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On the support of Fourier

transform of weighted distributions

MARTHA GUZMAN-PARTIDA

Abstract. We give sufficient conditions for the support of the Fourier transform
of a certain class of weighted integrable distributions to lie in the region 1 > 0
and z2 > 0.
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1. Introduction and notation

The goal of this work is to present a partial generalization to the 2-dimensional
case of a well known result proved by L. Schwartz in [11]. In that paper,
L. Schwartz states for dimension n = 1, necessary and sufficient conditions for
the Fourier transform of a distribution in an appropriate class to have its support
on the half-line x > 0. To achieve this goal, L. Schwartz introduces a notion of
product T f where T is a distribution that can be represented as a distributional
derivative of a continuous function, and f is a locally bounded variation function
whose derivative is a measure. The model in mind for f is the one-dimensional
Heaviside function H. This definition of product given by L. Schwartz is very
natural and it is based on the Leibniz formula for the derivative of a product.
However, when we consider the corresponding case for dimension n > 1, we need
to manage distributions that are derivatives of order at most n of continuous
functions, thus, it does not work to follow the scheme set by L. Schwartz be-
cause of the existence of terms that might not be possible to define. In this work,
we approach our result by appealing to a theorem proved in [6], hence, we turn
around the problem of considering a definition of product in the spirit of the one
introduced by L. Schwartz in [11].

An important role in this paper is played by the S’-convolution, a commutative
operation for tempered distributions developed by Y. Hirata and H. Ogata [6] and
R. Shiraishi [9] with the purpose of extending the validity of the Fourier exchange
formula F(S « T') = F(S)F(T'), where the product on the right-hand side must
be understood in an appropriate sense that will be made precise later.

In order to determine sufficient conditions to ensure that the Fourier transform
of a distribution T has its support in ;1 > 0,..., 2, > 0, we need to impose some
restrictions on T. These restrictions are related to the class of kernels that we
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need to consider in the setting of our problem. L. Schwartz in [11] considered the
classical Hilbert kernel p.v.%. Thus, for the n-dimensional case we may consider
the n-dimensional Hilbert kernel p.v.gc—l1 ® .- ®p.v.i. L. Schwartz in [11] and
J. Alvarez and C. Carton-Lebrun in [1] have characterized the class of tempered
distributions that can be S’-convolved with this kernel. The resulting class is a
weighted version of the space of integrable distributions: the space wy - --w, D’ 1,
where w; = (1 +x§)1/2, j=1,...,n.

It must be mentioned that there are other approaches to this problem (see, for
example, [8]). Basically, the technique employed by them is to define an analytic
representation of a distribution T € D}, on each complexified quadrant in order
to characterize the spectrum of T' by means of the support of the Fourier trans-
form of their boundary values. In the present work, we consider a larger class of
tempered distributions, namely, the family w; ---w, D}, (see [5, Proposition 5])
and our tool is the use of the operation of §’-convolution and a Fourier exchange
formula. It seems that it is possible to obtain a similar result as in [8, Theo-
rem 6.3] for the larger class of distributions T' € wy - - - wnD'L1 using the classical
technique of analytic representation, as soon as we state the corresponding re-
sults for boundary behavior of the convolutions T x K, where K is a kernel in a
class K that contains n-dimensional versions of the Poisson and conjugate Poisson
one-dimensional kernels. Some of these boundary behaviors are analyzed in [5].

This paper is organized as follows: in Section 2 we include a brief account of the
S’-convolution, as well as several other results related to the space wy - - - w, D} ;.
In Section 3 we state our main result concerning the support of the Fourier trans-
form of a distribution in this weighted class. For clarity, we will only approach
the case n = 2.

A few words about notation: partial derivatives will be denoted as 9%, where «
is a multi-index (a1, ..., a,). We will use the standard abbreviations |a| = ay +
coo Q=27 a8 For a function g, we will indicate with ¢ the function
r — g(—x). Given a distribution 7', we will denote with 7' the distribution
v — (T, ), where ¢ is an appropriate test function. The Fourier transform will
be denoted as F. The letter C will indicate a positive constant, possibly different
at different occurrences.

2. Preliminary results

To introduce the notion of &’-convolution that we use, we give a short review
of the spaces of functions and distributions related to this notion (see [12] and
3))-

The space of integrable distributions D}, is, by definition, the strong dual of
the space B of smooth functions ¢ : R” — C such that 9%¢ — 0 as |z| — oo,
for each multi-index o. B is a closed subspace of the space B consisting of all
smooth functions ¢ with the property that 0%y is bounded for every multi-index
«, endowed with the topology of uniform convergence in R™ of each derivative.
C§° is dense in B but not in B. According to [12, p.201], each T € D, can
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be represented as T = Y 4 .. 0%f,, where f, € L'. Thus, we have the strict
inclusions &’ € D}, C S'.

It is also possible to consider D}, as the strong dual of the space B, provided
that we endow B with a topology that gives rise to the following notion of sequence
convergence: a sequence {¢;} converges to ¢ if, for each multi-index «, one has
sup; [[0%¢jllec < oo and the sequence {0%p;} converges to 0%p uniformly on
compact sets. If we denote as B, the resulting topological space, it can be seen
that C§°, and so B, is dense in B, and hence D/, is the dual of B, ([12, p.203]).

We use these spaces to define the notion of &’-convolution.

Definition 1 ([9]). Given two tempered distributions 7" and S, we say that the
S’-convolution of 7' and S exists if T'(S * ) € D}, for every ¢ € S. When the
S’-convolution exists, the map S — C

pr— (T (S*¢).1)p 5

Li-e
defines a tempered distribution which is denoted by T % S.

R. Shiraishi proved in [9] that this operation is commutative. Moreover, Defi-
nition 1 coincides with the classical definition in all the cases in which the latter
makes sense.

Y. Hirata and H. Ogata in [6] introduced the S’-convolution to extend the
validity of the Fourier exchange formula

(1) F(Tx8)=FT)F(S)

originally proved by L. Schwartz for pairs of distributions in the Cartesian product
O, x & ([12]). Later, R. Shiraishi showed in [9] an equivalent definition of S’-
convolution, which is the one we are using here.

Remark 2. Y. Hirata and H. Ogata in [6] proved that if the S’-convolution of
two tempered distributions S, T is defined, then the formula (1) holds in the
following sense: for any two d-sequences {pr}72, and {¢x}72,, the sequences
{(F(T) = i) F(S)}2, and {F(T)(F(S) * ¢r)}32, converge in D’ to the same
distribution and this common limit is denoted by F(T')F(S).

As in [6] one defines a d-sequence as a sequence {¢y }52 ; of non-negative func-
tions in C§° with the following properties:

1. Supp i converges to 0 when k& — oo;
2. [ =1 for every k.

Mikusiniski in [7] proposed another definition for the product of two distribu-
tions S and T: ST is the distributional limit (if there exists) of {(S * ¢i)(T *
i) 172, where {¢r}72, and {¢;}72, are arbitrary d-sequences. Shiraishi and
Itano proved in [10] that both definitions are equivalent.

We return to this point in the following section.
Following [11], we give the next definition. As mentioned before, for clarity we
will restrict ourselves to the case n = 2.
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Definition 3. Let us denote by ., the one-dimensional Dirac measure concen-
trated at 0 acting on the variable :I:J, j=1,2. We define the following tempered
distributions acting on test functions on R?:

1 1 1 1 1 1 1 1
Ky = 0 — —=pv.— ® g, ——,5$1®p.v.—+—.2p-v-—®P-U-_ )
2 (mi)” (i) T2 (mi) x x2
1] 1 1 1 1 1 1 1]
K2:—2 o+ —.p-’U-_®6acz_—~5I1 ®p.’u.———.2p.’U-—®p-U-_ )
22| (mi)" m (mi) T2 (mi) 1 T3 |
1] 1 1 1 1 1 1 1]
K3 = =~ O+ —=pV.— ®bzy + —=0z ®PV.— + ——=5pV.— QpU.— |,
22| (mi)" m (mi) 2 (i) 1 T3 |
1] 1 1 1 1 1 1 1
K4:—2 6——pv_®6m2+—511 ®pU__—2pU_®p'U_
22| (mi)"m (mi) 2 (mi) 1 T3 |

A straight computation shows that
K1+ Ko+ K3+ K4 =9,

1 1 1
Kl—K2+K3—K4:—.2p.U—® OVo— .
i) oy

From here, it is clear that any tempered distribution is &’-convolvable with K7 +
K> + K3+ K, however the same is not necessarily true for K1 — Ko + K3 — K.
L. Schwartz studied in [11] the S’-convolution with the one-dimensional Hilbert

kernel p.v.2. For this purpose he introduced a weighted version of the space
xT

D’ (R). Namely,
Definition 4 ([11]). Let w(z) = (14 22)Y/? for z € R. Then
wDy: (R) ={T € D'(R): w™'T € D}, (R)}
with the topology induced by the map
wD;, (R) — D}, (R)
T — w!'T.

L. Schwartz observed in [11] that the condition T' € wD’ ; (R) should be viewed
as the most general condition under which 7" and p.v.% are S’-convolvable.

J. Alvarez and C. Carton-Lebrun extended this result in [1] to the n-dimensional
case in two directions: by considering the Riesz kernels p.v.mmT’,;l, j=1...,n,
and the n-dimensional Hilbert kernel. The appropriate kernel to consider in this

work is the n-dimensional Hilbert kernel p.v.-— ® --- ® p.v. —. The relevant
weighted spaces related to this case are given 1n the followmg deﬁn1t1on
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Definition 5 ([1]). Let w; = (1 +x?)1/2, j=1,...,n. Then
w1 - Wy /Ll = {TGD':wf1~~~w;1T€D’Ll}
with the topology induced by the map

/ /
wy - wp Dy — Dy

-1 —1
T — w; -w, T.

The space w; - - - w, D}, is the largest space of tempered distributions for which
the &’-convolution with p.v.gﬁi1 - ®p.v.mL exists. In fact,

Theorem 6 ([1]). Let T € S'. Then, the following statements are equivalent:
(a) T € wi - wy Dy
(b) T is 8'-convolvable with p.v.xll ® - ®@puv.Lt.
The proof of Theorem 6 is based in the following simple representation formula
for distributions in the space wy - - -wnD’Ll:
Proposition 7 ([1], [2]). Given T € D', the following statements are equivalent:

(a) T € wy---wp, Dy

(b) T =To+> xj, -+, Tj,...j,, where Ty, T}, ...;, € D, and the sum is taken
over all the different k-tuples (j1,...,7k) with 1 < j1 < -+ < jp < n,
1<k<n.

L. Schwartz observed in [11] that wD’, (R) coincides with the space D}, (R) +
xD’ 1 (R), so Proposition 7 can be considered as an extension of this result.

Now, concerning the tempered distributions K;, j = 1,2,3,4, considered in
Definition 3 above, we obtain the following result:

Proposition 8. Every T' € wiwy D}, is §'-convolvable with K;, j =1,2,3,4.

PROOF: We need to prove that T is S’-convolvable with ¢, ®p.v.é and p.v.% ®

0z, Since wl_lwng € D)., for the first kernel it suffices to show that w;w; (0., ®
p.v.é)v * @ € B for each ¢ € S because D}, is closed under multiplication by

functions in B.
Indeed

\%
((511 ®p.v.$—12> w) (61,6) = lim Py =8)

€70 Jlya|>e Y2

= lim / +/
e=0 | Je<|yal<1 1<]y2|

e—0
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Concerning the term I; we have

|| =
Y2

/ 0 (=&1,y2 — &) — 0 (=&, &) p
<Jyz21<1

(=&, ty2 — &2)| dt dys.

552

e<|y2|<1

Using the fact that for 0 <t <1 and |y2] < 1

/
wy (§&2) < C (1 + [ty — §2|2)1 :

we have

w@wemn <o f (vie?) " (1 iar)
e<|Y2

x (1 + [tys — £2|2)1/2 ‘
<C.

Jip
9P ey tyy — &)| dtd
852( §1,ty2 — &a) Y2

Also,

o o p=8ny = &)
9¢,' O, [uu (&) wa (&) /<|y2|<1 " dy21

Z Z aﬂlwl 51 aﬁzw2 (52)

(2) 0<f1<a 0<B2<5a2

_ _ dyz
~ / o (9?11 518?22 B2 ( &1, ys — §2>
<|yz2]<1

dy
o (62) w2 (&) / 00530 (~61,1m — €2) 2

e<lyz2|<1

and noticing that

Og wy (§1) 02w (&2) = Wi g, (€1) Was, (&2) wr (&1) wa (&),

where W1 g, (&1), Wap,(£2) € B, we can proceed in the same way as above to
show that both terms in (2) are bounded.
For the term Is we can use the estimate

wy (&) < C (1 + e — y2|2)1/2 (1 . |y2|2)1/2

N\ 1/2
<C (1 + & — 2| ) /2]
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if |y2| > 1. Thus
)Jwa (€2) | 12|
1/2 1/2
2 2
[ (+1al) " (1416 -nl) Ul (-6 - &)
1<]yz|
C.

w1(1

£
<

IN

For the derivatives we proceed as before.
To manage the other kernel we use exactly the same techniques.
This completes the proof. (I

3. Fourier transform of distributions in w,w;D},
Let us denote by H; the classical Heaviside function in R?, that is,

1 if 21 >0 and x5 >0,
0 otherwise,

Hy (x1,20) = {

and let Hy, Hs and H,4 the following modified versions of Hj:

1 if 21 <0 and x5 >0,
0 otherwise,

Hy (x1,22) = {

1 if 21 <0 and x5 <0,
0 otherwise,

Hj (x1,22) = {

1 if 21 >0 and x5 <0,
0 otherwise.

Hy (21, 22) {

A straight computation shows that for j =1,2,3,4
F(K;) = Hj.

In the following proposition we consider the Fourier transform of distributions
in wywoD 1.

Proposition 9. Given T' € wywyD} ., F(T) can be represented (in many forms)
as a distributional derivative

82
- 81'1(9:62 ’

F(T

where f is a continuous function, slowly increasing at infinity.

Proor: By Proposition 7 we can write

T ="Ty+ x1T1 + 22T + 21227112,
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where Ty, T1, T> and Ti2 belong to D} ,. Thus

1 0 1 0 1 02
F(T)=F(To) — 5=5—-F (T1) — Q—Ma—m]‘—(ﬂ)Jr WM

F (T12) .
Since the Fourier transform sends D’Ll into the space of continuous functions
slowly increasing at infinity, we have that F(Ty), F(T1), F(T2) and F(T12) satisfy
these conditions.

Now, a standard procedure (see [3, p.180]) allows us to conclude the desired
result. (]

We remark the fact that we can also obtain a similar result for the space
wy - --wy, D} 1 using Proposition 7.

According to Proposition 8 every T' € wiwyD}, is S'-convolvable with the
kernels K, j = 1,2,3,4. Since the Fourier exchange formula (1) is valid for any
two tempered distributions that are &’-convolvable, we have that

3 F (T« Kj) = F(T)F (K;)
®) = F(T)H,

j = 1,2,3,4. This shows that the product F(T)H; is defined in the sense de-
scribed in Remark 2.

We are looking for sufficient conditions for the Fourier transform of T €
wlwgD}Jl to have its support in the set x1 > 0 and x2 > 0. Thus, it seems
natural to give an important role to the function Hy + H3 + H,4, for which the
product F(T')[Hs + Hs + Hy] is defined.

Indeed, since T is 8’-convolvable with Ky + K3 + K4 we have

F(T*(Ko+ K3+ Ky)) = F(T)F (Ko + K3+ Ky)
(4) = F(T)[F (K2) + F (K3) + F (K4)]

Now, we prove the following result:

Theorem 10. Let S be a distribution that can be written as S = #;mf, where
f is a continuous function, slowly increasing at infinity, and the derivative is taken
in D'. Let us assume that the product S[Hs + Hs + H,| is defined in the sense
described in Remark 2. Then, S has its support in the set 1 > 0 and x5 > 0 if
S[Ha + Hs + Hy| = 0.

PROOF: Let us suppose that S[Hy + H3 + Hy] = 0. Thus, for every d-sequence
{pr}32, we have

lim (S#py)(Hy+ Hs+ Hy) =0 in D.

k—o0
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This implies that for every ¢ € C§°

Jim (S« op) (Hz + Hy + Hy) ) = 0.

Denote C' = R? \ {(z1,22) : 21 > 0, x5 > 0}. Take a smooth and compactly sup-
ported function 8 such that supp @ C C. Then, using the fact that S * o — S in
D’ and that § = 6(Hy + Hs + H,) we have

(S,0) = klim (S * g, 0)
= lim <S*(pk,9(H2+H3+H4)>
(

k—oo
= khm (S * Sﬁk) (HQ + H3 + H4) ,9>
= 0.
Therefore, S has its support in {(x1,z2) : 21 > 0, 22 > 0}. O

As an immediate consequence we obtain:

Corollary 11. Let T € wlwgD’Ll. Then, F(T) has its support in the set z1 > 0
andzg ZOIfT*(K2+K3+K4) =0.

PRrOOF: If T % (Ko + K3 + K4) = 0, then we can apply the Fourier exchange
formula (1) to obtain

FT)F (K + Ky + Ki) = 0
or

F(T)[Ha+ Hs+ H4] =0
and by Theorem 10, F(T') has its support in the set 1 > 0 and 23 > 0. O
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