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Clifford algebras, Möbius transformations,

Vahlen matrices, and B-loops

Jimmie Lawson

Abstract. In this paper we show that well-known relationships connecting the
Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius trans-
formations extend to connections with the Möbius loop or gyrogroup on the

open unit ball B in n-dimensional euclidean space R
n. One notable achieve-

ment is a compact, convenient formula for the Möbius loop operation a ∗ b =
(a + b)(1 − ab)−1, where the operations on the right are those arising from the
Clifford algebra (a formula comparable to (w+z)(1+wz)−1 for the Möbius loop
multiplication in the unit complex disk).
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1. Introduction

There is a standard Möbius addition on the complex unit disk given by

w ⊕ z =
w + z

1 + wz

giving it the structure of a uniquely 2-divisible Bruck loop, or (in the gyrogroup
language) a uniquely 2-divisible gyrocommutative gyrogroup. This generalizes to
a loop resp. gyrogroup structure on the unit open ball of R

n, which A. Ungar has
studied in some detail [11].

There is an approach to Möbius geometry via the Clifford algebra of negative
euclidean space and Vahlen matrices (which induce Möbius transformations as
“fractional transformations”). Via this approach the general Möbius geometry
exhibits rather striking analogies to the Möbius geometry of the extended complex
plane via fractional transformations. The goal of this paper is to embed the
Möbius loop on the unit ball of euclidean space into this framework. Again the
Möbius loop has notable analogies to the basic one on the unit ball of the complex
plane, in particular with respect to the basic formula we derive for the Möbius
loop operation.

Much of the paper consists of quick summaries of the theory and results that we
need concerning Clifford algebras, Vahlen matrices, Möbius geometry, involutive
groups, and, of course, loop theory. In this sense most of the material is not
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original. The originality comes from the bringing together of the various threads
to recast the Möbius loop in the framework of Clifford algebras.

2. Clifford algebras

We recall some basic facts about Clifford algebras. We consider the category
of algebras (= associative algebras with a multiplicative identity 1) over a fixed
field F, always assumed not to be of characteristic 2, with morphisms identity
preserving algebra homomorphisms.

Definition 2.1. Let V be a vector space over F equipped with a nondegenerate
symmetric bilinear form Q : V × V → F. The algebra CQ is a Clifford algebra for
(V, Q) if

(1) it contains V and F = F · 1 as distinct subspaces;
(2) (the Clifford condition) for all x, y ∈ V ⊆ CQ, xy + yx = 2Q(x, y);
(3) V generates CQ as an algebra over F;
(4) CQ is the universal algebra over V (or CQ is freely generated by V ) subject

to the relations xy + yx = 2Q(x, y).

A linear map φ : V → A, A an algebra, is called a Clifford map if it preserves

the form Q, i.e., if for all x, y ∈ V , φ(x)φ(y) + φ(y)φ(x) = 2Q(x, y) · 1A. In more
detail, the universal property (4) means that given any Clifford map φ : V → A,

there exists a unique algebra morphism φ̃ : CQ → A that extends φ.

Note in particular in CQ that x2 = Q(x), where Q(x) := Q(x, x) is the asso-
ciated quadratic form. The members of V viewed as members of the larger CQ

are called vectors . Note also that by considering the reverse operation on any
algebra A, any Clifford map from V → A can also be uniquely extended to an
antihomomorphism from CQ to A.

For any Clifford algebra, there are three basic involutions, one an automor-
phism and the other two antiautormorphisms. The linear map on V defined by
x 7→ −x preserves the quadratic form Q and so by the universal property of
Clifford algebras extends uniquely to an involutive algebra automorphism on CQ

called the grade involution and denoted by x 7→ x̂, and also extends uniquely
to an involutive antiautomorphism on CQ, called Clifford conjugation and de-
noted x 7→ x. The identity map on V also extends uniquely to an involu-
tive antiautomorphism on CQ, denoted x 7→ x∗. Since for products of vectors,
(x1 · · ·xn)∗ = xn · · ·x1, this involution is called reversion. Since v̂∗ = v for v ∈ V
and V generates CQ, it follows that x̂∗ = x for all x ∈ CQ.

2.1 Bases and dimension. If the dimension of V is n and {e1, . . . , en} is a
basis of V , then the set

{eI := ei1ei2 · · · eik
: 1 ≤ i1 < . . . < ik ≤ n, I={i1, . . . , ik}⊆{1, . . . , n}, 0 ≤ k ≤ n}

is a basis for CQ. The empty product (k = 0) is defined as the multiplicative
identity element, e∅ = 1. Since V comes equipped with a nondegenerate symmet-
ric bilinear form, the basis for V may be chosen to be an orthogonal basis, one
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consisting of orthogonal vectors. The fundamental Clifford identity implies that
for an orthogonal basis eiej = −ejei for i 6= j which simplifies manipulation of
orthogonal basis vectors. Given a product of distinct orthogonal basis vectors,
one can put them into standard increasing ordering by including an overall sign
corresponding to the number of flips needed to correctly order them (i.e. the
signature of the ordering permutation). For each value of k there are

(
n
k

)
basis

elements spanning the subspace of grade k members of CQ, so the total dimension
of CQ is 2n. The subspace of grade k is independent of the orthogonal base chosen
and gives a Z-grading of CQ (as a vector space, not an algebra), with nonzero
values for grades 0 through n. The grade 0 subspace is equal to F, the grade 1
subspace is V , the vectors, and the elements of grade 2 are called bivectors. The
sum of the subspaces of even grade form a subalgebra of CQ.

One can easily extend the quadratic form Q on V to a quadratic form on all
of CQ by choosing an orthogonal basis of V and requiring that distinct elements
of the corresponding basis of CQ are orthogonal to one another and that Q(eI) =
Q(ei1ei2 · · · eik

) = Q(ei1)Q(ei2) · · ·Q(eik
). We then have

Q(a) = Q(
∑

I

aIeI) =
∑

I

a2
IQ(eI) for a =

∑

I

aIeI ∈ CQ,

2〈a, b〉 = Q(a + b) − Q(a) − Q(b) for a, b ∈ CQ.

The quadratic form defined in this way is actually independent of the orthogonal
basis chosen. One can show

Q(v1v2 · · · vk) = Q(v1)Q(v2) · · ·Q(vk) for v1, . . . , vk ∈ V,(2.1)

an identity which is not valid for arbitrary elements of CQ. We also note that each
of the three basic involutions multiplies each of the basis element eI by ±1, and
hence each of them preserves Q and the bilinear form.

2.2 The Clifford group. We continue the assumption that dim(V ) = n. We
note that an element x ∈ V is invertible in CQ if and only if Q(x) 6= 0. In the latter
case, one deduces from xx = Q(x) that x−1 = (1/Q(x))x. The Clifford group ΓQ

of CQ, also called the Lipschitz group since it was first considered by Lipschitz, is
the subgroup of invertible elements consisting of products of invertible elements
of V . It has an alternative characterization as

ΓQ = {s ∈ CQ : sxŝ−1 ∈ V for all x ∈ V }.

The action s.x = sxŝ−1 defines a linear action, called twisted conjugation of ΓQ

not only on V , but on the entire Clifford algebra CQ (although twisted conjugation
is not an algebra automorphism). When restricting twisted conjugation to V , we
have, using the fact that the grade involution preserves Q and equation (2.1),

Q(sxŝ−1) = Q(s)Q(x)Q(ŝ−1) = Q(x)Q(s)Q(s−1) = Q(x)Q(1 = ss−1) = Q(x).
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Thus twisted conjugation preserves Q, and so gives a homomorphism from the
Clifford group to the orthogonal group preserving Q. The Clifford group contains
all elements s of V of nonzero norm, and these act on V by the corresponding
reflections that take v to sv(−s)−1 = v − 2Q(v, s)s/Q(s).

Writing s ∈ ΓQ as a product v1 · · · vk of invertible members of V , we have from
equation (2.1) that

ss∗ = (v1 · · · vk)(vk · · · v1) =

k∏

i=1

Q(vi) = Q(s) ∈ F,

and thus that s−1 = (1/Q(s))s∗. Similarly s∗s = Q(s), so ss∗ = s∗s. The pin

group PinQ is a subgroup of ΓQ consisting of those s ∈ ΓQ that can be written as
finite products of vectors s = v1 · · · vk where Q(vi) = ±1 for 1 ≤ i ≤ k. Members
of the spin group SpinQ can be characterized as being written as such products
where the number of factors is even, i.e., SpinQ is the intersection of PinQ and
the subalgebra of even elements. Since for c, d, x ∈ V ,

cdxd̂−1ĉ−1 = cdx(−d−1)(−c−1) = cdxd−1c−1,

we conclude that for members of SpinQ acting by twisted conjugation is equal to
acting by conjugation, and that the action is the composition of an even number of
twisted conjugations, which are equal to reflections, by members of V . It follows
that members of SpinQ acting by conjugation on V give rise to members of the
special orthogonal group SO(Q).

2.3 Negative euclidean space. Our primary interest is in the Clifford algebra
Cn for negative euclidean space: R

n equipped with the bilinear form Q(x, y) =
−〈x, y〉, where 〈·, ·〉 is the usual euclidean inner product. If one chooses an or-
thonormal basis {e1, . . . , en}, one has in addition to the usual eiej = −ejei

for i 6= j that eiei = −〈ei, ei〉 = −1. More generally for v ∈ V , we have
v2 = −〈v, v〉 = −|v|2, and so v−1 = −v/|v|2 = v/|v|2 for v 6= 0.

We list some elementary useful properties related of Cn. Proofs may be found in
[1] and [13], but in many cases reduce to general facts about Q stated previously.

Proposition 2.2. Let a, b ∈ Cn.

(i) If a ∈ Γn or b ∈ Γn, then |ab| = |a| |b|.
(ii) If a ∈ Γn, then |a|2 = aa = aa.

(iii) If a ∈ Spinn, i.e., is a product of an even number of non-zero vectors,

then the conjugation map Ia : R
n → R

n given by Ia(v) = ava−1 is in

SO(n, R).

Assertion (iii) follows from the remarks of the preceding subsection since a
linear map of R

n preserves Q if and only if it preserves 〈·, ·〉, and thus SO(Q) =
SO(n, R).
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Remark 2.3. For a, b ∈ R
n, a 6= 0, ab 6= 1,

k := 1 − ab = −
a

|a|2
(a + |a|2b)

is the product of two nonzero members of V and hence the inner automorphism
x 7→ kxk−1 is a rotation of R

n.

3. Möbius transformations and Vahlen matrices

Möbius transformations of R
n are important for a variety of reasons, one being

that they are precisely the conformal maps.

Definition 3.1. Let R̂
n denote R

n with a point attached at infinity. The Möbius

transformations of R
n consist of all Möbius transformations on R̂

n, that is, the
group of transformations (under composition) generated by rigid motions, scalar
multiplication by positive scalars, and inversion through spheres, where rigid mo-
tions and scalar multiplication leave the point at infinity fixed and inversion
through a sphere carries the center of the sphere and the point at infinity to
each other.

3.1 Möbius transformations of the unit ball. We consider the subgroup
G(B) consisting of all Möbius transformations that carry the open unit ball B :=
{x ∈ R

n : |x| < 1} onto itself. These include of course all members of the
orthogonal group. It is known that G(B) can be generated by O(n, R) and a
special class of Möbius transformations called Möbius translations . These have
a compact and straightforward description by means of the Clifford algebra Cn.
For a ∈ B, we define the Möbius translation τa by a by the rule

τa(x) = (x + a)(−ax + 1)−1.

We calculate in Cn for a, b ∈ B:

τa(b) = (a + b)(1 − ab)−1

= (a + b)(1 − ba)(1 − ba)−1(1 − ab)−1

= (a + b)(1 − ba)
(
(1 − ab)(1 − ba)

)−1
.

Multiplying the first two factors, we obtain

(a + b)(1 − ba) = a + b − aba + |b|2a

= a + b − a(−ab − 2〈a, b〉) + |b|2a

= a + b − |a|2b + 2〈a, b〉a + |b|2a

= (1 + 2〈a, b〉 + |b|2)a + (1 − |a|2)b.

Multiplying the second two factors (without the inverse), we obtain

(1 − ab)(1 − ba) = 1 − ab − ba + |a|2|b|2

= 1 + 2〈a, b〉+ |a|2|b|2.
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Since the last line is a scalar, we have

τa(b) =
(1 + 2〈a, b〉 + |b|2)a + (1 − |a|2)b

1 + 2〈a, b〉 + |a|2|b|2
.(3.2)

Note that equation (3.2) agrees with the known euclidean space formulation for
Möbius translations (see, for example, [11, Section 3.5]), and is a Möbius trans-
formation that carries B to B for a ∈ B.

3.2 Vahlen matrices. Members of Γn may be used to define the Vahlen matri-
ces, which form a group under matrix multiplication [12], [1].

Definition 3.2. A matrix
[

a b
c d

]
is called a Vahlen matrix if

(i) a, b, c, d ∈ Γn ∪ {0};
(ii) ab∗, cd∗, c∗a, d∗b ∈ R

n;
(iii) the pseudodeterminant ∆ := ad∗ − bc∗ is real and nonzero.

The Vahlen matrix group is the group of all Vahlen matrices under matrix multi-
plication.

The following theorem connects Vahlen matrices with Möbius transformations
[12], [1], [13].

Theorem 3.3. A matrix M =
[

a b
c d

]
with entries from Cn induces a bijective

map ΦM (x) := (ax + b)(cx + d)−1 on R̂
n that is a Möbius transformation if and

only if M is a Vahlen matrix. The map M 7→ ΦM is a surjective homomorphism

from the Vahlen group to the group of Möbius transformations, and has kernel

the group of scalar matrices
[

λ 0
0 λ

]
, λ ∈ R\{0}. Hence two Vahlen matrices induce

the same Möbius transformation if and only if one is a nonzero scalar multiple of

the other.

Observe that the Vahlen matrix
[

1 a
−a 1

]
induces the Möbius translation τa(x) =

(x + a)(1 − ax)−1 and that

[
1 a
−a 1

] [
1 −a
a 1

]
=

[
1 + |a|2 0

0 1 + |a|2

]
.

The Vahlen matrix on the right induces the identity map on R̂
n, since it is a

scalar times the identity (see Theorem 3.3). Since composition of Möbius maps
corresponds with multiplication of the inducing Vahlen matrices, we conclude that
τa ◦ τ−a is the identity map, i.e., τ−a = (τa)−1.

Let g ∈ G(B), set a = g(0) ∈ B. Then τ−ag is a Möbius transformation
preserving B and carrying 0 to 0, hence by a standard result of Möbius geometry
it is an orthogonal map θ. Hence g = τa(τ−ag) = τaθ, and we conclude that every
Möbius transformation preserving B can be factored into factors of a Möbius
translation and an orthogonal map.



Clifford algebras and B-loops 325

4. Twisted subgroups, involutive groups, and B-loops

In this section we cover more-or-less familiar ground to loop theorists, but it is
perhaps worthwhile to quickly review it in a context that applies to the current
setting.

4.1 B-loops. We recall certain basic definitions and elementary properties from
loop theory. A pair (B, ∗) consisting of a set B and a binary operation ∗ is a loop

if it has an identity and the equations a∗x = b and y∗a = b have unique solutions
in B for all a, b ∈ B. A left Bol loop is a loop satisfying the Bol-identity (I), and
a Bruck loop or K-loop is a left Bol loop satisfying item (II):

(I) (Bol-identity) x ◦ (y ◦ (x ◦ z)) = (x ◦ (y ◦ x)) ◦ z,
(II) (Automorphic inverse property) (a ◦ b)−1 = a−1 ◦ b−1.

An equivalent definition of a Bruck loop is to replace item (II) by the following
[6, Theorem 6.8]:

(II′) (a ◦ b) ◦ (a ◦ b) = a ◦ ((b ◦ b) ◦ a).

It is a standard result that a K-loop (indeed a left Bol loop) is power associative
(integer powers of any element associate) and every element has a unique two-sided
inverse (indeed, this in necessary for (II) to make sense), which together imply
that every element is contained in a cyclic subgroup. Furthermore, a K-loop is
left power alternative: xm ◦ (xn ◦ y) = xm+n ◦ y for all integers m, n. The K-loop
is uniquely 2-divisible if every element has a unique square root. Such loops are
sometimes referred to as B-loops , a terminology we adopt. Alternatively, B-loops
are 2-divisible K-loops with no elements of order 2 ([5] or [9]).

The term B-loop arose in the work of Glaubermann ([3] and [4]). He studied
Bruck loops that were finite of odd order. Since each cyclic subgroup 〈x〉 partitions
the Bruck loop in cosets 〈x〉 ◦ y of equal cardinality, one has a Lagrange theorem
for cyclic subgroups. Therefore each cyclic subgroup has odd order and hence is
uniquely 2-divisible.

4.2 Twisted subgroups. Recall that a subset X of a group G is a twisted

subgroup if e ∈ G and x, y ∈ G implies x−1, xyx ∈ G. The twisted subgroup X
is uniquely 2-divisible if every element of X has a unique square root in X . The
following result may be found in [10, 3.9] or [6, Theorem 6.14]. For a converse,
namely that every B-loop arises in such a manner, see [6, Theorem 6.15].

Proposition 4.1. A uniquely 2-divisible twisted subgroup X of a group G is a

B-loop with respect to the operation a ⊗ b = a1/2ba1/2. Furthermore, integer

powers of elements in X formed in G and in (X,⊗) agree.

Corollary 4.2. A uniquely 2-divisible twisted subgroup X of a group G is a

B-loop with respect to the operation a ∗ b = (ab2a)1/2.

Proof: The algebraic systems (X, ∗) and (X,⊙) are isomorphic, the isomorphism
being given by D : (P, ∗) → (P,⊙), D(x) = x2:

D(a ∗ b) = D((ab2a)1/2) = ab2a = a2 ⊙ b2 = D(a) ⊙ D(b).
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The bijectiveness follows from the unique 2-divisibility of the twisted subgroup X .
Thus (X, ∗) is a B-loop, since it is isomorphic to one. �

4.3 Involutive groups. We turn now to the setting of an involutive group G,
a group equipped with an involutive automorphism τ . We set g∗ = τ(g−1) =
(τ(g))−1 and note that g 7→ g∗ : G → G is an involutive antiautomorphism. Let

Gτ := {x ∈ G : τ(x) = x}, PG := {xx∗ : x ∈ G} ⊆ Gτ := {g ∈ G : g = g∗}.

(That (xx∗)∗ = x∗∗x∗ = xx∗ shows PG ⊆ Gτ .)
We recall some basic terminology. Let G be a group with subgroup H . A subset

L of G is said to be a transversal of G/H or transversal to H if the identity
e ∈ L and L intersects each coset gH of H in precisely one point. Thus the
map g 7→ gH : G → G/H has a cross-section, namely the map that picks the
member of L out of each coset. One sees readily that a subset L containing e
is a transversal to H if and only if the map (x, h) 7→ xh from L × H to G is a
bijection. In the case of an involutive group (G, τ), if L ⊆ {g ∈ G : g = g∗}, then
the map (x, k) 7→ xk : L × Gτ → G is called a polar map. Hence e ∈ L ⊆ Gτ is
transversal to Gτ if and only if the polar map is a bijection. If it is a bijection,
then the pair (L, Gτ ) is called a polar decomposition for (G, τ).

Lemma 4.3. Let (G, τ) be an involutive group. Then P = {gg∗ : g ∈ G} is

a twisted subgroup invariant under the action of Gτ by conjugation, or more

generally under the action of G by congruence transformations x 7→ gxg∗.

Proof: For g, h ∈ G, h(gg∗)h∗ = (hg)(hg)∗, and hence P is invariant under
all congruence transformations. Since h∗ = h−1 for h ∈ Gτ , these congruence
transformations reduce to conjugations. For g, h ∈ G, we have

gg∗(hh∗)−1gg∗ = (gg∗(h−1)∗)(gg∗(h−1)∗)∗,

so P is a twisted subgroup. �

Most, if not all, of the equivalences below may be found in the literature and
are more or less familiar to researchers in loop theory.

Proposition 4.4. Let (G, τ) be an involutive group, P = {gg∗|g ∈ G}. The

following are equivalent:

(1) P is a uniquely 2-divisible twisted subgroup;

(2) P is transversal to Gτ , i.e., the map (x, g) 7→ xg : P ×Gτ → G is bijective;

(3) every element g ∈ G has a unique polar decomposition g = xk ∈ PGτ ,

x ∈ P , k ∈ Gτ , where x = (gg∗)1/2.

Proof: (1) ⇒ (3): If g = x1k1 = x2k2 ∈ PGτ , then gg∗ = (x1)
2 = (x2)

2. Hence
x1 = x2, and then k1 = k2. Thus factorizations, when they exist, are unique.

For g ∈ G, set x := (gg∗)1/2 ∈ P . Choose k ∈ G so that g = xk. We are
finished if we show that k ∈ Gτ . We have

kk∗ = (x−1g)(x−1g)∗ = (gg∗)−1/2gg∗(gg∗)−1/2 = e,
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and thus k∗ = k−1, i.e., k ∈ Gτ .
(3) ⇒ (2): Immediate.
(2) ⇒ (1): By Lemma 4.3, P is a twisted subgroup. For gg∗ ∈ P , let g = xk ∈

PGτ . Then gg∗ = xk(xk)∗ = x2, so x ∈ P is a square root of gg∗. If y ∈ P were
another, then one verifies that y(y−1g) would give another decomposition of g,
since

y−1g = y−1gg∗(g∗)−1 = y−1y2τ(g) = yτ(g) = τ(y−1g).

�

4.4 Loops from transversals. Let G = BH , where H is a subgroup of G and
B is transversal to H . Let b1, b2 ∈ B be any two elements of B, and let

b1b2 = (b1 ∗ b2)h(b1, b2) ∈ BH(4.3)

be the unique decomposition of the element b1b2 ∈ G, where b1 ∗ b2 ∈ B and
h(b1, b2) ∈ H , determining (i) a binary operation ∗ in B, called the transversal

operation of B induced by G, and (ii) a map h : B×B → H , called the transversal

map. Then as an algebraic structure (B, ∗) is a left loop, that is, it has an identity,
namely the identity e of the group, and there is a unique solution of the equation
a ∗ x = b for all a, b ∈ B (see, for example, [6, Theorem 2.7]). The various types
of left loops and loops that arise as one imposes various additional properties on
the transversal B have been quite intensively studied.

Things become quite nice in the case that we considered in the previous sub-
section.

Theorem 4.5. Let (G, τ) be an involutive group, K = Gτ the fixed point sub-

group, and P = {xx∗ : x ∈ G} satisfy any of the three equivalent conditions of

Proposition 4.4. Then for b1, b2 ∈ P ,

b1b2 = (b1 ∗ b2)h(b1, b2) ∈ PK,

where (b1 ∗ b2) = (b1b
2
2b1)

1/2. Furthermore, (P, ∗) is a B-loop.

Proof: That (b1 ∗ b2) = (b1b
2
2b1)

1/2 follows from Proposition 4.4(3). That (P, ∗)
is a B-loop then follows from Proposition 4.4(1) and Corollary 4.2. �

Let a, b ∈ L, a loop. An important role is played in loop theory by the preces-

sion map γa,b : L → L, which is the unique function satisfying for all c ∈ L the
equation:

a ∗ (b ∗ c) = (a ∗ b) ∗ γa,bc.

Proposition 4.6. Let (G, τ) be an involutive group, K = Gτ the fixed point

subgroup, and P = {xx∗ : x ∈ G} satisfy any of the three equivalent condi-

tions of Proposition 4.4, and let (P, ∗) be the B-loop defined in Theorem 4.5.

Then the precession map γa,b is given by conjugation by h(a, b), i.e., ch(a,b) :=
h(a, b)ch(a, b)−1 = γa,bc for all c ∈ P .
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Proof: We note for some h1, h2 ∈ K

a(bc) = a(b ∗ c)h1 = a ∗ (b ∗ c)h2h1

and for some h3 ∈ K

(ab)c = (a ∗ b)h(a, b)c = (a ∗ b)ch(a,b)h(a, b)−1 = (a ∗ b) ∗ ch(a,b)h3h(a, b)−1.

By uniqueness of the polar decomposition, we have a∗(b∗c) = (a∗b)∗ch(a,b). From
the defining equation for γa,b, we conclude for all c ∈ P that ch(a,b) = γa,bc. �

5. The Möbius loop

In this section we obtain the major result of the paper, Theorem 5.2, an analog
for euclidean space of Möbius loop on the complex unit disk.

Let B be the open unit ball in R
n ⊆ R̂

n, and let G(B) be the group of all
Möbius transformations that carry B onto B. Define j : B → B by j(x) = −x
and define the involution σ on G(B) by σ(g) = jgj.

Theorem 5.1. For the involutive group (G(B), σ), we have G(B)σ = G(B)0
(the isotropy group at 0) is the orthogonal group O(n) and P := {gg∗ : g ∈ G} =
{τa : a ∈ B} is a uniquely 2-divisible twisted subgroup. Hence (x, h) 7→ xh from

P × O(n) to G(B) is a bijection.

Proof: Since θ(−x) = −θ(x) for an orthogonal map θ, it follows directly that
jθj = θ, i.e., θ ∈ G(B)σ ⊆ G(B)0. Conversely from the theory of Möbius
geometry, any Möbius transformation in G(B) fixing 0 must be an orthogonal
map. Therefore O(n) = G(B)σ = G(B)0.

We note that

σ(τa)(x) = jτaj(x) = jτa(−x) = −(a−x)(1+ax)−1 = (x−a)(1+ax)−1 = τ−a(x),

and hence σ(τa) = τ−a = (τa)−1. It follows that τa = (τa)∗ ∈ G(B)σ. For
0 < r < 1,

[
1 ra

−ra 1

] [
1 ra

−ra 1

]
=

[
1+r2|a|2 2ra
−2ra 1+r2|a|2

]
=(1+r2|a|2)

[
1 2ra

1+r2|a|2
−2ra

1+r2|a|2 1

]
.

Since the last matrix is a scalar times a matrix inducing the Möbius translation
τ2ra/(1+r2|a|2), it also induces this same translation. Solving 2r/(1 + r2|a|2) = 1

for r, we find the solution 0 < r = 1 −
√

1 − |a|2 < 1 and conclude τraτ∗
ra =

τraτra = τa. Thus each τa ∈ P , in particular τra ∈ P , and hence τa has a square
root in P . This shows {τa : a ∈ B} ⊆ P .

Conversely let gg∗ ∈ P . Then (from the last paragraph of the Section 2) we
have g = σbθ for some b ∈ B and θ ∈ O(n). Then

gg∗ = τbθθ
∗τb = τbτb = τ2b/(1+|b|2),
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the last equality following from the use of Vahlen matrices as in the preceding
paragraph. We conclude that P = {τa : a ∈ B}. Finally we see that square roots
in P are unique because if a 6= b ∈ B, then τ2

a (0) = 2a/(1+ |a|2) 6= 2b/(1+ |b|2) =
τ2
b (0). It follows from Proposition 4.4 that the factorization G(B) = P O(n) is

unique. �

For a, b ∈ B, we have
[

1 a
−a 1

] [
1 b
−b 1

]
=

[
1 (a + b)(1 − ab)−1

−(a + b)(1 − ab)−1 1

] [
1 − ab 0

0 1 − ab

]
.

The Möbius transformation induced by the right most Vahlen matrix sends x to
(1 − ab)x(1 − ab)−1. By Remark 2.3 this map is a rotation. Hence the induced
Möbius transformations from the right hand side give the P O(n) factorization,
and we conclude from Theorem 4.5 that P is a B-loop with respect to the op-
eration τa ∗ τb = τ(a+b)(1−ab)−1 . If we transfer this operation to B via the set
bijection a ↔ τa, we obtain a B-loop called the Möbius loop on B with operation
given in terms of the Clifford algebra operations by

(5.4) a ∗ b =
a + b

1 − ab
.

If we multiply the diagonal Vahlen matrix with entries 1 − ab by the scalar
1/|1−ab|, we obtain a new matrix that induces the same Möbius transform. This
new matrix has diagonal entries q := (1 − ab)/|1 − ab|. Since

|q|2 = qq =
(1 − ab)(1 − ab)

|1 − ab|2
=

|1 − ab|2

|1 − ab|2
= 1,

we conclude that |q| = 1. Since q is the product of two members of R
n by

Remark 2.3, we conclude that q is in Spinn. It follows from Proposition 4.6 that
the precession γa,b is equal to conjugation by q. We summarize:

Theorem 5.2. The Möbius loop on the open unit ball in R
n has operations given

in terms of the Clifford algebra Cn by

a ⊕ b = (a + b)(1 − ab)−1, γa,b(x) = qxq−1 where q =
1 − ab

|1 − ab|
.

Hence γa,b ∈ SO(n, R).

Remark 5.3. A fairly straightforward computation yields that the preceding ro-

tation arising from conjugation by q is actually a rotation in the plane determined

by a and b that leaves the orthogonal complement of this plane pointwise fixed.

6. Gyrogroups

The results of the preceding sections involving B-loops and the Möbius loop can
be recast in the framework of gyrogroups, which have been introduced and studied
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in some detail by A. Ungar [11]. Indeed B-loops are equivalent to uniquely 2-
divisible gyrocommutative gyrogroups, with the loop operation a∗b corresponding
to the gyroaddition a ⊕ b and the precession maps γa,b corresponding to the
gyroautomorphisms gyr[a, b]. Many of the preceding results involving transversals
and loops can be found in the paper [2] of Foguel and Ungar reformulated in the
framework of gyrogroups. We recall, for example, [2, Theorem 4.5]:

Theorem 6.1. Let (G, τ) be an involutive group, let H ⊆ Gτ be a subgroup,

let L ⊆ Gτ be a twisted subgroup transversal to H such that hLh−1 ⊆ L for all

h ∈ H . Then L is a gyrocommutative gyrogroup with respect to the transversal

operation ⊙(= ∗) induced on it. Furthermore the gyroautomorphisms gyr[a, b]
for a, b ∈ L are given by gyr[a, b](x) = xh(a,b) = h(a, b)xh(a, b)−1.

Corollary 6.2. Let (G, τ) be an involutive group, P = {gg∗|g ∈ G}. If P is

transversal to Gτ or P is uniquely 2-divisible, then P endowed with the transver-

sal operation is a gyrocommutative gyrogroup with gyr[a, b](x) = xh(a,b). Fur-

thermore, a ⊙ b = (ab2a)1/2.

Proof: By Lemma 4.3 P is a twisted subgroup invariant under conjugation by
Gτ and the two conditions of tranversality and unique 2-divisibility are equivalent
by Proposition 4.4. Thus for P transversal, the first two conclusions follow from
Theorem 6.1. For the last assertion, by definition of the transversal operation we
have ab = (a ⊙ b)h(a, b). Hence

(a ⊙ b)2 = (a ⊙ b)(a ⊙ b)∗ = (abh(a, b)−1)(h(a, b)ba) = ab2a,

and hence a ⊙ b = (ab2a)1/2 by unique 2-divisibility. �

We remark that one of the principal objects of study in [11] is the Möbius
gyrogroup, or the Möbius loop in our terminology. Ungar [11] defines the Möbius
gyroaddition on the unit ball of R

n by equation (3.2). Our approach via Clifford
algebras yields an equivalent, but much more compact formula, given by equa-
tion (5.4), which is a more general form of the standard formula for the Möbius
loop on the open complex unit ball. We think that this approach via Clifford
algebras yields a much more accessible approach from an algebraic point of view.
While we have set this approach in the framework of B-loops, it is equally valid
in the framework of gyrocommutative gyrogroups.
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