On Mikheev's construction of enveloping groups

J.I. Hall

Abstract. Mikheev, starting from a Moufang loop, constructed a groupoid and reported that this groupoid is in fact a group which, in an appropriate sense, is universal with respect to enveloping the Moufang loop. Later Grishkov and Zavarnitsine gave a complete proof of Mikheev's results. Here we give a direct and self-contained proof that Mikheev's groupoid is a group, in the process extending the result from Moufang loops to Bol loops.

Keywords: Bol loop, Moufang loop, autotopism group, group with triality

Classification: 20N05

1. Introduction

A groupoid (Q, \circ) is a set Q endowed with a binary product $\circ : Q \times Q \longrightarrow Q$. The groupoid is a *quasigroup* if, for each $x \in Q$, the right translation map $\mathbf{R}_x : Q \longrightarrow Q$ and left translation map $\mathbf{L}_x : Q \longrightarrow Q$ given by

$$a\mathbf{R}_x = a \circ x \quad \text{and} \quad a\mathbf{L}_x = x \circ a$$

are both permutations of Q.

The groupoid (Q, \circ) is a groupoid with identity if it has a two-sided identity element:

 $1 \circ x = x = x \circ 1$, for all $x \in Q$.

That is, R_1 and L_1 are Id_Q , the identity permutation of Q. A quasigroup with identity is a *loop*.

The loop (Q, \circ) is a *(right) Bol* loop if it identically has the right Bol property:

for all
$$a, b, x \in Q$$
, $a((xb)x) = ((ax)b)x$.

(We often abuse notation by writing pq in place of $p \circ q$.) The loop is a *Moufang* loop if it has the Moufang property:

for all $a, b, x \in Q$, a(x(bx)) = ((ax)b)x.

Finally the loop is a *group* if it has the associative property:

for all
$$a, b, x \in Q$$
, $a(xb) = (ax)b$.

Partial support provided by the National Science Foundation, USA.

J.I. Hall

The Moufang property is clearly a weakened form of the associative property. Furthermore, with a = 1 the Moufang property gives x(bx) = (xb)x identically; so the Bol property is a consequence of the Moufang property. Thus every group is a Moufang loop and every Moufang loop is a Bol loop. The reverse implications do not hold in general; see [6, Examples IV.1.1 and IV.6.2].

A (right) pseudo-automorphism of the groupoid with identity (Q, \circ) is a permutation A of Q equipped with an element $a \in Q$, a companion of A, for which R_a is a permutation (always true for (Q, \circ) a loop) and such that

$$xA \circ (yA \circ a) = (xy)A \circ a$$

for all $x, y \in Q$. We shall abuse this terminology by referring to the pair (A, a) as a pseudo-automorphism. The set of all pseudo-automorphisms (A, a) is then denoted PsAut (Q, \circ) and admits the group operation

$$(A, a)(D, d) = (AD, aD \circ d),$$

as we shall verify in Proposition 2.1 below.

In the research report [5] Mikheev, starting from a Moufang loop (Q, \circ) , constructed a groupoid on the set $PsAut(Q, \circ) \times Q$. The main results reported by Mikheev are that this groupoid is in fact a group and that, in an appropriate sense, it is universal with respect to "enveloping" the Moufang loop (Q, \circ) .

In [3] Grishkov and Zavarnitsine gave a complete proof of Mikheev's results (and a great deal more). Concerning Mikheev's construction they proved:

Theorem 1.1. Let (Q, \circ) be a Moufang loop.

(a) The groupoid (PsAut $(Q, \circ) \times Q, \star$) given by

(Mk)
$$\{(A, a), x\} \star \{(B, b), y\} = \{(A, a)(B, b)(C, c), (xB)y\} \text{ with}$$
$$(C, c) = \left(\mathbf{R}_{xB,b}^{-1}, (((xB)b)^{-1}b)xB\right) \left(\mathbf{R}_{xB,y}, ((xB)^{-1}y^{-1})((xB)y)\right)$$

is a group $\mathcal{W}(Q, \circ)$.

(b) The group W(Q, ◦) admits a group of triality automorphisms and is universal (in an appropriate sense) among all the groups admitting triality that envelope the Moufang loop (Q, ◦).

Here for each p, q in an arbitrary loop (Q, \circ) we have set $\mathbf{R}_{p,q} = \mathbf{R}_p \mathbf{R}_q \mathbf{R}_{pq}^{-1}$.

The expression (Mk) can be simplified somewhat. By Moufang's Theorem ([1, p. 117] and [6, Cor. IV.2.9]) Moufang loops generated by two elements are groups, so within (Q, \circ) commutators

$$[p,q] = p^{-1}q^{-1}pq = (qp)^{-1}pq$$

are well-defined, as seen in Mikheev's original formulation [5]. Also in Moufang loops we have $R_{p,q}^{-1} = R_{q,p}$ by [1, Lemma VII.5.4]. Therefore Grishkov and Zavarnitsine could give (Mk) in the pleasing form

$$(C,c) = (\mathbf{R}_{b,xB}, [b, xB]) (\mathbf{R}_{xB,y}, [xB, y]).$$

Grishkov and Zavarnitsine [3, Corollary 1] verify Mikheev's construction by first constructing from (Q, \circ) a particular group admitting triality and then showing that Mikheev's groupoid is a quotient of that group and especially is itself a group. Their construction displays universal properties for the two groups admitting triality and so also for Mikheev's enveloping group. (Grishkov and Zavarnitsine also correct several small misprints from [5].)

In this short note we take a different approach. In particular we give a direct and self-contained proof that Mikheev's groupoid is a group. In the process we extend the result from Moufang loops to Bol loops, and we see that the groupoid has a natural life as a group.

An *autotopism* (A, B, C) of the groupoid (Q, \circ) is a triple of permutations of Q such that

$$xA \circ yB = (x \circ y)C$$

for all $x, y \in Q$. Clearly the set $Atop(Q, \circ)$ of all autotopisms of (Q, \circ) forms a group under composition.

We then have

Theorem 1.2. Let (Q, \circ) be a Bol loop. The groupoid $(\operatorname{PsAut}(Q, \circ) \times Q, \star)$ with product given by (Mk) is isomorphic to the autotopism group $\operatorname{Atop}(Q, \circ)$. In particular $(\operatorname{PsAut}(Q, \circ) \times Q, \star)$ is a group.

Theorem 1.2 gives Theorem 1.1(a) immediately, and 1.1(b) directly follows. Indeed following Doro [2], the group G admits triality if G admits the symmetric group of degree three, $\operatorname{Sym}(3) = S$, as a group of automorphism such that, for σ of order 2 and τ of order 3 in S, the identity $[g,\sigma][g,\sigma]^{\tau}[g,\sigma]^{\tau^2} = 1$ holds for all $g \in G$. Doro proved that the set $\{[g,\sigma] \mid g \in G\}$ naturally carries the structure of a Moufang loop (Q, \circ) ; we say that G envelopes (Q, \circ) . Many nonisomorphic groups admitting triality envelope Moufang loops isomorphic to (Q, \circ) . Among these the autotopism group $A = \operatorname{Atop}(Q, \circ)$ is the largest that is additionally faithful, which is to say that the centralizer of S^A within $A \rtimes S$ is the identity. That is, for every group G admitting triality that is faithful and envelopes (Q, \circ) there is an S-injection of G into A. This is the universal property examined by Mikheev, Grishkov, and Zavarnitsine. See [4, §10.3] for further details.

The general references for this note are the excellent books [1] and [6]. Several of the results given here are related to ones from [6] — both as exact versions ("see") and as variants or extensions ("compare").

2. Autotopisms of groupoids

Proposition 2.1. Let (Q, \circ) be a groupoid with identity 1. The map

$$\psi \colon (A, a) \mapsto (A, AR_a, AR_a)$$

gives a bijection of $PsAut(Q, \circ)$ with the subgroup of $Atop(Q, \circ)$ consisting of all autotopisms (A, B, C) for which 1A = 1. For such an autotopism we have

$$\psi^{-1}(A, B, C) = (A, 1C).$$

In particular $PsAut(Q, \circ)$ is a group under the composition

$$(A, a)(D, d) = (AD, aD \circ d).$$

PROOF: (Compare [6, III.4.14].) If (A, a) is a pseudo-automorphism then (A, AR_a, AR_a) is an autotopism by definition. In particular for every $x \in Q$ we have $1A \circ xAR_a = (1 \circ x)AR_a = xAR_a$. As AR_a is a permutation of Q, there is an x with $1 = xAR_a$. Thus $1A = 1A \circ 1 = 1$.

If (A, a) and (B, b) are pseudo-automorphisms with (A, AR_a, AR_a) equal to (B, BR_b, BR_b) , then A = B and $a = 1AR_a = 1BR_b = b$; so ψ is an injection of $PsAut(Q, \circ)$ into the described subgroup of $Atop(Q, \circ)$.

Now suppose that (A, B, C) is an autotopism with 1A = 1. Always $1 \circ x = x$, so

$$xB = 1A \circ xB = (1 \circ x)C = xC,$$

giving B = C.

Again $x \circ 1 = x$ and

$$xA \circ 1C = (x \circ 1)C = xC.$$

That is $B = C = AR_{1C}$, and in particular R_{1C} is a permutation. Therefore $(A, B, C) = (A, AR_a, AR_a)$, the image of the pseudo-automorphism (A, a) for a = 1C. The map ψ is indeed a bijection.

Those autotopisms with 1A=1 clearly form a subgroup, so ψ^{-1} gives $PsAut(Q, \circ)$ a natural group structure. We find

$$\psi(A, a)\psi(D, d) = (A, AR_a, AR_a)(D, DR_d, DR_d)$$
$$= (AD, AR_aDR_d, AR_aDR_d)$$
$$= \psi(AD, e)$$

for some e with $AR_aDR_d = ADR_e$. Indeed $e = 1ADR_e = 1AR_aDR_d = aD \circ d$. Therefore multiplication in PsAut (Q, \circ) is given by

$$(A, a)(D, d) = (AD, aD \circ d),$$

as stated here and above.

248

From now on we identify $PsAut(Q, \circ)$ with its isomorphic image under ψ in $Atop(Q, \circ)$.

- **Corollary 2.2.** (a) Let (A, B, C) and (D, E, F) be autotopisms of the groupoid with identity (Q, \circ) . Then we have (A, B, C) = (D, E, F) if and only if A = D and 1C = 1F.
 - (b) Let (A, B, C) and (D, E, F) be autotopisms of the loop (Q, \circ) . Then we have (A, B, C) = (D, E, F) if and only if A = D and there is an $x \in Q$ with xC = xF.

PROOF: (Compare [6, III.3.1].) One direction is clear. Now suppose that A = D.

$$(X, Y, Z) = (A, B, C)(D, E, F)^{-1}$$

= $(AD^{-1}, BE^{-1}, CF^{-1})$
= (Id_Q, BE^{-1}, CF^{-1})
= $(Id_Q, Id_Q R_e, Id_Q R_e)$
= (Id_Q, R_e, R_e)

for $e = 1CF^{-1}$ by the proposition.

For any x with xC = xF we then have

$$x \circ 1 = x = xCF^{-1} = xZ = x \circ e,$$

so in both parts of the corollary we find e = 1. Therefore (X, Y, Z) is equal to $(\mathrm{Id}_Q, \mathrm{Id}_Q, \mathrm{Id}_Q)$, the identity of $\mathrm{Atop}(Q, \circ)$.

A particular consequence of the corollary is that we may (if we wish) denote the autotopism (A, B, C) by (A, *, C), since A and C determine B uniquely.

3. Autotopisms of Bol loops

Recall that a Bol loop (Q, \circ) is a loop with

for all $a, b, x \in Q$, a((xb)x) = ((ax)b)x.

Lemma 3.1. (a) The loop (Q, \circ) is a Bol loop if and only if $(\mathbb{R}_x^{-1}, \mathbb{L}_x \mathbb{R}_x, \mathbb{R}_x)$ is an autotopism for all $x \in Q$.

(b) The Bol loop (Q, \circ) is a right inverse property loop. That is, for x^{-1} defined by $xx^{-1} = 1$ we have $(x^{-1})^{-1} = x$ and $(ax)x^{-1} = a$, for all $a, x \in Q$. In particular $\mathbf{R}_x^{-1} = \mathbf{R}_{x^{-1}}$ for all x.

PROOF: (a) (See [6, Theorem IV.6.7].) For a fixed $x \in Q$ we have a((xb)x) = ((ax)b)x for all $a, b \in Q$ if and only if $(cR_x^{-1})(bL_xR_x) = (cb)R_x$ for all c (= ax), $b \in Q$ if and only if (R_x^{-1}, L_xR_x, R_x) is an autotopism.

(b) (See [6, Theorem IV.6.3].) In the identity a((xb)x) = ((ax)b)x set $b = x^{-1}$ to find $ax = a((xx^{-1})x) = ((ax)x^{-1})x$. That is, $a\mathbf{R}_x = (ax)x^{-1}\mathbf{R}_x$ and so

 $a = (ax)x^{-1}$. Further set $a = x^{-1}$ in this identity, giving

$$1\mathbf{R}_{x^{-1}} = x^{-1} = (x^{-1}x)x^{-1} = (x^{-1}x)\mathbf{R}_{x^{-1}},$$

whence $1 = x^{-1}x$ and $(x^{-1})^{-1} = x$.

Throughout the balance of this section let (Q, \circ) be a Bol loop. For all p in the Bol loop (Q, \circ) set

$$\mathbf{r}_{p} = (\mathbf{R}_{p^{-1}}^{-1}, \mathbf{L}_{p^{-1}}\mathbf{R}_{p^{-1}}, \mathbf{R}_{p^{-1}}) = (\mathbf{R}_{p}, \mathbf{L}_{p^{-1}}\mathbf{R}_{p^{-1}}, \mathbf{R}_{p^{-1}}),$$

and set $\mathbf{r}_{p,q} = \mathbf{r}_p \mathbf{r}_q \mathbf{r}_{pq}^{-1}$ for all p, q. By the lemma, each \mathbf{r}_p and $\mathbf{r}_{p,q}$ is an autotopism of (Q, \circ) .

Lemma 3.2. (a) $r_p^{-1} = r_{p^{-1}}$.

(b)
$$\mathbf{r}_{p,q} = (\mathbf{R}_{p,q}, (p^{-1}q^{-1})(pq)).$$

(c) $\mathbf{r}_{p,q}^{-1} = (\mathbf{R}_{p,q}^{-1}, ((pq)^{-1}q)p).$

PROOF: By Lemma 3.1

$$\mathbf{r}_p^{-1} = (\mathbf{R}_p^{-1}, \, * \, , \mathbf{R}_{p^{-1}}^{-1}) = (\mathbf{R}_p^{-1}, \, * \, , \mathbf{R}_p) = (\mathbf{R}_{p^{-1}}, \, * \, , \mathbf{R}_p) = \mathbf{r}_{p^{-1}},$$

as in (a). Therefore

$$\mathbf{r}_{p,q} = \mathbf{r}_{p}\mathbf{r}_{q}\mathbf{r}_{pq}^{-1} = (\mathbf{R}_{p}\mathbf{R}_{q}\mathbf{R}_{pq}^{-1}, *, \mathbf{R}_{p^{-1}}\mathbf{R}_{q^{-1}}\mathbf{R}_{pq}) = (\mathbf{R}_{p,q}, *, \mathbf{R}_{p^{-1}}\mathbf{R}_{q^{-1}}\mathbf{R}_{pq})$$

and

$$\mathbf{r}_{p,q}^{-1} = (\mathbf{R}_{p,q}, *, \mathbf{R}_{p^{-1}}\mathbf{R}_{q^{-1}}\mathbf{R}_{pq})^{-1} = (\mathbf{R}_{p,q}^{-1}, *, \mathbf{R}_{(pq)^{-1}}\mathbf{R}_{q}\mathbf{R}_{p}).$$

Here

$$1 R_p R_q R_{pq}^{-1} = (pq)(pq)^{-1} = 1;$$

$$1 R_{p^{-1}} R_{q^{-1}} R_{pq} = (p^{-1}q^{-1})(pq);$$

$$1 R_{(pq)^{-1}} R_q R_p = ((pq)^{-1}q)p.$$

The first calculation tells us that $r_{p,q}$ (and $r_{p,q}^{-1}$) are in PsAut (Q, \circ)). The second, together with Proposition 2.1, then gives (b) and the third (c).

Proposition 3.3. Let (X, Y, Z) be in Atop (Q, \circ) . Set x = 1X, $A = X R_x^{-1}$, and $a = 1Z \circ x$. Then

$$(X, Y, Z) = (A, a) \operatorname{r}_x.$$

In particular { $\mathbf{r}_x \mid x \in Q$ } is a set of right coset representatives for the subgroup $\operatorname{PsAut}(Q, \circ)$ in $\operatorname{Atop}(Q, \circ)$.

250

PROOF: (Compare [6, III.4.16, IV.6.8].)

$$\begin{aligned} (X, Y, Z) &= (X, Y, Z) \mathbf{r}_x^{-1} \mathbf{r}_x \\ &= (X \mathbf{R}_x^{-1}, Y \mathbf{R}_{x^{-1}}^{-1} \mathbf{L}_{x^{-1}}^{-1}, Z \mathbf{R}_{x^{-1}}^{-1}) \mathbf{r}_x \\ &= (X \mathbf{R}_{x^{-1}}, *, Z \mathbf{R}_x) \mathbf{r}_x. \end{aligned}$$

For $A = X R_x^{-1} = X R_{x^{-1}}$ we have $1A = 1X R_{x^{-1}} = x \circ x^{-1} = 1$. Furthermore $1Z R_x = 1Z \circ x = a$, so by Proposition 2.1 we have $(X, Y, Z) = (A, a) r_x$.

Proposition 3.4. $r_x(B,b) = (B,b)r_{(xB)b}r_b^{-1}$

PROOF: We have

$$\mathbf{r}_{x}(B,b) = (\mathbf{R}_{x}, \mathbf{L}_{x^{-1}}\mathbf{R}_{x^{-1}}, \mathbf{R}_{x^{-1}})(B, B\mathbf{R}_{b}, B\mathbf{R}_{b})$$
$$= (\mathbf{R}_{x}B, *, \mathbf{R}_{x^{-1}}B\mathbf{R}_{b})$$

and

$$(B,b)\mathbf{r}_{(xB)b}\mathbf{r}_{b}^{-1} = (B, B\mathbf{R}_{b}, B\mathbf{R}_{b})(\mathbf{R}_{(xB)b}, *, \mathbf{R}_{((xB)b)^{-1}})(\mathbf{R}_{b}^{-1}, *, \mathbf{R}_{b})$$
$$= (B\mathbf{R}_{(xB)b}\mathbf{R}_{b}^{-1}, *, B\mathbf{R}_{b}\mathbf{R}_{((xB)b)^{-1}}\mathbf{R}_{b}).$$

First we observe that $x \operatorname{R}_{x^{-1}} B \operatorname{R}_b = 1B \operatorname{R}_b = b$ and

$$x B R_b R_{((xB)b)^{-1}} R_b = ((xB)b) R_{((xB)b)^{-1}} R_b = 1 R_b = b.$$

Therefore by Corollary 2.2 we need only verify $R_x B = BR_{(xB)b}R_b^{-1}$ to prove the proposition.

As (B, b) is a pseudo-automorphism

$$pR_x BR_b = (px)BR_b$$
$$= (px)B \circ b$$
$$= pB \circ (xB \circ b)$$
$$= pBR_{(xB)b}$$

for every $p \in Q$. Therefore $\mathbf{R}_x B \mathbf{R}_b = B \mathbf{R}_{(xB)b}$ and $\mathbf{R}_x B = B \mathbf{R}_{(xB)b} \mathbf{R}_b^{-1}$ as desired.

Corollary 3.5. $(A, a)\mathbf{r}_x(B, b)\mathbf{r}_y = (A, a)(B, b)\mathbf{r}_{xB,b}^{-1}\mathbf{r}_{xB,y}\mathbf{r}_{(xB)y}$.

Proof:

$$\begin{split} (A,a)\mathbf{r}_{x}(B,b)\mathbf{r}_{y} &= (A,a)(\mathbf{r}_{x}(B,b))\mathbf{r}_{y} \\ &= (A,a)((B,b)\mathbf{r}_{(xB)b}\mathbf{r}_{b}^{-1})\mathbf{r}_{y} \\ &= (A,a)(B,b)\mathbf{r}_{(xB)b}\mathbf{r}_{b}^{-1}(\mathbf{r}_{xB}^{-1}\mathbf{r}_{xB})\mathbf{r}_{y}(\mathbf{r}_{(xB)y}^{-1}\mathbf{r}_{(xB)y}) \\ &= (A,a)(B,b)(\mathbf{r}_{(xB)b}\mathbf{r}_{b}^{-1}\mathbf{r}_{xB}^{-1})(\mathbf{r}_{xB}\mathbf{r}_{y}\mathbf{r}_{(xB)y}^{-1})\mathbf{r}_{(xB)y} \\ &= (A,a)(B,b)(\mathbf{r}_{xB,b}\mathbf{r}_{b}^{-1}\mathbf{r}_{xB,y}\mathbf{r}_{(xB)y}). \end{split}$$

Theorem 3.6. For the Bol loop (Q, \circ) the map

$$\varphi \colon \{(A,a),x\} \mapsto (A,a)\mathbf{r}_x$$

gives an isomorphism of Mikheev's groupoid $(\operatorname{PsAut}(Q, \circ) \times Q, \star)$ and the autotopism group $\operatorname{Atop}(Q, \circ)$. In particular $(\operatorname{PsAut}(Q, \circ) \times Q, \star)$ is a group.

PROOF: By Proposition 3.3 the map φ is a bijection of $PsAut(Q, \circ) \times Q$ and $Atop(Q, \circ)$. By Lemma 3.2 and Corollary 3.5

$$\varphi(\{(A, a), x\} \star \{(B, b), y\}) = \varphi(\{(A, a), x\}) \varphi(\{(B, b), y\}).$$

Thus $(\operatorname{PsAut}(Q, \circ) \times Q, \star)$ and $\operatorname{Atop}(Q, \circ)$ are isomorphic as groupoids. Furthermore since $\operatorname{Atop}(Q, \circ)$ is itself a group, so is $(\operatorname{PsAut}(Q, \circ) \times Q, \star)$.

Theorem 1.2 is an immediate consequence.

References

- Bruck R.H., A Survey of Binary Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Springer, Berlin-Göttingen-Heidelberg, 1958.
- [2] Doro S., Simple Moufang loops, Math. Proc. Cambridge Philos. Soc. 83 (1978), 377–392.
- [3] Grishkov A.N., Zavarnitsine A.V., Groups with triality, J. Algebra Appl. 5 (2006), 441–463.
- [4] Hall J.I., Moufang loops and groups with triality are essentially the same thing, submitted.
- Mikheev P.O., Enveloping groups of Moufang loops, Uspekhi Mat. Nauk 48 (1993), 191– 192; translation in Russian Math. Surveys 48 (1993), 195–196.
- [6] Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824, U.S.A.

E-mail:jhall@math.msu.edu

(Received September 6, 2009, revised December 17, 2009)