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On reflexive closed set lattices

Zhongqiang Yang, Dongsheng Zhao

Abstract. For a topological space X, let S(X) denote the set of all closed subsets
in X, and let C(X) denote the set of all continuous maps f : X → X. A family
A ⊆ S(X) is called reflexive if there exists C ⊆ C(X) such that A = {A ∈
S(X) : f(A) ⊆ A for every f ∈ C}. Every reflexive family of closed sets in
space X forms a sub complete lattice of the lattice of all closed sets in X. In
this paper, we continue to study the reflexive families of closed sets in various
types of topological spaces. More necessary and sufficient conditions for certain
families of closed sets to be reflexive are obtained.
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1. Introduction

Given a topological space X , let S(X) denote the set of all closed subsets of X
and C(X) denote the set of all continuous maps f : X → X . For any A ⊆ S(X)
and F ⊆ C(X) define

Alg(A) = {f ∈ C(X) : f(A) ⊆ A for every A ∈ A} and

Lat(F) = {A ∈ S(X) : f(A) ⊆ A for every f ∈ F}.

A family A ⊆ S(X) is called reflexive if there exists F ⊆ C(X) such that A =
Lat(F), or equivalently, if Lat(Alg(A)) = A.

If A ⊆ S(X) is reflexive, then the following conditions are satisfied [10]:

(a) X, ∅ ∈ A,
(b) B ⊆ A implies

⋂

B ∈ A, and
(c) B ⊆ A implies cl(

⋃

B) ∈ A,

where cl is the closure operator.

A family A of closed sets satisfying conditions (a), (b) and (c) will be called
a closed set lattice. In [11] it was proved that in a discrete space every closed
set lattice is reflexive. In [10] we showed that a locally compact metric space is
zero-dimensional if and only if every closed set lattice in the space is reflexive.

The first author was supported for this work by National Natural Science Foundation of
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In the current paper, we continue to consider the problem: under what con-
ditions is a closed set lattice reflexive? In Section 2 we prove some properties of
reflexive families of closed sets in a general space. In particular, we give a nec-
essary and sufficient condition for a closed set lattice in an arbitrary space to be
reflexive. Section 3 is devoted to the investigation of reflexive closed set lattices in
the real line R. For certain classes of finite families we proved a sufficient condition
for them to be reflexive. The main result in Section 4 is that every reflexive closed
set lattice is a closed subset in the hyperspace of all closed sets with the Vietoris
topology. In the last section, we use set-valued maps to establish a necessary and
sufficient condition for a closed set lattice in an arbitrary space to be reflexive.

The problem on reflexive families of closed subspaces in a Hilbert space has
been studied extensively by Halmos, Longstaff and others (see [2]–[7]).

2. Some general properties of reflexive families of closed sets

Let A be a closed set lattice in a topological space X . For each B ⊆ X ,
define φA(B) =

⋂

{A ∈ A : B ⊆ A}. We shall write φ(B) for φA(B) where no
confusion occurs; and φ(x) for φ({x}) for each x ∈ X . From condition (b) it is
seen that φA(B) ∈ A for all B ⊆ X . For every B ⊆ X , B ∈ A if and only if
φA(B) =

⋃

{φA(x) : x ∈ B} (see [10, Lemma 3]). Consequently, for any two
closed set lattices A and B, we have that A = B if and only if φA(x) = φB(x) for
every x ∈ X . For two closed sets A, B with A ⊆ B, define

Φ(A, B) =
⋃

{C : C is a connected component of B and C ∩ A 6= ∅},

and

ΦP (A, B) =
⋃

{C : C is a path-connected component of B and C ∩ A 6= ∅}.

Then A ⊆ ΦP (A, B) ⊆ Φ(A, B) ⊆ B.

Lemma 1. If A is a reflexive closed set lattice in a space, then it satisfies the

following condition:

(d) If A, B ∈ A and A ⊆ B, then cl(Φ(A, B)), cl(ΦP (A, B)) ∈ A.

Proof: As an example, we show that cl(ΦP (A, B)) ∈ A. By the property of
continuous maps, it is enough to show that f(ΦP (A, B)) ⊆ ΦP (A, B) for any
f ∈ Alg(A). For each path-connected component C of B, f(C) is path-connected
and is contained in B. Thus f(C) ⊆ C′ for some path-connected component
C′ of B. Furthermore, if C ∩ A 6= ∅, then f(C) ∩ A 6= ∅ since A ∈ A. It
implies that C′ ∩ A 6= ∅. Therefore, f(C) ⊆ C′ ⊆ ΦP (A, B). It thus follows that
f(ΦP (A, B)) ⊆ ΦP (A, B). �

The following lemma is an easy observation.

Lemma 2. Let A be a family of closed sets in a space X satisfying condition (d).
If A, B ∈ A, A ⊆ B and there is no other member of A lying between A and B,

then either cl(Φ(A, B)) = A or cl(Φ(A, B)) = B.
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Lemma 3. Suppose that X = R or X is a compact Hausdorff space and A is a

reflexive closed set lattice in X . Then the following condition is satisfied:

(d′) If A, B ∈ A and A ⊆ B then Φ(A, B) ∈ A.

Proof: By Lemma 1 it is enough to verify that D = Φ(A, B) is closed. We first
prove the conclusion for X = R. Suppose that x is an accumulation point of
D. Then, without loss of generality, we may assume that there exists a sequence
(xn) such that xn ∈ Cn for some connected component Cn of the subset B with
Cn ∩ A 6= ∅, x1 < x2 < · · · and limn→∞ xn = x. In addition, we can assume
that Cn 6= Cm if n 6= m. Then Cn = [an, bn] and an ≤ bn < an+1 for every n.
It follows from Cn ∩ A 6= ∅ that there exists yn ∈ Cn ∩ A for every n. Trivially,
x = limn→∞ yn ∈ A ⊆ D. Hence, D is closed.

Now let X be a compact Hausdorff space. For any x ∈ cl(D) we need to show
that x ∈ D. For this it suffices to show that if C0 is the connected component of
B containing x then C0 ∩ A 6= ∅. Suppose, by contraposition, that C0 ∩ A = ∅.
By [1, 6.1.23 Theorem],

⋂

{C : C is a clopen set in B and C ∋ x} = C0. Since
X is compact, there exist clopen sets C1, C2, . . . , Ck in B containing x such that
C1 ∩ C2 ∩ · · · ∩ Ck ∩ A = ∅. On the other hand, C1 ∩ C2 ∩ · · · ∩ Ck is clopen
in B containing x and x ∈ cl(D), thus there is a connected component C of B
with C ∩ A 6= ∅ and C ∩ C1 ∩ C2 ∩ · · · ∩ Ck 6= ∅. Since C is connected and
C1 ∩ C2 ∩ · · · ∩ Ck is a clopen set in B, we have C ⊆ C1 ∩ C2 ∩ · · · ∩ Ck. This
contradicts that C1 ∩ C2 ∩ · · · ∩ Ck ∩ A = ∅. The proof is completed. �

Remark 1. The above lemma is not true when X = R
2. For example, A =

{( 1
n
, n) : n = 1, 2, . . . } and B = {0, 1, 1

2 , 1
3 , · · · } × R are closed sets in R

2 and

A ⊆ B but Φ(A, B) = {1, 1
2 , 1

3 , · · · } × R is not closed in R
2.

Lemma 4. Suppose that X = R or X is a compact Hausdorff space and A is

a closed set lattice in X which satisfies the condition (d′). If b ∈ X , B ∈ A,

B ⊆ φ(b) and B ∩C0 6= ∅ for some connected component C0 of φ(b) containing b,
then B ∩ C 6= ∅ for all connected component C of φ(b).

Proof: Let E =
⋃

{C : C ∩ B 6= ∅ and C is a connected component of φ(b)}.
Then by condition (d′), E ∈ A, thus E = φ(b) because b ∈ E. For any connected
component C′ of φ(b), if C′ ∩ B = ∅ then C′ ∩ E = ∅, which is impossible
as C′ ⊆ φ(b) = E. It follows that every connected component of φ(b) must
intersect B. �

In the sequel, we shall frequently use the following fact: A family A of closed
sets is reflexive if and only if for any closed set B not in A, there exists f ∈ Alg(A)
such that f(B) 6⊆ B.

Theorem 1. Let A be a closed set lattice in a space X . Then A is reflexive if

and only if for each x ∈ X , the set {f(x) : f ∈ Alg(A)} is dense in φ(x).

Proof: Let A be reflexive. For any x ∈ X let Dx = {f(x) : f ∈ Alg(A)}. Note
that Alg(A) is closed under composition. So g(Dx) ⊆ Dx for every g ∈ Alg(A).
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Since each g ∈ Alg(A) is continuous, g(cl(Dx)) ⊆ cl(Dx). Thus cl(Dx) ∈ A.
In addition, if x ∈ A ∈ A, then Dx ⊆ A, thus cl(Dx) ⊆ φ(x). It follows from
x ∈ Dx ⊆ cl(Dx) that cl(Dx) = φ(x).

Now assume that for each x ∈ X , {f(x) : f ∈ Alg(A)} is dense in φ(x). Let
B = Lat(Alg(A)). By a general fact, B is reflexive and Alg(B) = Alg(A) (see [10]).
Fix an element x ∈ X . Then {f(x) : f ∈ Alg(B)} = {f(x) : f ∈ Alg(A)}, so
by the assumption and the proved necessity part, this set is dense in φB(x) and
φA(x), respectively. Thus φB(x) = φA(x) since these two sets are closed. By the
remark at the end of the first paragraph of this section, we deduce that A = B,
so A is reflexive. �

Trivially, we have the following corollary.

Corollary 1. Let A be a closed set lattice of a space X . If for any b ∈ X and

any c ∈ φ(b) there is f ∈ Alg(A) such that f(b) = c, then A is reflexive.

The following example shows that the converse of Corollary 1 is not true.

Example 1. Let

X = ({0} × [−1, 1]) ∪

{(

x, sin
1

x

)

|x ∈ (0, 1]

}

with the topology of subspace of R
2, and let A = {∅, {(1, sin 1)}, X}. It fol-

lows from the proof of [10, Proposition 1] that A is reflexive. Observe that
φ((1

2 , sin 1
2 )) = X . However for any f ∈ Alg(A), f(1, sin 1) = (1, sin 1), thus

f(1
2 , sin 1

2 ) does not belong to the set {0} × [−1, 1]) because the image of the

set {(x, sin 1
x
)|x ∈ (0, 1]} under f must be path-connected. Thus there is no

f ∈ Alg(A) such that f(1
2 , sin 1

2 ) = (0, 0) ∈ φ((1
2 , sin 1

2 )).

In next section, we shall prove some results on reflexivity of closed set lattices
in the Euclidean space R. These results are not true for R

2. The Example 3 in
Section 5 indicates that the converse of Corollary 1 fails even when X = R or X
is a closed interval in R.

3. Families of closed sets of R

In this section we consider the reflexive problem for closed set lattices in the
Euclidean space R of real numbers.

Theorem 2. A finite chain A of closed subsets of R is reflexive if and only if it

satisfies conditions (a) and (d′).

Proof: We only need to prove the “if” part. Suppose that A : ∅ = A0 ⊂ A1 ⊂
A2 ⊂ · · · ⊂ An = R is a chain of closed sets in R, and A satisfies conditions (a)
and (d′). By Corollary 1, it suffices to verify that for every b ∈ R and c ∈ φ(b),
there exists h ∈ Alg(A) such that h(b) = c.

Fact 1. For every b ∈ R and c ∈ φ(b), there exists a continuous map f : (−∞, b] →
R such that f(b) = c and f(Aj ∩ (−∞, b]) ⊆ Aj for every j ≤ n.
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Fact 2. For every b ∈ R and c ∈ φ(b), there exists a continuous map g : [b, +∞) →
R such that g(b) = c and g(Aj ∩ [b, +∞)) ⊆ Aj for every j ≤ n.

In order to prove the above facts, we first introduce some symbols. For each
x ∈ R, let i(x) = min{k : x ∈ Ak}. Then φ(x) = Ai(x) for all x ∈ R. For
any k ≥ i(x), let C(x, k) be the connected component of Ak containing x and
C−(x, k) = (−∞, x]∩C(x, k). Then C(x, i) and C−(x, i) both are closed intervals
in R. Using the above symbols, Fact 1 can be rephrased as the following Fact 3:

Fact 3. For every k ≤ n, b ∈ R with i(b) = k and c ∈ Ak, there exists a
continuous map f : (−∞, b] → R such that f(b) = c and f(Aj ∩ (−∞, b]) ⊆ Aj

for every j ≤ n.

We prove Fact 3 by induction on i(b). If i(b) = 1, let f(x) ≡ c for every
x ∈ (−∞, b], then f is a required map. Suppose such an f exists for all b with
i(b) < k. Let b ∈ R with i(b) = k and c ∈ Ak. If Ak−1∩ (−∞, b] = ∅, the constant
map f(x) ≡ c for every x ∈ (−∞, b] satisfies the requirement. Now assume that
Ak−1 ∩ (−∞, b] 6= ∅. Let b1 = max{x ∈ Ak−1 : x < b}, l = min{j : k ≤ j ≤ n and
C−(b, j) ∩ Ai(b1) 6= ∅} (note that C−(b, n) ∩ Ai(b1) = (−∞, b] ∩ Ai(b1) = Ai(b1), so
l exists).

If l > k, then C−(b, l − 1) ∩ Ak−1 = ∅ (otherwise b1 ∈ C−(b, l − 1) which
implies C−(b, l − 1) ∩ Ai(b1) 6= ∅). Thus there exists a nonempty open interval
(s, t) ⊆ (b1, b) such that

(∗) (s, t) ∩ Al−1 = ∅,

otherwise we would have [b1, b] ⊆ Al−1 and thus b1 ∈ Ai(b1) ∩ C−(b, l − 1), a con-
tradiction.

If l = k, let s = b1, t = b. Then the above condition (∗) also holds. By
i(b1) ≤ l and condition (d′), Φ(Ai(b1), Al) ∈ A. From the definition of l, it follows
that b ∈ Φ(Ai(b1), Al) and so c ∈ Ai(b) ⊆ Φ(Ai(b1), Al). Hence C(c, l)∩Ai(b1) 6= ∅.
Choose c1 ∈ C(c, l) ∩ Ai(b1). Since i(b1) < k, by the induction assumption,
there exists a continuous map f1 : (−∞, b1] → R such that f1(b1) = c1 and
f1(Ai∩(−∞, b1]) ⊆ Ai for every i ≤ n. Now we extend f1 to (−∞, b] by adjoining
the continuous map f2 : [b1, b] → R defined by

f2(x) =











c1 x ∈ [b1, s],

c x ∈ [t, b],

linear x ∈ [s, t].

Then f = f1 ∪ f2 : (−∞, b] → R satisfies our requirement. To see this, we only
need to note that if j < k then Aj ∩ (b1, b] = ∅, if k ≤ j ≤ l − 1 then c, c1 both
are in Aj and (s, t) ∩ Aj = ∅, and if j ≥ l then the closed interval spanned by c
and c1 is contained in Aj . We are done.

The proof of Fact 2 is similar to that of Fact 1.
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Now the map h = f ∪ g : R → R is a continuous function satisfying the
requirement. The proof is completed. �

From the proof of Theorem 2 it is easily seen that the following more general
conclusion is also true. We put it as a corollary because it can be proved using
almost the same arguments.

Corollary 2. If A : ∅ ⊂ A1 ⊂ A2 ⊂ · · · is a sequence of closed sets of R such

that ∪∞
i=1Ai = R, then A∪{R} is reflexive if and only if it satisfies condition (d′).

Theorem 3. Let A = {∅, A∩B, A, B, A∪B, R}, where A and B are closed sets

in R. Then A is reflexive in R if and only if it satisfies condition (d′).

Proof: The proof is similar to that one of Theorem 2. We retain all the symbols
used in the proof of Theorem 2. Let b ∈ R and c ∈ φ(b). We show that there
exists f ∈ Alg(A) such that f(b) = c. Again, it is enough to show that there
exists a continuous map f : (−∞, b] → R such that f(A ∩ (−∞, b]) ⊆ A and
f(B ∩ (−∞, b]) ⊆ B.

Case 1: φ(b) = A ∩ B. Let f(x) = c for all x ∈ (−∞, b].

Case 2: φ(b) = A 6= A ∩ B. If (−∞, b] ∩ B = ∅, let f(x) = c for all x ∈ (−∞, b].
If (−∞, b] ∩ B 6= ∅, let b0 = max(−∞, b] ∩ B. If [b0, b] 6⊆ A, then there exists an
open interval (s, t) ⊆ [b0, b] such that (s, t) ∩ A = ∅, define

f(x) =











c x ∈ [t, b],

x x ∈ (−∞, s],

linear x ∈ [s, t].

If [b0, b] ⊆ A, by condition (d′), Φ(A ∩ B, A) ∈ A. Now b0 ∈ A ∩ B, b /∈ B and
[b0, b] ⊆ Φ(A∩B, A), so Φ(A∩B, A) 6= A∩B, hence, by Lemma 2, Φ(A∩B, A) = A.
Thus there exists a connected component C0 of A such that c ∈ C0 and C0∩B 6= ∅.
Choose c0 ∈ C0 ∩B ⊂ A∩B. Since the connected set C0 contains both c and c0,
there exists a continuous map f1 : [b0, b] → C0 with f1(b0) = c0 and f1(b) = c.

Now define f(x) = f1(x) for x ∈ [b0, b] and f(x) = c0 for x ≤ b0.

Case 3: φ(b) = B 6= A ∩ B. Similar to Case 2.

Case 4: φ(b) = R and A ∪ B 6= R. If A ∩ B 6= ∅, choose a0 ∈ A ∩ B and let
f : (−∞, b] → R be a continuous extension of the continuous map f0 : (−∞, b] ∩
(A ∪ B ∪ {b}) → R defined by

f0(x) =

{

a0 x ∈ A ∪ B,

c x = b.
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If A ∩ B = ∅, choose a0 ∈ A and b0 ∈ B and let f : (−∞, b] → R be a continuous
extension of the continuous map f1 : (−∞, b] ∩ (A ∪ B ∪ {b}) → R defined by

f1(x) =











a0 x ∈ A,

b0 x ∈ B,

c x = b.

Then the function f defined in each of the 4 cases satisfies our requirements. �

The following example shows that conditions (a)–(d) are not sufficient for a
finite closed set lattice to be reflexive in R, nor in a compact interval of R.

Example 2. Let X = R or X = [0, 2] and let

A = {0, 1, 2} ∪
∞
⋃

n=1

[

1

2n
,

1

2n − 1

]

∪
∞
⋃

n=1

[

1 +
1

2n
, 1 +

1

2n − 1

]

,

B = {0, 1, 2} ∪
∞
⋃

n=1

[

1

2n + 1
,

1

2n

]

∪
∞
⋃

n=1

[

1 +
1

2n + 1
, 1 +

1

2n

]

,

C = {0}.

Now A = {∅, C, A ∩ B, A, B, A ∪ B, X} satisfies conditions (a)–(d) but is not
reflexive. In fact, it is not hard to verify that φ(1) = A ∩ B ∋ 2. If A is
reflexive, then it follows from Theorem 1 that there exists f ∈ Alg(A) such that
|f(1)−2| < 1

2 . Since f(A∩B) ⊆ A∩B, we have f(1) = 2. Hence, f([ 12 , 1]) ⊆ [ 32 , 2]

because f(A) ⊆ A and f is continuous. As 1
2 ∈ A∩B, f(1

2 ) ∈ A∩B, so f(1
2 ) = 3

2

or f(1
2 ) = 2. Repeating this steps, we can show that f( 1

n
) ≥ 1 for all n and thus

f(0) ≥ 1. A contradiction occurs since C ∈ A implies f(0) = 0.

However we have the following result.

Theorem 4. Let A be a finite family of closed subsets in R such that every

A ∈ A has finitely many connected components. Then A is reflexive if it satisfies

conditions (a)–(d).

Proof: Let b ∈ R and c ∈ φ(b). We show that there exists f ∈ Alg(A) such
that f(b) = c. Using the same method as in the proof of Theorem 2 we just
show that there is f : (−∞, b] → R such that f(b) = c and for every A ∈ A,
f(A ∩ (−∞, b]) ⊆ A. By our assumptions, there exist only finite numbers of
connected components of all elements of A ∩ (−∞, b] = {A ∩ (−∞, b] : A ∈ A}.
Let {bk < bk−1 < · · · < b1 < b0 = b} be the set of all end points of those connected
components. Observe that for any x ∈ (bi+1, bi), [bi+1, bi] ⊆ φ(x).

For each i(0 ≤ i ≤ k), we define a continuous map fi : [bi+1, bi] → R, where we
take [bk+1, bk] = (−∞, bk], such that:

(i) f0(b) = c;
(ii) fi(x) ∈ φ(x) for every x ∈ [bi+1, bi] and i = 0, 1, . . . , k;
(iii) fi(bi+1) = fi+1(bi+1) for every i = 0, 1, . . . , k − 1.
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We shall only define, as illustrations, f1 : [b2, b1] → R and fk+1 : (−∞, bk] → R.
We assume f0 has been defined that satisfies all the conditions. Choose any
a ∈ (b2, b1). Then, bi ∈ φ(a) and hence φ(bi) ⊆ φ(a) (i = 1, 2). Furthermore, the
connected component of φ(a) containing a must contains b2 and thus intersects
φ(b2). By Lemma 4, the connected component C of φ(a) containing f0(b1) also
intersects φ(b2) since f0(b1) ∈ φ(b1) ⊆ φ(a). Choose c2 ∈ φ(b2) ∩ C and define
f1 : [b2, b1] → R as follows:

f1(x) =











f0(b1) x ∈ [a, b1],

c2 x = b2,

linear x ∈ [b2, a].

Then f1 satisfies the requirements. In fact, by definition (iii) is clearly true. For
every x ∈ [a, b1], we have b1 ∈ φ(x) and hence f1(x) = f0(b1) ∈ φ(b1) ⊆ φ(x). It
follows that (ii) holds for all x ∈ [a, b1]. For each x ∈ (b2, a], by f1(b2), f1(a) ∈ C
and the connectedness of C, we have f1(x) ∈ C ⊆ φ(a) since f1(x) is a convex
combination of f1(b2) and f1(a). Clearly a ∈ φ(x), it follows that f1(x) ∈ φ(a) ⊆
φ(x). Hence (ii) also holds for x ∈ (b2, a]. Also f1(b2) = c2 ∈ φ(b2), hence
f1(x) ∈ φ(x) holds for every x ∈ [b2, b1].

We define fk(x) = fk−1(bk) for every x ∈ (−∞, bk]. Again, conditions (ii) and
(iii) are satisfied.

Now the map f =
⋃k

i=0 fi is well-defined and satisfies the requirement. �

Note that for every family A of closed subsets of a topological space, there is
a least closed set lattice containing A, which will be called the closed set lattice

generated by A. Theorem 3 actually says that the closed set lattice generated by
two closed sets is reflexive if and only if it satisfies condition (d′).

Corollary 3. Every closed set lattice in R generated by finite numbers of closed

intervals is reflexive.

The proofs of the results in this section rely heavily on the special structure
of R. They are not true if we replace R by R

2. But we do not know how these
conclusions can be generalized to R

2 or higher dimensional spaces. A simple
natural question is: when is a finite chain of closed sets in R

2 reflexive?

4. Closedness of reflexive closed set lattices in hyperspaces

In this section, we prove another property of reflexive closed set lattices in a
regular space. We assume all spaces are T1 in this section.

Given a T1 space X , let SV (X) denote the set S(X) of all closed sets of X
equipped with the Vietoris topology which has a subbase consisting of the sets of
the form

U− = {A ∈ S(X) : A ∩ U 6= ∅} and U+ = {A ∈ S(X) : A ⊆ U},
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where the set U is open in X . It is well known that for every regular space X ,
SV (X) is Hausdorff (cf. [1, 2.7.20]).

Lemma 5. Let X be a regular space. Then for any continuous f : X → X ,

Lat({f}) is a closed subset of SV (X).

Proof: If, by the contraposition, Lat({f}) is not closed in SV (X), then there
exists E ∈ cl(Lat({f}))\Lat({f}). So f(E) 6⊆ E. Choose x ∈ E with f(x) /∈
E. Since X is regular, there exists an open neighbourhood U of x such that
cl(f(U)) ⊆ X\E or E ⊆ W = X\ cl(f(U)). Now E ∈ W+ ∩U− and E ∈ cl({f}),
thus there exists F ∈ Lat({f}) such that F ∈ W+ ∩ U−. Then F ∩ U 6= ∅ but
F ∩cl(f(U)) = ∅. Choose y ∈ F ∩U , then f(y) ∈ f(U) and hence f(y) /∈ F which
implies f(F ) 6⊆ F . A contradiction occurs. Therefore Lat({f}) is closed. �

Since A ⊆ S(X) is reflexive if and only if there are continuous fi : X → X(i ∈
I) such that A = Lat({fi : i ∈ I}) =

⋂

i∈I Lat({fi}), thus, by above lemma we
obtain the following:

Theorem 5. For a regular space X , every reflexive family A of closed subsets

satisfies the following condition:

(e) A is a closed subset of SV (X).

Corollary 4. Let A be a reflexive closed set lattice in a metric space (X, d).
Then for any {b} /∈ A, there exist ǫ > 0 and a neighbourhood U of b such that

diam(φ(x)) > ǫ for all x ∈ U , where diam(φ(x)) is the diameter of the set φ(x).

Proof: Suppose that A is a reflexive closed set lattice of the metric space (X, d)
and b ∈ X such that {b} /∈ A. If for every ǫ > 0 and any open set U containing
b, there is xU ∈ U with diam(φ(xU )) < ǫ, then one can deduce easily that
{b} ∈ cl(A) in SV (X). So {b} ∈ A, a contradiction. �

Remark 2. (1) For any B ⊆ A, cl(
⋃

B) belongs to the closure of the set B in
SV (X), thus for regular spaces, condition (c) follows from condition (e).

(2) If X is a compact Hausdorff space, then condition (b) follows from condi-
tion (e) together with the following condition

F1, F2 ∈ A implies F1 ∩ F2 ∈ A.

(3) Lemma 5 can be regarded as a generalization of the fact that the set Fix(f)
of all fixed points of a continuous endomap f is a closed subset. In fact, we may
think that X is a subspace of SV (X) if we regard x and {x} to be the same.
Then Fix(f) = X ∩ Lat({f}). Thus the closedness of Fix(f) in X follows from
Lemma 5.

(4) Since every finite A ⊆ SV (X) is closed in SV (X), Example 2 shows that
conditions (a)–(e) are not sufficient for a family of closed sets to be reflexive.

5. Reflexivity of closed set lattices via set-valued maps

Let X and Y be topological spaces. A map α from X to the set of non-
empty closed sets in Y is called a set-valued map from X to Y and denoted by
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α : X ⇉ Y . Furthermore, if X = Y and α(x) ∋ x for every x ∈ X , then α
is called a containing set-valued map on X . A set-valued map α : X ⇉ Y is
called lower semicontinuous (LSC for short) if for every open set V in Y , the set
{x ∈ X : α(x) ∩ V 6= ∅} is open in X , or equivalently, for every closed set F in
Y , {x ∈ X : α(x) ⊆ F} is closed in X . A continuous selection of a set-valued
map α : X ⇉ Y is a continuous map f : X → Y such that f(x) ∈ α(x) for
all x ∈ X . In this section, we define two maps between all subfamilies of S(X)
satisfying conditions (a) and (b), and all containing set-valued maps on X , and
discuss their properties. Using these two maps, we shall present a necessary and
sufficient condition for a subfamily of S(X) to be reflexive.

Let A ⊆ S(X) satisfy conditions (a) and (b). Then κ(A) = φA : X ⇉ X ,
defined by

κ(A)(x) = φA(x) =
⋂

{A ∈ A : x ∈ A},

is a containing set-valued map on X . Conversely, for every containing set-valued
map α : X ⇉ X , let

τ(α) = {A ∈ S(X) : A ⊇ α(x) for every x ∈ A}.

Then τ(α) is a subfamily of S(X) satisfying conditions (a) and (b).

Lemma 6. (1) If A satisfies conditions (a)–(c), then κ(A) : X ⇉ X is LSC and

α = κ(A) satisfies condition

(f) α(y) ⊆ α(x) for any x, y ∈ X with y ∈ α(x).

In addition τ(κ(A)) = A.

(2) If α : X ⇉ X is a LSC containing map, then τ(α) satisfies conditions

(a)–(c). Furthermore, κ(τ(α)) = α if α satisfies condition (f).

Proof: (1) For every closed set F of X , let

E = {x ∈ X : κ(A)(x) ⊆ F}.

If a ∈ cl(E), then a ∈ cl(
⋃

x∈E κ(A)(x)) ⊆ F . By condition (c), cl(
⋃

x∈E κ(A)(x))
∈ A, it follows from the definition of κ(A) that κ(A)(a) ⊆ F , i.e. a ∈ E. Hence
E is closed in X and thus κ(A) is LSC. Condition (f) is trivially satisfied. For
every A ∈ A and x ∈ A, κ(A)(x) =

⋂

{E ∈ A : E ∋ x} ⊆ A. It follows that
A ∈ τ(κ(A)). Conversely, for every A ∈ τ(κ(A)), A =

⋃

{κ(A)(x) : x ∈ A}. It
follows from conditions (b) and (c) that A ∈ A. We are done.

(2) (a) and (b) are trivial. To prove (c), let F0 ⊆ τ(α). If there exists x ∈
cl(

⋃

F0) such that cl(
⋃

F0) 6⊇ α(x), then α(x) ∩ (X\ cl(
⋃

F0)) 6= ∅. Since α is
LSC, there exists an open neighborhood U of x such that α(z)∩(X\ cl(

⋃

F0)) 6= ∅
for every z ∈ U . From x ∈ cl(

⋃

F0) it follows that we may choose F ∈ F0

and z ∈ U ∩ F . Then cl(
⋃

F0) ⊃ F ⊃ α(z). Thus α(z) ∩ (X\ cl(
⋃

F0)) = ∅.
A contradiction occurs. This shows that for every x ∈ cl(

⋃

F0), cl(
⋃

F0) ⊃ α(x).
That is, (c) holds. Now, we assume that α also satisfies (f). Then α(x) ∈ τ(α)
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for every x ∈ X . Thus κ(τ(α))(x) ⊆ α(x). The converse conclusion is trivial. We
are done. �

Lemma 7. Let A be a closed set lattice in X . Then a map f : X → X is a

continuous selection of κ(A) : X ⇉ X if and only if f ∈ Alg(A).

Proof: Let f : X → X be a continuous selection of κ(A) : X ⇉ X . Then, for
every A ∈ A and x ∈ A, f(x) ∈ κ(A)(x) = φ(x) ⊆ A. Thus f(A) ⊆ A. That is,
f ∈ Alg(A). Conversely, if f ∈ Alg(A), then, for every x ∈ X , f(x) ∈ φ(x) =
κ(A)(x). Therefore, f : X → X is a continuous selection of κ(A). �

From Theorem 1 and Lemma 7 we deduce the following

Proposition 1. For a space X , a subfamily A of S(X) is reflexive if and only if

A satisfies the conditions (a)–(c) and the condition below:

(g) For every x ∈ X , the set {f(x) : f is a continuous selection of κ(A) :
X ⇉ X} is dense in κ(A)(x) for every x ∈ X .

Now we give an example to show that the converse of Corollary 1 is not true
for X = R. By a simple modification of the following example, we can show that
the converse of Corollary 1 fails even for the closed interval X = [1, 3].

Example 3. Define functions fn : R → R as follows: f0(x) = x for any x ∈ R,
and

fn(x) =



















x x ∈ (−∞, 2],

2 x ∈ [2, 2 + n−1
n

],
n−1

n
x ∈ [3, +∞),

linear x ∈ [2 + n−1
n

, 3]

for n = 1, 2, . . . . Let κ(x) = cl({fn(x) : n = 0, 1, 2, . . .}) for every x ∈ R. Then
κ : X ⇉ X is a LSC containing and satisfies (g). Thus, by Lemma 6, τ(κ) is a
closed set lattices and κ(τ(κ)) = κ. Trivially, every fn is a continuous selection of
κ : X ⇉ X and {fn(x) : n = 0, 1, . . .} is dense in κ(x) for every x ∈ R. Therefore,
by Theorem 1, τ(κ) is reflexive but for x ≥ 3, {f(x) : f ∈ Alg(τ(κ))} = {fn(x) :
n = 0, 1, . . .} = {0, 1

2 , 2
3 , . . . } is not closed.

Theorem 6. Let X be a subset of a normed space (L, ‖·‖). If A ⊆ S(X) satisfies

conditions (a)–(c) and κ(A)(x) is convex and complete with respect to ‖ · ‖ for

every x ∈ X , then A is reflexive.

Proof: By our assumptions, κ(A)(x) is closed in L. Thus, from Lemma 6, we
have κ(A) : X ⇉ L is LSC. For every x ∈ X and y ∈ κ(A)(x), by the Michael
Selection Theorem ([8], cf. [9, Theorem 1.4.9]), there exists a continuous selection
f : X → L of κ(A) : X ⇉ L such that f(x) = y. Trivially, f(X) ⊆ X . It follows
from Corollary 1 and Lemma 7 that A is reflexive. �
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Corollary 5. Let X be a convex complete set in a normed space (L, ‖ · ‖) and

A be a closed set lattice which is generated by a family consisting of convex and

complete sets, where “complete” means they are complete with respect to ‖ · ‖.
Then A is reflexive.

The following theorem summarizes the main results in this section.

Theorem 7. There exists a bijection κ from all subfamilies F of S(X) satisfying

(a)–(c) to all LSC set-valued maps α from X to S(X) satisfying (f). Furthermore,

A is reflexive if and only if κ(A) satisfies condition (g).
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