -avohas [ o) dase
0 E

Ne

Now the function fy. being bounded, there exists a sequence of simple func-
tions (Sn.)n uniformly convergent to fyn.. In particular, there exists a simple
function Sy, such that sup,co 1 [M(fn. (t) — Sn.(t))] < e. It follows

/Olso (3170 - 5w 1) at

= %/0 P (ALS(E) = fv. (O dt+%/0 o (A fx.(t) = Sn. (D)) dt <.

We denote by f, ]?NE and S N. the respective periodic extensions (with period
7 = 1) of the functions f, fy. and Sy_.. We have from the periodicity properties

of f, fn. and Sy.:

- <§ (7 - §N€)> = dm /;Tso (g 7 - 8. (t)\) it
/Oi,o(gumsm <t>|) g <.

Moreover from (2.1) there exists P. € C” a.p. for which

o (5 (8w~ 1)) <
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Finally, putting o = min(%, 1) we get:

oo (37 ) = o (3G-5%)) om (1 (5 - 2)) ==

This means that fe E‘Pa.p.
It remains to show that ¢ is an isometry. Indeed, for f € B¥a.p. we have in
view of the periodicity of f (with period T'= 1)

po (7) = i 5 [ (0]) =0

In the same way, for each A > 0, we have:

06
pPBy \ —plp N s
and then

I11.. =inf{A > 0,95 ({) < 1} =it {3 > 0.0, (§) <1} =111,

Hence, i is an isometry for the respective modulars and also for the respective
norms. (Il

3. Main result
We can now state our main result.

Theorem 1. The following properties are equivalent:
(1) B¥a.p. is LUC:

(2) B‘Pap has the H-property;
(3) B‘Pap is SC;
(4) ¢ is strictly convex and ¢ satisfies the Ay-condition.
PROOF: It is known from [12] that the space E‘/’a.p. is strictly convex if and only
if ¢ is strictly convex and satisfies the As-condition. We will show that these
properties are equivalent to the local uniform convexity and the H-property of
the space.

The implication (1) = (2) holds in general Banach spaces.

(2) = (3): Suppose that B¢a.p. has the H-property. We prove first that the
Orlicz space L¥([0,1]) has the H-property as well.

For, let {f,} be a sequence in L¥([0,1]) such that:

o {fn} converge weakly to some f in L¥([0,1]),
o [falle — 1F1e-
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Then, for each G in the dual space (B?a.p.)*, we have G oi € (L#([0,1]))*.
Moreover, since f, — f weakly in L¥([0,1]), we get

Goi(fn) — Goi(f)

or equivalently G(:fvn) — G(f) Thus :fvn — :fvweakly in E‘Pa.p.

It is clear that ||}:7:||B</> — || fll 3+ and since B®a.p. has the H-property, we can
write || fn — fllpe — 0 and finally || f, — f|l, — 0. This means that L#([0,1])
has the H-property.

It follows from [16] that ¢ is strictly convex and satisfies the Ag-condition.
Thus using [12] we conclude that B®a.p. is strictly convex.

Let us show finally that (4) = (1): For, let f,, f be in E‘/’a.p. with
‘% — 1 as n — +oo.

1fullge = £l 5o =1 and ]
B¥

Recall that since ¢ satisfies the As-condition, we have B¥a.p. = Ewa.p. From
Lemma 3, we have also

f+fn
2

ppe (fn) = ppe(f) =1 and pBw( )—>1 as n — —+00.

In view of Lemma 4, it follows that the sequence {f,}, is Ti-convergent to f.
Then using Lemma 5 and the As-condition on ¢, we conclude that

[fn = fllge — 0 as n — 4o0.
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