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On the support of Fourier

transform of weighted distributions

Martha Guzmán-Partida

Abstract. We give sufficient conditions for the support of the Fourier transform
of a certain class of weighted integrable distributions to lie in the region x1 ≥ 0
and x2 ≥ 0.
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1. Introduction and notation

The goal of this work is to present a partial generalization to the 2-dimensional
case of a well known result proved by L. Schwartz in [11]. In that paper,
L. Schwartz states for dimension n = 1, necessary and sufficient conditions for
the Fourier transform of a distribution in an appropriate class to have its support
on the half-line x ≥ 0. To achieve this goal, L. Schwartz introduces a notion of
product Tf where T is a distribution that can be represented as a distributional
derivative of a continuous function, and f is a locally bounded variation function
whose derivative is a measure. The model in mind for f is the one-dimensional
Heaviside function H . This definition of product given by L. Schwartz is very
natural and it is based on the Leibniz formula for the derivative of a product.
However, when we consider the corresponding case for dimension n > 1, we need
to manage distributions that are derivatives of order at most n of continuous
functions, thus, it does not work to follow the scheme set by L. Schwartz be-
cause of the existence of terms that might not be possible to define. In this work,
we approach our result by appealing to a theorem proved in [6], hence, we turn
around the problem of considering a definition of product in the spirit of the one
introduced by L. Schwartz in [11].

An important role in this paper is played by the S′-convolution, a commutative
operation for tempered distributions developed by Y. Hirata and H. Ogata [6] and
R. Shiraishi [9] with the purpose of extending the validity of the Fourier exchange
formula F(S ∗ T ) = F(S)F(T ), where the product on the right-hand side must
be understood in an appropriate sense that will be made precise later.

In order to determine sufficient conditions to ensure that the Fourier transform
of a distribution T has its support in x1 ≥ 0, . . . , xn ≥ 0, we need to impose some
restrictions on T . These restrictions are related to the class of kernels that we
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need to consider in the setting of our problem. L. Schwartz in [11] considered the
classical Hilbert kernel p.v. 1x . Thus, for the n-dimensional case we may consider

the n-dimensional Hilbert kernel p.v. 1

x1
⊗ · · · ⊗ p.v. 1

xn
. L. Schwartz in [11] and

J. Alvarez and C. Carton-Lebrun in [1] have characterized the class of tempered
distributions that can be S′-convolved with this kernel. The resulting class is a
weighted version of the space of integrable distributions: the space w1 · · ·wnD

′
L1 ,

where wj = (1 + x2
j)

1/2, j = 1, . . . , n.
It must be mentioned that there are other approaches to this problem (see, for

example, [8]). Basically, the technique employed by them is to define an analytic
representation of a distribution T ∈ D′

Lp on each complexified quadrant in order
to characterize the spectrum of T by means of the support of the Fourier trans-
form of their boundary values. In the present work, we consider a larger class of
tempered distributions, namely, the family w1 · · ·wnD

′
L1 (see [5, Proposition 5])

and our tool is the use of the operation of S′-convolution and a Fourier exchange
formula. It seems that it is possible to obtain a similar result as in [8, Theo-
rem 6.3] for the larger class of distributions T ∈ w1 · · ·wnD

′
L1 using the classical

technique of analytic representation, as soon as we state the corresponding re-
sults for boundary behavior of the convolutions T ∗K, where K is a kernel in a
class K that contains n-dimensional versions of the Poisson and conjugate Poisson
one-dimensional kernels. Some of these boundary behaviors are analyzed in [5].

This paper is organized as follows: in Section 2 we include a brief account of the
S′-convolution, as well as several other results related to the space w1 · · ·wnD

′
L1 .

In Section 3 we state our main result concerning the support of the Fourier trans-
form of a distribution in this weighted class. For clarity, we will only approach
the case n = 2.

A few words about notation: partial derivatives will be denoted as ∂α, where α
is a multi-index (α1, . . . , αn). We will use the standard abbreviations |α| = α1 +
· · · + αn, xα = xα1

1
· · ·xαn

n . For a function g, we will indicate with ǧ the function
x → g(−x). Given a distribution T , we will denote with Ť the distribution
ϕ → (T, ϕ̌), where ϕ is an appropriate test function. The Fourier transform will
be denoted as F . The letter C will indicate a positive constant, possibly different
at different occurrences.

2. Preliminary results

To introduce the notion of S′-convolution that we use, we give a short review
of the spaces of functions and distributions related to this notion (see [12] and
[3]).

The space of integrable distributions D′
L1 is, by definition, the strong dual of

the space Ḃ of smooth functions ϕ : Rn → C such that ∂αϕ → 0 as |x| → ∞,

for each multi-index α. Ḃ is a closed subspace of the space B consisting of all
smooth functions ϕ with the property that ∂αϕ is bounded for every multi-index
α, endowed with the topology of uniform convergence in Rn of each derivative.
C∞

0 is dense in Ḃ but not in B. According to [12, p. 201], each T ∈ D′
L1 can
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be represented as T =
∑

finite
∂αfα, where fα ∈ L1. Thus, we have the strict

inclusions E ′ ⊂ D′
L1 ⊂ S′.

It is also possible to consider D′
L1 as the strong dual of the space B, provided

that we endow B with a topology that gives rise to the following notion of sequence
convergence: a sequence {ϕj} converges to ϕ if, for each multi-index α, one has
supj ‖∂

αϕj‖∞ < ∞ and the sequence {∂αϕj} converges to ∂αϕ uniformly on
compact sets. If we denote as Bc the resulting topological space, it can be seen
that C∞

0 , and so Ḃ, is dense in Bc and hence D′
L1 is the dual of Bc ([12, p. 203]).

We use these spaces to define the notion of S′-convolution.

Definition 1 ([9]). Given two tempered distributions T and S, we say that the
S′-convolution of T and S exists if T (Š ∗ ϕ) ∈ D′

L1 for every ϕ ∈ S. When the
S′-convolution exists, the map S → C

ϕ 7−→
(

T
(

Š ∗ ϕ
)

, 1
)

D′

L1
,Bc

defines a tempered distribution which is denoted by T ∗ S.

R. Shiraishi proved in [9] that this operation is commutative. Moreover, Defi-
nition 1 coincides with the classical definition in all the cases in which the latter
makes sense.

Y. Hirata and H. Ogata in [6] introduced the S′-convolution to extend the
validity of the Fourier exchange formula

(1) F (T ∗ S) = F(T )F(S)

originally proved by L. Schwartz for pairs of distributions in the Cartesian product
O′

c × S′ ([12]). Later, R. Shiraishi showed in [9] an equivalent definition of S′-
convolution, which is the one we are using here.

Remark 2. Y. Hirata and H. Ogata in [6] proved that if the S ′-convolution of
two tempered distributions S, T is defined, then the formula (1) holds in the
following sense: for any two δ-sequences {ϕk}

∞
k=1

and {ψk}
∞
k=1

, the sequences
{(F(T ) ∗ ϕk)F(S)}∞k=1

and {F(T )(F(S) ∗ ψk)}∞k=1
converge in D′ to the same

distribution and this common limit is denoted by F(T )F(S).
As in [6] one defines a δ-sequence as a sequence {ϕk}

∞
k=1

of non-negative func-
tions in C∞

0 with the following properties:

1. Suppϕk converges to 0 when k → ∞;
2.
∫

ϕk = 1 for every k.

Mikusiński in [7] proposed another definition for the product of two distribu-
tions S and T : ST is the distributional limit (if there exists) of {(S ∗ ϕk)(T ∗
ψk)}∞k=1

where {ϕk}
∞
k=1

and {ψk}
∞
k=1

are arbitrary δ-sequences. Shiraishi and
Itano proved in [10] that both definitions are equivalent.

We return to this point in the following section.
Following [11], we give the next definition. As mentioned before, for clarity we

will restrict ourselves to the case n = 2.
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Definition 3. Let us denote by δxj
the one-dimensional Dirac measure concen-

trated at 0 acting on the variable xj , j = 1, 2. We define the following tempered
distributions acting on test functions on R2:

K1 =
1

22

[

δ −
1

(πi)
p.v.

1

x1

⊗ δx2
−

1

(πi)
δx1

⊗ p.v.
1

x2

+
1

(πi)
2
p.v.

1

x1

⊗ p.v.
1

x2

]

,

K2 =
1

22

[

δ +
1

(πi)
p.v.

1

x1

⊗ δx2
−

1

(πi)
δx1

⊗ p.v.
1

x2

−
1

(πi)
2
p.v.

1

x1

⊗ p.v.
1

x2

]

,

K3 =
1

22

[

δ +
1

(πi)
p.v.

1

x1

⊗ δx2
+

1

(πi)
δx1

⊗ p.v.
1

x2

+
1

(πi)
2
p.v.

1

x1

⊗ p.v.
1

x2

]

,

K4 =
1

22

[

δ −
1

(πi)
p.v.

1

x1

⊗ δx2
+

1

(πi)
δx1

⊗ p.v.
1

x2

−
1

(πi)2
p.v.

1

x1

⊗ p.v.
1

x2

]

.

A straight computation shows that

K1 +K2 +K3 +K4 = δ,

K1 −K2 +K3 −K4 =
1

(πi)
2
p.v.

1

x1

⊗ p.v.
1

x2

.

From here, it is clear that any tempered distribution is S′-convolvable with K1 +
K2 +K3 +K4, however the same is not necessarily true for K1 −K2 +K3 −K4.

L. Schwartz studied in [11] the S′-convolution with the one-dimensional Hilbert
kernel p.v. 1x . For this purpose he introduced a weighted version of the space
D′

L1(R). Namely,

Definition 4 ([11]). Let w(x) = (1 + x2)1/2 for x ∈ R. Then

wD′
L1 (R) =

{

T ∈ D′(R) : w−1T ∈ D′
L1(R)

}

with the topology induced by the map

wD′
L1 (R) −→ D′

L1 (R)

T 7−→ w−1T .

L. Schwartz observed in [11] that the condition T ∈ wD′
L1(R) should be viewed

as the most general condition under which T and p.v. 1x are S′-convolvable.
J. Alvarez and C. Carton-Lebrun extended this result in [1] to the n-dimensional

case in two directions: by considering the Riesz kernels p.v.
xj

|x|n+1 , j = 1, . . . , n,

and the n-dimensional Hilbert kernel. The appropriate kernel to consider in this
work is the n-dimensional Hilbert kernel p.v. 1

x1
⊗ · · · ⊗ p.v. 1

xn
. The relevant

weighted spaces related to this case are given in the following definition.
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Definition 5 ([1]). Let wj = (1 + x2
j )

1/2, j = 1, . . . , n. Then

w1 · · ·wnD
′
L1 =

{

T ∈ D′ : w−1

1
· · ·w−1

n T ∈ D′
L1

}

with the topology induced by the map

w1 · · ·wnD
′
L1 −→ D′

L1

T 7−→ w−1

1
· · ·w−1

n T.

The space w1 · · ·wnD
′
L1 is the largest space of tempered distributions for which

the S′-convolution with p.v. 1

x1
⊗ · · · ⊗ p.v. 1

xn
exists. In fact,

Theorem 6 ([1]). Let T ∈ S′. Then, the following statements are equivalent:

(a) T ∈ w1 · · ·wnD
′
L1 ;

(b) T is S′-convolvable with p.v. 1

x1
⊗ · · · ⊗ p.v. 1

xn
.

The proof of Theorem 6 is based in the following simple representation formula
for distributions in the space w1 · · ·wnD

′
L1 :

Proposition 7 ([1], [2]). Given T ∈ D′, the following statements are equivalent:

(a) T ∈ w1 · · ·wnD
′
L1 ;

(b) T = T0+
∑

xj1 · · ·xjk
Tj1···jk

, where T0, Tj1···jk
∈ D′

L1 and the sum is taken

over all the different k-tuples (j1, . . . , jk) with 1 ≤ j1 < · · · < jk ≤ n,

1 ≤ k ≤ n.

L. Schwartz observed in [11] that wD′
L1(R) coincides with the space D′

L1(R) +
xD′

L1(R), so Proposition 7 can be considered as an extension of this result.

Now, concerning the tempered distributions Kj , j = 1, 2, 3, 4, considered in
Definition 3 above, we obtain the following result:

Proposition 8. Every T ∈ w1w2D
′
L1 is S′-convolvable with Kj, j = 1, 2, 3, 4.

Proof: We need to prove that T is S′-convolvable with δx1
⊗p.v. 1

x2
and p.v. 1

x1
⊗

δx2
. Since w−1

1
w−1

2
T ∈ D′

L1 , for the first kernel it suffices to show that w1w2(δx1
⊗

p.v. 1

x2
)∨ ∗ ϕ ∈ B for each ϕ ∈ S because D′

L1 is closed under multiplication by
functions in B.

Indeed
(

(

δx1
⊗ p.v.

1

x2

)∨

∗ ϕ

)

(ξ1, ξ2) = lim
ε→0

∫

|y2|>ε

ϕ (−ξ1, y2 − ξ2)

y2
dy2

= lim
ε→0

[

∫

ε<|y2|<1

+

∫

1<|y2|

]

= lim
ε→0

[I1 + I2] .
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Concerning the term I1 we have

|I1| =

∣

∣

∣

∣

∣

∫

ε<|y2|<1

ϕ (−ξ1, y2 − ξ2) − ϕ (−ξ1,−ξ2)

y2
dy2

∣

∣

∣

∣

∣

≤

∫

ε<|y2|<1

∫ 1

0

∣

∣

∣

∣

∂ϕ

∂ξ2
(−ξ1, ty2 − ξ2)

∣

∣

∣

∣

dt dy2.

Using the fact that for 0 ≤ t ≤ 1 and |y2| < 1

w2 (ξ2) ≤ C
(

1 + |ty2 − ξ2|
2
)1/2

we have

w1 (ξ1)w2 (ξ2) |I1| ≤ C

∫

ε<|y2|<1

∫ 1

0

(

1 + |ξ1|
2
)−1/2 (

1 + |ξ1|
2
)

×
(

1 + |ty2 − ξ2|
2
)1/2

∣

∣

∣

∣

∂ϕ

∂ξ2
(−ξ1, ty2 − ξ2)

∣

∣

∣

∣

dt dy2

≤ C.

Also,

(2)

∂α1

ξ1
∂α2

ξ2

[

w1 (ξ1)w2 (ξ2)

∫

ε<|y2|<1

ϕ (−ξ1, y2 − ξ2)

y2
dy2

]

=
∑

0<β1≤α1

∑

0<β2≤α2

∂
β1

ξ1
w1 (ξ1) ∂

β2

ξ2
w2 (ξ2)

×

∫

ε<|y2|<1

∂
α1−β1

ξ1
∂

α2−β2

ξ2
ϕ (−ξ1, y2 − ξ2)

dy2

y2

+ w1 (ξ1)w2 (ξ2)

∫

ε<|y2|<1

∂α1

ξ1
∂α2

ξ2
ϕ (−ξ1, y2 − ξ2)

dy2

y2

and noticing that

∂
β1

ξ1
w1 (ξ1) ∂

β2

ξ2
w2 (ξ2) = W1,β1

(ξ1)W2,β2
(ξ2)w1 (ξ1)w2 (ξ2) ,

where W1,β1
(ξ1), W2,β2

(ξ2) ∈ B, we can proceed in the same way as above to
show that both terms in (2) are bounded.

For the term I2 we can use the estimate

w2 (ξ2) ≤ C
(

1 + |ξ2 − y2|
2
)1/2 (

1 + |y2|
2
)1/2

≤ C
(

1 + |ξ2 − y2|
2
)1/2

|y2|
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if |y2| > 1. Thus

w1 (ξ1)w2 (ξ2) |I2|

≤

∫

1<|y2|

(

1 + |ξ1|
2
)1/2 (

1 + |ξ2 − y2|
2
)1/2

|ϕ (−ξ1, y2 − ξ2)| dy2

≤ C.

For the derivatives we proceed as before.
To manage the other kernel we use exactly the same techniques.
This completes the proof. �

3. Fourier transform of distributions in w1w2D
′
L1

Let us denote by H1 the classical Heaviside function in R
2, that is,

H1 (x1, x2) =

{

1 if x1 > 0 and x2 > 0,

0 otherwise,

and let H2, H3 and H4 the following modified versions of H1:

H2 (x1, x2) =

{

1 if x1 < 0 and x2 > 0,

0 otherwise,

H3 (x1, x2) =

{

1 if x1 < 0 and x2 < 0,

0 otherwise,

H4 (x1, x2) =

{

1 if x1 > 0 and x2 < 0,

0 otherwise.

A straight computation shows that for j = 1, 2, 3, 4

F (Kj) = Hj .

In the following proposition we consider the Fourier transform of distributions
in w1w2D

′
L1 .

Proposition 9. Given T ∈ w1w2D
′
L1 , F(T ) can be represented (in many forms)

as a distributional derivative

F(T ) =
∂2

∂x1∂x2

f,

where f is a continuous function, slowly increasing at infinity.

Proof: By Proposition 7 we can write

T = T0 + x1T1 + x2T2 + x1x2T12,
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where T0, T1, T2 and T12 belong to D′
L1 . Thus

F (T ) = F (T0) −
1

2πi

∂

∂x1

F (T1) −
1

2πi

∂

∂x2

F (T2) +
1

(2πi)
2

∂2

∂x1∂x2

F (T12) .

Since the Fourier transform sends D′
L1 into the space of continuous functions

slowly increasing at infinity, we have that F(T0), F(T1), F(T2) and F(T12) satisfy
these conditions.

Now, a standard procedure (see [3, p. 180]) allows us to conclude the desired
result. �

We remark the fact that we can also obtain a similar result for the space
w1 · · ·wnD

′
L1 using Proposition 7.

According to Proposition 8 every T ∈ w1w2D
′
L1 is S′-convolvable with the

kernels Kj , j = 1, 2, 3, 4. Since the Fourier exchange formula (1) is valid for any
two tempered distributions that are S′-convolvable, we have that

(3)
F (T ∗Kj) = F(T )F (Kj)

= F (T )Hj ,

j = 1, 2, 3, 4. This shows that the product F(T )Hj is defined in the sense de-
scribed in Remark 2.

We are looking for sufficient conditions for the Fourier transform of T ∈
w1w2D

′
L1 to have its support in the set x1 ≥ 0 and x2 ≥ 0. Thus, it seems

natural to give an important role to the function H2 + H3 + H4, for which the
product F(T )[H2 +H3 +H4] is defined.

Indeed, since T is S′-convolvable with K2 +K3 +K4 we have

(4)

F (T ∗ (K2 +K3 +K4)) = F (T )F (K2 +K3 +K4)

= F (T ) [F (K2) + F (K3) + F (K4)]

= F (T ) [H2 +H3 +H4] .

Now, we prove the following result:

Theorem 10. Let S be a distribution that can be written as S = ∂2

∂x1∂x2
f , where

f is a continuous function, slowly increasing at infinity, and the derivative is taken

in D′. Let us assume that the product S[H2 +H3 + H4] is defined in the sense

described in Remark 2. Then, S has its support in the set x1 ≥ 0 and x2 ≥ 0 if

S[H2 +H3 +H4] = 0.

Proof: Let us suppose that S[H2 + H3 +H4] = 0. Thus, for every δ-sequence
{ϕk}

∞
k=1

we have

lim
k→∞

(S ∗ ϕk) (H2 +H3 +H4) = 0 in D′.
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This implies that for every ψ ∈ C∞
0

lim
k→∞

〈(S ∗ ϕk) (H2 +H3 +H4) , ψ〉 = 0.

Denote C = R2 \ {(x1, x2) : x1 ≥ 0, x2 ≥ 0}. Take a smooth and compactly sup-
ported function θ such that supp θ ⊂ C. Then, using the fact that S ∗ ϕk → S in
D′ and that θ = θ(H2 +H3 +H4) we have

〈S, θ〉 = lim
k→∞

〈S ∗ ϕk, θ〉

= lim
k→∞

〈S ∗ ϕk, θ (H2 +H3 +H4)〉

= lim
k→∞

〈(S ∗ ϕk) (H2 +H3 +H4) , θ〉

= 0.

Therefore, S has its support in {(x1, x2) : x1 ≥ 0, x2 ≥ 0}. �

As an immediate consequence we obtain:

Corollary 11. Let T ∈ w1w2D
′
L1 . Then, F(T ) has its support in the set x1 ≥ 0

and x2 ≥ 0 if T ∗ (K2 +K3 +K4) = 0.

Proof: If T ∗ (K2 + K3 + K4) = 0, then we can apply the Fourier exchange
formula (1) to obtain

F(T )F (K2 +K3 +K4) = 0

or

F(T ) [H2 +H3 +H4] = 0

and by Theorem 10, F(T ) has its support in the set x1 ≥ 0 and x2 ≥ 0. �
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[7] Mikusiński J., Criteria of the existence and of the associativity of the product of distribu-

tions, Studia Math. 21 (1962), 253–259.
[8] Pandey J.N., Singh O.P., Characterization of functions with Fourier transform supported

on orthants, J. Math. Anal. Appl. 185 (1994), 438–463.
[9] Shiraishi R., On the definition of convolutions for distributions, J. Sci. Hiroshima Univ.

Ser. A 23 (1959), 19–32.
[10] Shiraishi R., Itano M., On the multiplicative products of distributions, J. Sci. Hiroshima

Univ. Ser. A-I Math. 28 (1964), 223–235.
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