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Toward ternary C
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Abstract. In which the binary product algebra of complex numbers, C, is gene-

ralized to a ternary product algebra, C3.
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Why?

For decades my explorations into mathematics and physics have been based
on the opinion that mathematics is primary, physics secondary. Mathematics is
intellectually profligate, and its practitioners are occasionally proud of the purity
and inapplicability of their work. This is a good thing. In being less fettered
than physics, it has the potential to generate ideas and objects of no presently
perceivable value, but which in future may be seen by those with an interest in
applications as just what they needed to add flesh to their intuition. Riemann
geometry and Lie group theory are outstanding examples.

For me, initially, it was the real normed division algebras: real numbers, R;
complex numbers, C; quaternions, H; octonions, O (although by the time I came
on the scene only H and O were having any difficulty gaining traction in physics).
However, it is not the algebras that are special, it’s their dimensions (over R): 1,
2, 4 and 8. These dimensions are associated with those division algebras, with
the parallelizable spheres, the 4 sequences of classical Lie groups, and so much
more. They are mathematically resonant, and I have never had any doubt that
our physical reality requires this kind of seminal resonance in its mathematical
underpinnings.

There is another finite sequence of resonant dimensions associated with lattice
theory: 0, 2, 8 and 24. The last of these, 24, is the dimension of the Leech
lattice, Λ24, accounted by those in the know as one of the most special objects
in mathematics [1]. Since 24 = 3 × 8, some have pursued representations of Λ24

over O3 [2].
My work in this area was heavily influenced by work I’d done connecting the

octonion X-product [3] and XY-product [4] to the 8- and 16-dimensional lami-
nated lattices, E8 = Λ8 and Λ16 [5]. I wondered if Λ24 were also associated with
some product, with luck involving O. But the factor 3 in its dimensionality was
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problematic, unless, perhaps, the hypothetical product was ternary. I knew next
to nothing of ternary products, but made an initial foray on my own [6].

Eventually, finding the possible paths into this thicket too numerous, I decided
to attempt to construct a ternary analog of C (which, of course, has a binary
product). The results of this effort are presented here. Because this is a construc-
tion from scratch of what is (at least to me) a new mathematical object, the ideas
are presented primarily in the form of a series of Assumptions and Motivations.

What?

Assumption 1. C3 is 3-dimensional, with basis

{i0, i1, i2}.

Motivation: This seems a natural generalization of the structure of C, with ba-
sis {1, i}. (I think of i0 as being the C3 version of the unit 1, but will refrain
from writing it like that.) The point of making it 3-dimensional is the desire to
be able to express 33 + 43 + 53 = 63 as an equation in C3 in a way similar to
(3 + i4)(3 + i4)∗ = 32 + 42 = 52. More generally, the smallest number of positive
integers the sum of whose cubes is an integer cubed, is 3.

Assumption 2. C3 is a complex linear space, every element X ∈ C3 of the
form

X = ui0 + vi1 + wi2, u, v, w ∈ C.

Motivation: Actually, I tried to make it a real linear space, but failed. More on
this below.

Assumption 3. Complex conjugation effects only elements of C. That is,

X∗ = (ui0 + vi1 + wi2)
∗ = u∗i0 + v∗i1 + w∗i2.

Assumption 4. There is a conjugation on C3, denoted X#, which has no effect
on C. That is,

X# = (ui0 + vi1 + wi2)
# = ui

#
0 + vi

#
1 + wi

#
2 .

Assumption 5. For all X ∈ C3,

X### = X.

Motivation: This generalizes u∗∗ = u, for all u ∈ C.

Assumption 6. For all X ∈ C3, there exists u ∈ C such that

X + X# + X## = ui0.
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Motivation: This generalizes u + u∗ ∈ R for all u ∈ C.

Notation. For all X, Y, Z ∈ C3, we denote their ordered ternary product by

〈X, Y, Z〉

(and for the sake of clarity I assume this satisfies

〈X + A, Y, Z〉 = 〈X, Y, Z〉+ 〈A, Y, Z〉

for all A ∈ C3 (along with this equation’s cyclic permutations), and for all complex
scalars, u, v, w,

〈uX, vY, wZ〉 = uvw〈X, Y, Z〉).
Assumption 7. C3 is cyclic commutative:

〈X, Y, Z〉 = 〈Z, X, Y 〉.

Motivation: Well, for one, without some assumptions of this sort we will never
have a chance of getting to a multiplication table. In addition, C is commutative
(so also cyclic commutative). Another ternary example of this is found in the
octonion associator, p(qr) − (pq)r, p, q, r ∈ O. This is invariant with respect to
cyclic (symmetric) permutations of p, q, r. (Only in dimensions 4 or higher is the
set of symmetric permutations bigger than the set of cyclic permutations.)

Assumption 8. For all X, Y, Z ∈ C3,

〈X, Y, Z〉# = 〈Z#, X#, Y #〉.

Note: Due to assumption 7 this can be replaced with

〈X, Y, Z〉# = 〈X#, Y #, Z#〉.

I include this non-effective assumption because I am used to dealing with divi-
sion algebras where that kind of thing is important. In C one generally sets
(uv)∗ = u∗v∗. This works because C is commutative, but H and O are not, and
in those cases we need to permute the right hand side to read (uv)∗ = v∗u∗. This
works for C too. Someday, however, I may get around to seeing if there might be
ternary algebras H3 or O3, and at that point Assumption 8 may play a crucial role.

Assumption 9. For all X = ui0 + vi1 + wi2 ∈ C3,

X# = X =⇒ X = ui0.

Note: This is consistent with Assumption 6, since

(X + X# + X##)# = X# + X## + X### = X + X# + X##,
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(X### = X). This was one of my original Assumptions, but it is actually a
consequence of earlier Assumptions. If X# = X , then X + X# + X## = 3X , so
by Assumption 6, 3X , hence X , is linear in i0.

Assumption 10. For all X = ui0 + vi1 + wi2 ∈ C3,

〈X, X#, X##〉 = (u3 + v3 + w3)i0.

Motivation: This is a straightforward generalization of

(a + ib)(a + ib)∗ = a2 + b2, a, b ∈ R.

Without the factor 3 in the dimensionality of the Leech lattice, and that 32+42 =
52 and 33 + 43 + 53 = 63, I would never have attempted to construct a ternary
generalization of C. As to those two sums of powers, it may be just coincidental,
but mathematics is not known for such coincidences lacking any deeper meaning.

Definition. Let

ǫ = − 1
2 + i

√
3

2 = 3
√

1,

ǫ2 = − 1
2 − i

√
3

2 = ǫ∗ = ǫ−1 = 3
√

1.

These are the two nontrivial cube roots of unity in C. That is,

ǫ3 = (ǫ2)3 = ǫ6 = 1.

Note that

1 + ǫ + ǫ2 = 0.

Notation. For any integer k, let k%3 be shorthand for k modulo 3 (this is a no-
tation derived from computer coding, which is replete with notational conventions
that could enrich mathematics). Note that for integers k, m, n,

ǫkǫmǫn = ǫk+m+n = ǫ(k+m+n)%3.

Assumption 11. This is a big one:

i
#
k = ǫkik, k = 0, 1, 2.

So,

i
##
k = ǫ2kik = ǫ(2k)%3ik,

and

i
###
k = ǫ3kik = ǫ(3k)%3ik = ik.

So, in general, and less specifically, i
#
k = 3

√
1·ik. Likewise, in C we have 1∗ = 2

√
1·1

and i∗ = 2
√

1 · i, the former square root being +1, and the latter −1.
Discussion: This takes us back to the assumption that C3 is a complex linear
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space. I tried to make it real, but couldn’t find a conjugation that gave me As-
sumption 10. In the end I found the introduction of the complex cube root of

unity to be natural. Finally note that ik + i
#
k + i

##
k = (1+ ǫ+ ǫ2)ik = 0, k = 1, 2,

so X + X# + X## is linear in i0 for all X ∈ C3.

Assumption 12 (toward a multiplication table). For all k, m, n ∈ {0, 1, 2},
there exists some j ∈ {0, 1, 2}, and some ukmn ∈ C with norm 1, such that

〈ik, im, in〉 = ukmnij.

Motivation: This is a natural generalization of what we observe in the multipli-
cation tables of C, H and O.

Consequence. For all k, m, n ∈ {0, 1, 2},

〈ik, im, in〉 = ukmni(k+m+n)%3.

Proof:

〈ik, im, in〉# = 〈i#k , i#m, i#n 〉
= ǫ(k+m+n)%3〈ik, im, in〉
= ukmnǫ(k+m+n)%3ij

= (ukmnij)
#

= ukmni
#
j .

Therefore,

i
#
j = ǫ(k+m+n)%3ij .

By assumption 11, j = (k + m + n)%3. �

Final results and assumptions. As usual, let X = ui0 + vi1 + wi2, and to
simplify the notation, let

〈kmn〉 ≡ 〈ik, im, in〉.
Then, using cyclic commutivity (〈kmn〉 = 〈nkm〉),

〈X, X#, X##〉 = 〈ui0+vi1+wi2, ui0+vǫi1+wǫ2i2, ui0+vǫ2i1+wǫi2〉
= u3〈000〉 + v3〈111〉 + w3〈222〉

+ (1+ǫ+ǫ2)(u2v〈001〉 + uv2〈011〉 + u2w〈002〉
+ uw2〈022〉+ v2w〈112〉 + vw2〈122〉)
+ uvw(ǫ2 + ǫ2 + ǫ2)〈012〉
+ uvw(ǫ + ǫ + ǫ)〈210〉

= u3〈000〉 + v3〈111〉 + w3〈222〉
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+ uvw(3ǫ2)〈012〉
+ uvw(3ǫ)〈210〉,

since 1 + ǫ + ǫ2 = 0. It follows from Assumption 10 that

〈kkk〉 = i0, k = 0, 1, 2,

and

〈210〉 = −ǫ〈012〉.
We can achieve this latter condition rather nicely with two new assumptions.

Assumption 13. Anticyclic permutations on the units results in a complex
conjugate. That is,

〈nmk〉 = 〈kmn〉∗.
Consequence. For all k, m ∈ {0, 1, 2},

〈kkm〉 = ±i(2k+m)%3.

Proof: The cyclic and anticyclic permutations of : kkm : are the same. In
combination with Assumptions 12 and 13, this is sufficient. �

Assumption 14. Since (0 + 1 + 2)%3 = 0, 〈012〉 and 〈210〉 are linear in i0.
Because it works, and it makes things pretty, we set

〈012〉 = iǫi0.

In combination with Assumption 13 this implies

〈210〉 = 〈012〉∗ = −iǫ2i0 = −ǫ〈012〉,

as required. As a further consequence,

〈ik, i#m, i##
n 〉 = ±ii0, : kmn : an even/odd permutation of :012:.

Discussion: The only thing needed to complete the multiplication table would be
to determine the signs in 〈kkm〉 = ±i(2k+m)%3. My preference, paralleling the
structure of C, is for 〈00m〉 = +im, and 〈kkm〉 = −i(2k+m)%3, k = 1, 2. However,
this has not yet been checked for consistency. And beyond this is the question of
ternary associativity. For example, does

〈〈〈A, B, C〉, 〈D, E, F 〉, 〈G, H, I〉〉, 〈J, K, M〉, 〈N, P, Q〉〉
= 〈〈A, B, C〉, 〈〈D, E, F 〉, 〈G, H, I〉, 〈J, K, M〉〉, 〈N, P, Q〉〉?

It is clear the results presented here just scratch the surface.
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Conclusion

I do not presently know if something useful could be achieved by replacing C
with H or O in the above. Even at this point one could, for example, replace ǫ

with

−1

2
+

q1 + q2 + q3

2
∈ H,

where q1, q2, q3 are the anticommuting imaginary units of H. This element is also
a cube root of unity, but nothing new comes out of such a replacement, as the
subalgebra of H generated by that element and its conjugate is isomorphic to C.
Allowing arbitrary coefficients in C3 from H or O (instead of C) would require
great care due to noncommutativity, and, in the case of O, nonassociativity (which
of course arises in products of 3 or more elements). It is clear much thought
would have to be given to possible modifications of the conditions underlying C3,
perhaps involving the XY-product in the case of O (in my experience the XY-
product is useful at unraveling all sorts of octonion problems [5]). On the other
hand, mayhaps H would find greater use as coefficients in a ternary quaternion
generalization.

However, my motivation for looking into this is rooted in physics, and in parti-
cular into my assumption that the full spinor space for all three families of leptons
and quarks is [7]

T6 = C⊗ H2 ⊗ O3.

Since the dimensionality of this space is wrong for a conventional spinor space,
some new direction must be sought to make full sense of it, and perhaps at the
same time to give the Leech lattice a ternary product structure. And does one
require a ternary product to construct a Lagrangian for the 3 families of quark/
lepton/ antiquark/ antilepton fields of T6? Theoretical physics owes its successes
to occasional transfusions of new mathematics. It remains to be seen if these
ideas are the right blood type.
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