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Martin’s Axiom and ω-resolvability of Baire spaces
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Abstract. We prove that, assuming MA, every crowded T0 space X is ω-resolvable if it
satisfies one of the following properties: (1) it contains a π-network of cardinality < c

constituted by infinite sets, (2) χ(X) < c, (3) X is a T2 Baire space and c(X) ≤ ℵ0 and
(4) X is a T1 Baire space and has a network N with cardinality < c and such that the
collection of the finite elements in it constitutes a σ-locally finite family.

Furthermore, we prove that the existence of a T1 Baire irresolvable space is equivalent
to the existence of a T1 Baire ω-irresolvable space, and each of these statements is
equivalent to the existence of a T1 almost-ω-irresolvable space.

Finally, we prove that the minimum cardinality of a π-network with infinite elements
of a space Seq(ut) is strictly greater than ℵ0.
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1. Introduction

Every space in this article is T0 and crowded (that is, without isolated points)
and so it is infinite. A space X is resolvable if it contains two dense disjoint
subsets. A space which is not resolvable is called irresolvable. Resolvable and
irresolvable spaces were studied extensively first by Hewitt [14]. Later, El’kin and
Malykhin published a number of papers on these subjects and their connections
with various topological problems. One of the problems considered by Malykhin
in [22] refers to the existence of irresolvable spaces satisfying the Baire Category
Theorem. Kunen, Symański and Tall in [19] afterwards proved that there is such
a space if and only if there is a space X on which every real-valued function is
continuous at some point. (The question about the existence of a –Hausdorff–
space on which every real-valued function is continuous at some point was posed
by M. Katětov in [16].) They also proved (see [18] as well):

1. if we assume V = L, there is no Baire irresolvable space,
2. the conditions “there is a measurable cardinal” and “there is a Baire irre-

solvable space” are equiconsistent.
Bolstein introduced in [5] the spaces X in which it is possible to define a real-

valued function f with countable range and such that f is discontinuous at every
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point of X (he called these spaces almost resolvable), and proved that every re-
solvable space satisfies this condition. It was proved in [12] that X is almost
resolvable iff there is a function f : X → R such that f is discontinuous at every
point of X . Almost-ω-resolvable spaces were introduced in [26]; these are spaces
in which it is possible to define a real-valued function f with countable range, and
such that r ◦ f is discontinuous in every point of X , for every real-valued finite-
to-one function r. It was proved in that article that for a Tychonoff space X ,
the space of real continuous functions with the box topology, C�(X), is discrete
if and only if X is almost-ω-resolvable. It was also proved that the existence of
a measurable cardinal is equiconsistent with the existence of a Tychonoff space
without isolated points which is not almost-ω-resolvable, and that, on the con-
trary, if V = L then every crowded space is almost-ω-resolvable. Later, it was
pointed out in [2, Corollary 5.4] that a Baire space is resolvable if and only if it
is almost resolvable; so,

1.1 Theorem. A Baire almost-ω-resolvable space is resolvable.

It is unknown if every Baire almost-ω-resolvable space is 3-resolvable. With
respect to this problem we have the following theorems.

1.2 Theorem ([24]). Gödel’s axiom of constructibility, V = L, implies that every
Baire space is ω-resolvable.

1.3 Theorem ([2]). Every T1 Baire space such that each of its dense subsets is
almost-ω-resolvable is ω-resolvable.

These last two results transform our problem to that of finding subclasses of
Baire spaces such that each of its crowded dense subsets is almost-ω-resolvable,
assuming axioms consistent with ZFC which contrast with V = L. Of course, a
classic axiom with these characteristics is MA+¬CH. This bet is strengthened by
the following result due to V.I. Malykhin ([23, Theorem 1.2]):

1.4 Theorem [MAcountable]. Let a topology on a countable set X have a π-
network of cardinality less than c consisting of infinite subsets. Then this topology
is ω-resolvable.

It was proved in [2] that every space with countable tightness, every space
with π-weight ≤ ℵ1 and every σ-space are hereditarily almost-ω-resolvable. So,
by Theorem 1.3, every T1 Baire space with either countable tightness or π-weight
≤ ℵ1 or σ is ω-resolvable.

In this article we are going to continue the study of almost-ω-resolvable and
Baire resolvable spaces, and we will solve some problems related to these posed
in [2]. Section 2 is devoted to establishing basic definitions and results. In Sec-
tion 3 we prove that under MA every space with either π-weight < c or χ(X) < c

is ω-resolvable. Furthermore, we are going to see in Section 4 that under SH every
T2 Baire space with countable cellularity is ω-resolvable. Section 5 is devoted to
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analyse almost-ω-irresolvable spaces. We prove in this section that there is a T1

Baire irresolvable space iff there is a T1 Baire ω-irresolvable space, iff there is a
T1 almost-ω-irresolvable space. Finally in Section 6, we prove that the minimum
cardinality of a π-network with infinite elements of a space Seq(ut) is strictly
greater than ℵ0. Moreover, we propose several problems related to our matter
through the article.

2. Basic definitions and preliminaries

A space X is resolvable if it is the union of two disjoint dense subsets. We say
that X is irresolvable if it is not resolvable. For a cardinal number κ > 1, we say
that X is κ-resolvable if X is the union of κ pairwise disjoint dense subsets.

The dispersion character ∆(X) of a space X is the minimum of the cardinalities
of non-empty open subsets of X . If X is ∆(X)-resolvable, then we say that X is
maximally resolvable. A space X is hereditarily irresolvable if every subspace of
X is irresolvable. And X is open-hereditarily irresolvable if every open subspace
of X is irresolvable.

We call a space (X, t) maximal if (X, t′) contains at least one isolated point
when t′ strictly contains the topology t. And a space X is submaximal if every
dense subset of X is open. Moreover, maximal spaces are submaximal, and these
are hereditarily irresolvable spaces, which in turn are open-hereditarily irresolv-
able.

It is possible to prove that a space X is almost resolvable if and only if X is the
union of a countable collection of subsets each of them with an empty interior [5].

It was proved in [26] that the following formulation can be given as a definition
of almost-ω-resolvable space: A space X is called almost-ω-resolvable if X is the
union of a countable collection {Xn : n < ω} of subsets in such a way that for
each m < ω, int(

⋃

i≤m Xi) = ∅. In particular, every almost-ω-resolvable space is
almost resolvable, every ω-resolvable space is almost-ω-resolvable, every almost
resolvable space is infinite, and every T1 separable space is almost-ω-resolvable.

We are going to say that a space X is hereditarily almost-ω-resolvable if each
crowded subspace of X is almost-ω-resolvable, and X is dense-hereditarily almost-

ω-resolvable if each crowded dense subspace of X is almost-ω-resolvable.

Let X be a κ-resolvable (resp., almost-resolvable, almost-ω-resolvable) space.
A κ-resolution (resp., an almost resolution, an almost-ω-resolution) for X is a
partition {Vα : α < κ} (resp., a partition {Vn : n < ω}) of X such that each Vα

is a dense subset of X (resp., int(Vn) = ∅ for every n < ω, int(
⋃n

i=0 Vi) = ∅ for
every n < ω).

Finally, a space X is almost-ω-irresolvable (resp., κ-irresolvable) if X is not
almost-ω-resolvable (resp., X is not κ-resolvable). The hereditary version of
almost-ω-irresolvability or κ-irresolvability is that which states that every crowded
subspace of X is not almost-ω-resolvable, and, respectively, is not κ-resolvable.
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2.1 Example. There are non-T0 topological spaces which are almost resolvable
but not almost-ω-resolvable. In fact, let X be an infinite set and x, y ∈ X with
x 6= y. We define a collection T of subsets of X as follows: A ∈ T if either A is
the empty set or x, y ∈ A. The family T is a topology in X and (X, T ) satisfies
the required conditions.

2.2 Example. It was proved in Theorem 4.4 of [19] that the existence of an
ω1-complete ideal I over ω1 which has a dense set of size ω1 implies the existence
of a T2 Baire strongly irresolvable topology T on ω1. On the other hand, it was
observed in [26, Corollary 4.9] that every Baire irresolvable space is not almost
resolvable. Therefore, (ω1, T ) is not almost resolvable.

2.3 Example. If there is a measurable cardinal κ, then there is a resolvable
Baire space X which is not almost-ω-resolvable and ∆(X) = κ. Indeed, let κ
be a non-countable Ulam-measurable cardinal, and let p be a free ultrafilter on κ
ω1-complete. Let X = κ∪{p}. We define a topology t for X as follows: A ∈ t\{∅}
if and only if p ∈ A and A ∩ κ ∈ p. This space is a Baire resolvable non-almost-
ω-resolvable space with ∆(X) = α. Now, let T be equal to {A ⊆ X : A ∩ κ ∈ p};
T is a topology in X too, and (X, T ) is T1 submaximal, Baire with ∆(X) = α,
but it is not almost resolvable.

Related to the last examples we have:

2.4 Question. Is there a T2 resolvable Baire space which is not almost-ω-resolv-
able?

2.5 Examples. In ZFC, there are almost-ω-resolvable spaces which are not re-
solvable. Indeed, the union of Tychonoff crowded topologies in Q generates a
Tychonoff crowded topology. By Zorn’s Lemma, we can consider a maximal Ty-
chonoff topology T in Q. The space (Q, T ) is countable (so, almost-ω-resolvable)
hereditarily irresolvable ([14, Theorems 15 and 26], [8, Example 3.3]). (Q, T ) is
Tychonoff.

In [1], the authors construct by transfinite recursion a “concrete” (in the sense
that we can say how its open sets look) example of a countable dense subset X of
the space 2c which is irresolvable. Since X is countable, it is almost-ω-resolvable.

2.6 Example. For every cardinal number κ, there exists a Tychonoff space X
which is almost-ω-resolvable, hereditarily irresolvable and ∆(X) ≥ κ. In fact, let
λ be a cardinal number such that κ ≤ λ and cof(λ) = ℵ0. Let H , G and τ be
the topological groups and the topology in G, respectively, defined in [11, pp. 33
and 34], with |H | = λ. L. Feng proved there that (H, τ |H ) is an irresolvable card-
homogeneous (every open subset of H has the same cardinality as H) Tychonoff
space, and each subset S ⊆ H with cardinality strictly less than λ is a nowhere
dense subset of H . Let (λn)n<ω be a sequence of cardinal numbers such that
λn < λn+1 for every n < ω and sup{λn : n < ω} = λ. We take subsets Hn

of H with the properties Hn ⊆ Hn+1 and |Hn| = λn for each n < ω, and
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H =
⋃

n<ω Hn. We have that each Hn is nowhere dense in H ; so {Hn : n < ω} is
an almost-ω-resolvable sequence on H . That is, H is almost-ω-resolvable. By the
Hewitt Decomposition Theorem (see [14, Theorem 28]), there exists a non-empty
open subset U of H which is hereditarily irresolvable. Besides, ∆(U) = ∆(H) ≥ κ
and U is almost-ω-resolvable.

2.7 Examples. The first example of a Hausdorff maximal group was constructed
by Malykhin in [21] under Martin’s Axiom. Malykhin also constructed in [23],
in the BK model Mω1

(see [3]) a topological group topology T ′ in the infinite
countable Boolean group Ω of all finite subsets of ω with symmetric difference
as the group operation, such that (Ω, T ′) is T2, irresolvable and its weight is ω1

(compare with Corollary 3.6 below). Moreover, in Mω1
, ω1 < c. Moreover, he

constructed in Mω1
a countable irresolvable dense subset in 2ω1 . This space has

of course weight ω1.

On the other hand, the class of resolvable spaces includes spaces with well
known properties:

2.8 Theorem. (1) If X has a π-network N such that |N | ≤ ∆(X) and each
N ∈ N satisfies |N | ≥ ∆(X), then X is maximally resolvable [9].

(2) Hausdorff k-spaces are maximally resolvable [25].
(3) Countably compact regular T1 spaces are ω-resolvable [7].
(4) Arc connected spaces are ω-resolvable.
(5) Every biradial space is maximally resolvable [29].
(6) Every homogeneous space containing a non-trivial convergent sequence is

ω-resolvable [28].
(7) If G is an uncountable ℵ0-bounded topological group, then G is ℵ1-

resolvable [29].
(8) T1 Baire spaces with either countable tightness or π-weight ≤ ℵ1 are ω-

resolvable [2].

The following basic results will be very helpful (see, for example, [6]).

2.9 Propositions. (1) If X is the union of κ-resolvable (resp., almost-resolv-
able, almost-ω-resolvable) subspaces, then X has the same property.

(2) Every open and every regular closed subset of a κ-resolvable (resp., almost
resolvable, almost-ω-resolvable) space shares this property.

(3) Let X be a space which contains a dense subset which is κ-resolvable (resp.,
almost resolvable, almost-ω-resolvable). Then, X satisfies this property
too.

The following results are easy to prove and are well known.

2.10 Proposition. Let Y be a κ-resolvable (resp., almost-resolvable, almost-ω-
resolvable) space. If f : X → Y is a continuous and onto function, and for each
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open subset A of X the interior of f [A] is not empty, then X is κ-resolvable (resp.,
almost-resolvable, almost-ω-resolvable).

2.11 Proposition. Let f : X → Y be continuous and bijective. If X is κ-
resolvable (resp., almost-resolvable, almost-ω-resolvable), so is Y .

2.12 Proposition. (1) If X is κ-resolvable (resp., almost resolvable, almost-ω-
resolvable) and Y is an arbitrary topological space, then X × Y is κ-
resolvable (resp., almost resolvable, almost-ω-resolvable).

(2) [2] If X and Y are almost resolvable, then X × Y is resolvable.
(3) (O. Masaveu) If X is the product space

∏

α<κ Xα where κ ≥ ω and each
Xα has more than one point, then X is 2κ-resolvable.

The following lemmas will be useful later.

2.13 Proposition. If X is a crowded space such that cof(|X |) = ℵ0 and every
open subset of X has cardinality |X |, then X is almost-ω-resolvable.

2.14 Proposition. If X has tightness equal to κ, then each point x ∈ X is
contained in a crowded subset of X of cardinality ≤ κ.

Proof: Let x0 ∈ X be an arbitrary fixed point. Since X is crowded, x0 ∈ clX [X\
{x0}]; so there is a subset F1 ⊆ X \{x0} of cardinality ≤ κ such that x0 ∈ clX F1.
If F0∪F1 is crowded, where F0 = {x0}, then we have finished. Otherwise, for each
isolated point x of F0 ∪ F1, there is a subset F 2

x ⊆ X \ ({x0} ∪ F1) of cardinality
≤ κ such that x ∈ clX F 2

x . Let F2 =
⋃

x∈G1
F 2

x where G1 is the set of isolated
points of F0 ∪F1. Again, there are two possible situations: either F0 ∪F1 ∪F2 is
a crowded subspace of cardinality ≤ κ containing x0, or G2 = {x ∈ F2 : x is an
isolated point of F0 ∪F1 ∪F2} is not empty. In this last case, for each x ∈ G2 we
take a subset F 3

x ⊆ X \(F0∪F1∪F2) of cardinality ≤ κ for which x ∈ clX F 3
x . We

write F3 =
⋃

x∈G2
F 3

x . Continuing this process if necessary, we obtain either a

finite sequence F0, . . . ,Fn of subsets of X such that x0 ∈ F =
⋃

0≤i≤n Fn and F

has cardinality ≤ κ and is crowded, or we have to go further: x0 ∈ F =
⋃

n<ω Fn.
In this last case too, F has cardinality ≤ κ and is crowded. �

3. Martin’s Axiom, π-netweight and ω-resolvable spaces

First, in this section we are going to present, by using Martin’s Axiom, a
generalization of Theorem 1.4. As usual, if I and J are two sets, Fn(I, J) stands
for the collection of the finite functions with domain contained in I and range
contained in J . We define a partial order ≤ in Fn(I, J) by letting p ≤ q iff p ⊇ q.
The partial order set (Fn(I, J),≤) is ccc if and only if |J | ≤ ℵ0 (Lemma 5.4,
p. 205 in [17]).

Let (X, τ) be a topological space. A collection N ⊆ P(X) is a π-network of X
if each element U ∈ τ \ {∅} contains an element of N .
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3.1 Definitions. Let κ be an infinite cardinal.

(1) A space X is almost-κ-resolvable if X can be partitioned as X =
⋃

α<κ′ Xα

where ω ≤ κ′ ≤ κ, Xα 6= ∅, and Xα ∩ Xξ = ∅ if α 6= ξ, such that every
non-empty open subset of X has a non-empty intersection with an infinite
collection of elements in {Xα : α < κ}.

(2) Let X = {Xα : α < κ} be a partition of X . A collection N = {Nξ : ξ < τ}
of infinite subsets of κ is a π-network of X if for each open set U of X ,
{α < κ : Xα ∩ U 6= ∅} ⊇ Nξ for a ξ < τ .

(3) A space X is called precisely almost-κ-resolvable if X contains a resolution
with a π-network N such that |N | ≤ κ.

The following well known result is due to K. Kuratowski.

3.2 Lemma (The disjoint refinement lemma). Let {Aξ : ξ < κ} be a collection of
sets such that, for each ξ < κ, |Aξ | ≥ κ. Then, there is a collection {Bξ : ξ < κ}
of sets satisfying:

(1) Bξ ⊆ Aξ for all ξ < κ,
(2) |Bξ | = κ for all ξ < κ,
(3) Bξ ∩ Bζ = ∅ for ξ, ζ < κ with ξ 6= ζ.

3.3 Proposition. A space X is precisely almost-ω-resolvable if and only if X is
ω-resolvable.

Proof: Let X be a precisely almost-ω-resolvable space. Let X = {Xξ : ξ < τ} be
a precise partition of X , and M = {Mn : n < ω} be a π-network of X . Because
of Lemma 3.2, there are infinite and pairwise disjoint sets T0, T1, . . . , Tn, . . . such
that Ti ⊆ Mi for all i < ω.

For each n < ω, we faithfully enumerate Tn: {kn
i : i < ω}. Now we define for

each i < ω, Di =
⋃

j<ω X
k

j
i

. Each Dn is dense in X and Di ∩ Dj = ∅ if i 6= j.

Moreover, if X is ω-resolvable and D = {Dn : n < ω} is a collection of pairwise
disjoint dense subsets of X , then D is a precise partition of X and M = {ω} is a
π-network of D. �

When we assume Martin’s Axiom, we can generalize Proposition 3.3:

3.4 Theorem. Let X = {Xα : α < τ} be an almost-τ -resolvable partition of X .
Let N = {Nξ : ξ < κ} be a π-network of X such that κ < c. If we assume Martin’s
Axiom, then X is ω-resolvable. In particular, MA implies that ω-resolvability and
almost-κ-resolvability precise coincide when κ < c.

Proof: In this case, we put P = (Fn(κ, ω),≤) where ≤ is defined at the beginning
of this section. For each k ∈ ω and N ∈ N , we take the set

Dk
N = {p ∈ P : ∃ξ ∈ N such that p(ξ) = k}.
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It happens that each Dk
N is dense in P. In fact, let q be an arbitrary element in P.

We can take ξ ∈ N \ dom(q) because N is infinite. The function p = q ∪ {(ξ, k)}
belongs to Dk

N and is less than q.

The partially ordered set P is ccc and D = {Dk
N : k < ω, N ∈ N} has cardina-

lity strictly less than c. So, there exists a D-generic filter G in P. Take f =
⋃

G.
Then f : κ → ω is onto and κ =

⋃

n<ω Yn where Yn = f−1[{n}].
Now, for each n < ω, we consider the set Xn =

⋃

α∈Yn
Xα. It is easy to prove

that {Xn : n < ω} is a partition of
⋃

n<ω Xn. Moreover, each Xn is a dense
subset of X . Indeed, let n0 be a natural number. We are going to prove that Xn0

is dense. Let U be an open set of X . Because of the properties of N , there is
N0 ∈ N such that {α < τ : Xα∩U 6= ∅} ⊇ N0. We take p ∈ Dn0

N0
∩G. It happens

that there is a ξ ∈ N0 such that p(ξ) = n0. Hence, f(ξ) = n0. This means
that ξ ∈ f−1[{n0}] = Yn0

. By definition, Xξ must have a non-empty intersection
with U , and therefore U ∩ Xn0

= U ∩
⋃

α∈Yn0
Xα 6= ∅. �

Assume that {xξ : ξ < τ} is a faithful enumeration of a space X . If X
possesses a π-network N with infinite elements, the collection {MN : N ∈ N}
where MN = {ξ < τ : xξ ∈ N}, is a π-network of the partition {{xξ} : ξ < τ}.
So the following result is a corollary of Theorem 3.4.

3.5 Theorem. Let X be a crowded topological space with a π-network N with
cardinality κ < c and such that each element in N is infinite. If we assume
Martin’s Axiom, then X is an ω-resolvable space.

Recall that every biradial space is maximally resolvable. Moreover, every space
with πw(X) ≤ ∆(X) is maximally resolvable (see [4]). With respect to these ideas
we have:

3.6 Corollary [MA]. Every crowded space X with π-weight < c is ω-resolvable.
In particular, every space with weight < c is hereditarily ω-resolvable.

Proof: Let N be a π-base of X of cardinality < c. Since X is crowded and each
element of N is open in X , then |N | ≥ ℵ0 for each N ∈ N . On the other hand,
N is a π-network in X , so the conclusion follows. �

It is easy to see that if X has π-character and density ≤ κ, then X has a π-base
of cardinality ≤ κ.

3.7 Proposition [MA]. If X is a space with density and π-character < c, then
every dense subset of X is ω-resolvable.

Proof: The space X has a π-base B of cardinality < c. Let H be an arbitrary
dense subset of X . It happens now that M = {N ∩H : N ∈ N} is a π-base of H
and has cardinality < c. So, by Corollary 3.6, H is ω-resolvable. �

For every space X , max{t(X), πχ(X)} ≤ χ(X), so, as a consequence of the
last result, and related to Theorems 2.8(2) and 2.8(8), we have:
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3.8 Theorem [MA]. If X is a space such that χ(x, X) < c for each x ∈ X , then
X is hereditarily ω-resolvable.

Proof: Let Y be a crowded subspace of X . The character of Y is strictly less
than c; thus, the tightness of Y is < c. Hence, each point y in Y is contained in a
crowded subspace Yy of Y of cardinality < c (Proposition 2.14). The density and
character of each Yy is strictly less than c. By Proposition 3.7, Yy is ω-resolvable.
Then Y is ω-resolvable (see Proposition 2.9(1)). �

The following result is a generalization of Theorems 3.5 and 3.8, which answers,
affirmatively, a question posed by the referee. A collection N ⊆ P(X) is a π-

network of X at the point x ∈ X if every open set of X containing x contains
an element of N . For each point x ∈ X , we define πnw∗(x, X) = min{|N | : N
is a π-network of X at x and each element in N is infinite}. Of course, for each
x ∈ X , πnw∗(x, X) ≤ χ(x, X). Since MA implies that c is a regular cardinal, we
have that, by Theorem 3.5, MA implies that every space X containing a dense
subset Y of cardinality ≤ κ < c and such that for every y ∈ Y , πnw∗(y, X) < c,
is ω-resolvable. This result can be ameliorated. Indeed, by using a similar proof
to that of Proposition 2.14, if X is a space with πnw∗(x, X) < c for each x ∈ X ,
then each point x ∈ X is contained in a crowded subspace Xx of X of cardinality
< c and having, for each y ∈ Xx, πnw∗(y, Xx) < c. So:

3.9 Corollary [MA]. Let X be a space such that for every x ∈ X , πnw∗(x, X) <
c. Then X is ω-resolvable.

We obtain another result with a slightly different mood of that of the previous
corollary by defining for each point x ∈ X the number R(x, X) = min{|Λ| : Λ is
a directed partially ordered set and there is a net (xα)α∈Λ in X \ {x} such that
(xα)α∈Λ converges to x in X}. Indeed, following a similar argumentation to that
given in the previous paragraph of Corollary 3.9, we obtain:

3.10 Corollary [MA]. Let X be a space such that for every x ∈ X , R(x, X) < c.
Then X is ω-resolvable.

In Proposition 4.5 of [2] it was proved that every T2 σ-space is almost-ω-resolv-
able. When X has a countable network, we can repeat that proof assuming only
the weaker condition T0. So every space with countable network is almost-ω-
resolvable. With respect to σ-spaces, Proposition 4.5 in [2] and Martin’s Axiom,
Proposition 3.11 allows us to say something else which is, in some sense, stronger
that Theorem 3.5:

3.11 Proposition [MA]. Let κ be an infinite cardinal < c. Let X be a space
with a network N such that for each finite subcollection N ′ of N ,

⋂

N ′ is infinite
or empty, and for each x ∈ X , |{N ∈ N : x ∈ N}| ≤ κ. Then, X is hereditarily
ω-resolvable.
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Proof: The space X is the condensation of a crowded space Y (Y is X with the
topology generated by N as a base) which has character strictly less than c (see
Proposition 2.11). �

Next, we obtain a result that we can locate between Theorem 3.5 which deals
with π-networks and Corollary 3.6 which speaks of bases. First a definition and
some remarks. A space X is called σ-locally finite if X can be written as

⋃

n<ω Xn

where, for each n < ω, the collection {{x} : x ∈ Xn} is locally finite in X . It can
be proved that a σ-locally finite crowded space is hereditarily almost-ω-resolvable.

3.12 Theorem [MA]. Let X be a crowded topological space with a network N
with cardinality κ < c and such that N0 = {N ∈ N : |N | < ℵ0} is σ-locally
finite in

⋃

N0. Then X can be written as Y0 ∪ Y1 where Y0 is a (possibly empty)
regular closed ω-resolvable subspace and Y1 is an open (possibly empty) almost-ω-
resolvable, hereditarily ω-irresolvable space. Besides, if Y1 is not void, it contains
a non-empty open subset which is hereditarily almost-ω-resolvable. Moreover, if
X is a T1 Baire space, then X must be ω-resolvable.

Proof: Let M be the collection of all subspaces of X which are ω-resolvable.
Take Y0 = clX

⋃

M and Y1 = X \ Y0. Of course Y0 is closed and ω-resolvable.
Now, if Y1 is empty, we have already finished; if the contrary happens, Y1 is he-
reditarily ω-irresolvable and the collection N ′ = {N ∈ N : N ⊆ Y1} is a network
in Y1 with cardinality < c and such that N ′

0 = {N ∈ N ′ : |N | < ℵ0} is σ-locally
finite in

⋃

N ′
0. Of course N ′

0 is not empty, because otherwise, by Theorem 3.5, Y1

would be ω-resolvable, but this is not possible. Let Z be the subspace
⋃

N∈N ′

0
N

of X . The space Z is σ-locally finite. Since Y1 is hereditarily ω-irresolvable, Z is
a dense subset of Y1. Then, Y1 is almost-ω-resolvable. Furthermore, there must
exist a non-empty open subset U of Y1 such that each element of N ′ contained in
U is finite because otherwise Y1 would be ω-resolvable (again by Theorem 3.5).
So, intZ is a non-empty open subset which is hereditarily almost-ω-resolvable.

Assume now that X is T1 and satisfies all the conditions of our proposition
including the Baire property. In this case Y1 must be empty because if this is
not the case, the subspace intZ of Y1 would be a T1 Baire hereditarily almost-
ω-resolvable space. But this means, by Theorem 1.3, that intZ is ω-resolvable,
which is not possible. �

If we consider in the previous theorem π-networks instead of networks, we still
get something interesting.

3.13 Proposition [MA]. Let X be a crowded topological space with a π-network
N with cardinality κ < c and such that N0 = {N ∈ N : |N | < ℵ0} is σ-locally
finite. Then X is equal to X0 ∪ X1 where X0 ∩ X1 = ∅, X0 is a regular closed
(possibly empty) almost-ω-resolvable space and X1 is an open (possibly empty)
ω-resolvable subspace. In particular, X is, in this case, almost-ω-resolvable.
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Proof: Let Y be the subspace
⋃

N∈N0
N . The space Y is σ-locally finite. If Y

is empty, we obtain our result by Theorem 3.5. If Y is crowded, then it is almost-
ω-resolvable (see Theorem 3.5 in [26]). If Y is not empty and is not crowded, we
can find an ordinal number α > 0 and, for each β < α, an ω-resolvable subspace
Mβ of X such that X0 = clX(Y ∪ clX(

⋃

β<α Mβ)) is almost-ω-resolvable. In

fact, let D0 be the set of isolated points in Y0 = Y . For each x ∈ D0, there
is an open set Ax in X such that Ax ∩ Y0 = {x}. Observe that Ax \ {x} is
a dense subset of Ax and it satisfies the conditions in Theorem 3.5, so it is ω-
resolvable. Thus, M0 = clX (

⋃

x∈D0
Ax) is an ω-resolvable space. Assume that

we have already constructed ω-resolvable subspaces Mβ of X with β < γ. Put
Yγ = Y \ clX(

⋃

β<γ Mβ). If Yγ is empty or crowded, we take α = γ, and in

this case clX(Y ∪ clX(
⋃

β<γ Mβ)) is almost-ω-resolvable because Yγ is empty or

crowded and σ-locally finite. If Yγ is not empty and is not crowded, let Dγ be the
set of isolated points in Yγ . For each x ∈ Dγ there is an open set Ax in X such
that Ax∩Yγ = {x} and Ax∩clX(

⋃

β<γ Mβ) = ∅. Again Ax\{x} is a dense subset

of Ax and it is ω-resolvable because of Theorem 3.5. Thus, Mγ = clX(
⋃

x∈Dγ
Ax)

is an ω-resolvable space. Continuing with this process we have to find an ordinal
number α for which X0 = clX(Y \ clX(

⋃

β<α Mβ)) is almost-ω-resolvable.

Now, if X1 = X \X0 is not empty, then it is a crowded space and N1 = {N ∈
N : N ⊆ X1} is a π-network in X1 with infinite elements and |N1| < c. Then,
again by Theorem 3.5, X1 is ω-resolvable. Therefore, X = X0 ∪ X1, and X0, X1

satisfy the conditions of our proposition. �

3.14 Questions. (1) Let X be a crowded space with cardinality < c. Does
MA+¬CH imply that X is almost-ω-resolvable?

(2) Is there a combinatorial axiom on ω1 ensuring that every card-homogen-
eous topology in ω1 is almost-ω-resolvable?

(3) Does ♦ imply that every card-homogeneous topology in ω1 is almost-ω-
resolvable?

4. Martin’s Axiom, cellularity and ω-resolvable Baire spaces

It is well known that MA(ω1) implies that a Souslin line does not exist. That
is, MA(ω1) ⇒SH. We show that it is enough to assume SH in order to prove that
every T2 space with countable cellularity is almost-ω-resolvable.

4.1 Theorem [SH]. Every crowded T2 space with countable cellularity is almost-
ω-resolvable.

Proof: Let a0 ∈ X and F0 = {a0}. Let C0 be a maximal cellular family of
open sets in X \ F0 containing at least two elements. Let X0 be equal to

⋃

C0.
Assume that we have already constructed, by recursion, families {Cα : α < γ},
{Xα : α < γ} and {Fα : α < γ}, such that

(1) for all α < γ, Cα is a maximal cellular collection of open sets in X ;
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(2) if α < ξ < γ, then Cξ properly refines Cα;
(3) if α < ξ < γ and C ∈ Cα, then Cξ contains a maximal cellular family of

proper open sets of C having more than one element;
(4) Xα =

⋃

Cα for each α < γ;
(5) the family {Xα : α < γ} is a strictly decreasing γ-sequence of open sets

in X ;
(6) Fα 6= ∅ for every α < γ;
(7) Fα ⊆ (

⋂

ξ<α Xξ) \ Xα for all α < γ;

(8) int(Fα) = ∅ for all α < γ.

If γ is a successor ordinal, say γ = ξ + 1, take for each C ∈ Cξ a point aγ
C
∈ C.

Now, take a maximal cellular family of open proper subsets in C \ {aγ
C} with

more than one element, Cξ
C (this is possible because C is T2 and infinite). Put

Cγ =
⋃

C∈Cγ
Cξ
C , Xγ =

⋃

Cγ and Fγ = {aγ
C : C ∈ Cξ}.

If γ is a limit ordinal, analyse the set
⋂

ξ<γ Xξ : if int(
⋂

ξ<γ Xξ) = ∅, declare our

process finished; and if int(
⋂

ξ<γ Xξ) is not empty, take a point aγ ∈ int(
⋂

ξ<γ Xξ)

and take a maximal cellular family Cγ with cardinality bigger than one of open
proper subsets in int(

⋂

ξ<γ Xξ) \ Fγ where Fγ = {aγ}. Put Xγ =
⋃

Cγ .

In this way we can find an ordinal number α0 and families C = {Cα : α < α0},
X = {Xα : α < α0} and F = {Fα : α < α0} satisfying properties from (1) to (8)
above where α0 is an ordinal number such that int(

⋂

ξ<α0
Xξ) = ∅ and for each

α < α0, int(
⋂

ξ<α Xξ) 6= ∅.
First, observe that α0 must be a limit ordinal and every Xα is an open set

of X . Now, consider the collection Y = {Yα : α < α0} of subspaces of X where
Y0 = X \ X0, and Yα = (

⋂

ξ<α Xα) \ Xα if α > 0. We have that Fα ⊆ Yα and

int(Yα) = ∅ for every α < α0.
The set

⋃

α<α0
Cα with the order relation ⊆ is a tree T and each element in it

has at least two immediate successors.

Claim 1. The height of T , α0, is at most c(X)+ = ω1.

In fact, if α0 > ω1, then Cω1
6= ∅. Take Cω1

∈ Cω1
. Let C = {C ∈ T : C ⊇ Cω1

and C 6= Cω1
}. Since T is a tree, C is a well ordered set with order type ω1.

We can rename C as {Cα : α < ω1} where Cα is the only element in Cα which
belongs to C. For each α < ω1, there is Aα+1 ∈ Cα+1 such that Aα+1 ⊆ Cα and
Aα+1 ∩ Cα+1 = ∅. The set A = {Aα+1 : α < ω1} is an antichain in T . Indeed,
let Aα+1 and Aξ+1 be two different elements of A. Assume that α < ξ. Hence,
Aξ+1 ⊆ Cξ and Cξ ⊆ Cα+1. But Cα+1∩Aα+1 = ∅. Therefore, Aα+1∩Aξ+1 = ∅.
This means that c(X) > ℵ0, which is a contradiction. We get that every chain and
every antichain of T has cardinality ≤ ℵ0. Since we are assuming the Souslin’s
Hypothesis, there are no Souslin trees. Therefore α0 < ω1.

It is not difficult to prove that the set Z = X \ Xα0
is equal to

⋃

α<α0
Yα and

that the collection {Yλ : α < α0} is a partition of Z.
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Claim 2. The collection {Yα : α < α0}∪{Xα0
} is an almost-ω-resolution for X ;

that is, X is almost-ω-resolvable.

The collection Y = {Yα : α < α0} ∪ {Xα0
} is a countable partition of X .

Assume that A is a non-empty open set of X and |{α < α0 : A ∩ Yα 6= ∅}| < ℵ0.
Assume that H = {α < α0 : A ∩ Yα 6= ∅} is equal to {ξ1, . . . , ξn} with ξ1 < ξ2 <
· · · < ξn.

If B = A∩Xα0
6= ∅, then A∩Xξn

= B. But A and Xξn
are open sets in X , so

B is a non-empty open set in X , contradicting the fact that int(Xα0
) = ∅. This

means that A ∩ Xα0
must be empty.

Now, let B = A∩ Yξn
. B is not empty and A∩Xξn−1

= B. Thus, B is a non-
empty open set in X which does not intersect any member of Cξn

. If ξn = α + 1,
Cξn

is a maximal cellular collection of open sets contained in (
⋃

Cα) \ {aα
C : C ∈

Cα} = Xα \ {aα
C : C ∈ Cα}. Hence, B ∩{aα

C : C ∈ Cα} 6= ∅. Let a
γ
C ∈ B. We have

that M = (C ∩B) \ {aγ
C} is an open set contained in Xα \ {aα

C : C ∈ Cα} and no
element in Cξ intersects M . By maximality of Cξ, we must have that M is empty;

that is, C ∩ B = {aγ
C}, and this is not possible because X does not have isolated

points.

Now assume that ξn is a limit ordinal. Since B is open and B ⊆
⋂

ξ<ξn
Xξ,

B must be contained in int(
⋂

ξ<ξn
Xξ). Since {aξn

} is closed and B does not

intersects any element of Cξn
which is a maximal cellular family of open sets

contained in the set int(
⋂

ξ<ξn
Xξ) \ {aξn

}, B must be equal to {aξn
}, which is

again a contradiction.

Therefore, |{ξ < α0 : A ∩ Yξ 6= ∅}| must be equal to ℵ0. �

Since the cellularity of a space is a monotone function when it is applied on
dense subspaces, and using Theorem 1.3, we conclude:

4.2 Corollary [SH]. Every T2 Baire space with c(X) ≤ ℵ0 is ω-resolvable.

Example 4.3 in [26] (see Example 2.3 above) gives us a space which is Baire,
T1 with countable cellularity but it is not almost-ω-resolvable. This example
is constructed assuming the existence of measurable cardinals. Moreover, there
is a model M in which SH holds and there are measurable cardinals. So we
cannot get anything stronger than our results of this section by assuming only T1.
Furthermore, we cannot erase the Baire condition in Corollary 4.2 because there
is in ZFC a Tychonoff, countable irresolvable space (see Examples 2.5). Finally,
in 2.2 we list an example of a space with cellularity ≤ ℵ1 which is Baire and is
not almost-ω-resolvable. This last example is given by assuming the existence of
an ω1-complete ideal over ω1 which has a dense set of cardinality ω1. Hence, it is
natural to ask:

4.3 Question. Does MA imply that every crowded T2 space of cellularity < c is
almost-ω-resolvable?
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In this question, we cannot change “almost-ω-resolvable” for “resolvable” since
there is in ZFC an irresolvable countable space.

5. Almost-ω-irresolvable spaces

A space is almost-ω-irresolvable if it is not almost-ω-resolvable. In a similar
way we define almost irresolvable spaces.

5.1 Proposition. If X is almost-ω-irresolvable, then there is a non-empty open
subset U of X which is hereditarily almost-ω-irresolvable.

Proof: Let U be the collection of all almost-ω-resolvable subspaces Y of X . The
set Z = clX(

⋃

U) is almost-ω-resolvable and U = X \Z is not empty and satisfies
the requirements. �

5.2 Proposition. If X is open hereditarily almost-ω-irresolvable, then X is a
Baire space.

Proof: Let {Un : n < ω} be a sequence of open and dense subsets of X . We can
choose this sequence to be ⊆-decreasing. Denote by F the set

⋂

n<ω Un. We claim
that F is dense in X . In fact, if for a k < ω, clX F ⊇ Uk, then clX F ⊇ clX Uk = X
and F is dense. Now, assume that for each n < ω, Un \ clX F is not empty. In
this case, the collection T = {i < ω : (Ui \ Ui+1) ∩ (X \ clx F ) 6= ∅} is infinite.
For each i ∈ T , we put Ti = (Ui \Ui+1)∩ (X \ clx F ). The collection {Ti : i < ω}
forms an almost-ω-resolution of X \ clX F . But this is not possible. �

5.3 Corollary. If there is an almost resolvable space X which is almost-ω-
irresolvable, then there is a resolvable Baire open subspace U of X which is
hereditarily almost-ω-irresolvable.

Proof: Let X be an almost-resolvable almost-ω-irresolvable space. The space X
contains a non-empty open subspace U which is hereditarily almost-ω-irresolvable.
By Proposition 5.2, U is a Baire space; so, it is resolvable being almost resolvable.

�

5.4 Corollary. There is an almost resolvable space X which is almost-ω-irresolv-
able if and only if there is an almost resolvable Baire space which is hereditarily
almost-ω-irresolvable.

As a consequence of the previous result, we have that almost resolvability and
almost-ω-resolvability coincide in the class of spaces X in which every open subset
is not a Baire space. Even more was obtained in [2, Corollary 5.21]: every space
which does not contain a Baire open subspace is almost-ω-resolvable.

5.5 Proposition. Let X be a T1 space. Then X is hereditarily resolvable if and
only if X is hereditarily ω-resolvable.
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Proof: Let Y be a crowded subspace of X and assume that Y is not ω-resolvable.
Then, there is k ∈ ω with k > 1 such that X is k-resolvable but X is not (k + 1)-
resolvable [15]. So there are D0, . . . , Dk−1 dense and pairwise disjoint subspaces
of Y . But, then, each Di is crowded and irresolvable, a contradiction. �

5.6 Proposition. Let X have the property that every of its crowded subspaces
is Baire. Then X is hereditarily ω-resolvable iff X is hereditarily resolvable iff X
is hereditarily almost-ω-resolvable iff X is hereditarily almost resolvable.

Several results established in [2, Section 5] and [26, Section 4] relate Baire irre-
solvable spaces with the property of almost-ω-resolvability (see also [1, Section 3]).
In the following theorem we obtain the most general possible result in the mood
of these propositions.

5.7 Theorem. For crowded T1 spaces and for a crowded-hereditarily topological
property P , the following assertions are equivalent:

(1) every Baire space with P is ω-resolvable,
(2) every Baire space with P is resolvable,
(3) every space with P is almost-ω-resolvable,
(4) every space with P is almost resolvable.

Proof: The implications (1) ⇒ (2) and (3) ⇒ (4) are evident.

(2) ⇒ (3): Assume that X is not almost-ω-resolvable and satisfies P . The space
X contains an open and non-empty subset U which is hereditarily almost-ω-
irresolvable. By Proposition 5.5, U is not hereditarily resolvable, so there is
a crowded subspace Y which is not resolvable. Observe that Y is hereditarily
almost-ω-irresolvable, then Y is an irresolvable Baire space because of Proposi-
tion 5.2. Since P is a crowded-hereditarily topological property, Y satisfies P
too.

(4) ⇒ (2): Assume that X is a Baire space with P . By hypothesis, X is almost
resolvable and every Baire almost resolvable space is resolvable (see [2, Corol-
lary 5.4]).

(3) ⇒ (1): Assume that X is a Baire space with P . By hypothesis, every crowded
subspace Y of X has P and so it is almost-ω-resolvable; hence X is ω-resolvable
because of Theorem 1.3. �

Taking P equal to “X is a crowded topological space”, we have:

5.8 Corollary. For crowded T1 spaces, the following assertions are equivalent:

(1) every Baire space is ω-resolvable,
(2) every Baire space is resolvable,
(3) every space is almost-ω-resolvable,
(4) every space is almost resolvable.



534 F. Casarrubias, F. Hernández, Á. Tamariz-Mascarúa

A space is locally homogeneous if each of its points has a homogeneous neigh-
borhood. For a cardinal number κ ≥ 1, we will say that X is exactly κ-resolvable,
in symbols EκR, if X is κ-resolvable but is not κ+-resolvable. The space X is
said to be OEκR if every non-empty open set in X is EκR. The concept and
examples of EnR spaces for n ∈ ω have existed in the literature for some time
(see, for example, [10] and [8]). It is clear that the OEκR spaces are EκR. The
above definitions can be viewed as natural generalizations of the concepts of ir-
resolvable and open-hereditarily irresolvable spaces since E1R and irresolvability
are the same concept and OE1R and open-hereditarily irresolvability coincide.

It was proved in [1, Theorem 3.13] that every locally homogeneous irresolvable
space such that its cardinality is not a measurable cardinal is of the first category.
Also, Li Feng and O. Masaveu [13] proved that every crowded topological space
X can be written as

X = Ω ∪ clX

( ∞
⋃

n=1

On

)

,

where

(1) for each n, On is an open, possibly empty, subset of X ;
(2) for each n, if On 6= ∅, then it is OEnR;
(3) for n 6= m, On ∩ Om = ∅; and
(4) Ω is an open, possibly empty, ω-resolvable subset of X .

Thus we obtain the following:

5.9 Proposition. Every locally homogeneous Baire space of cardinality strictly
less than the first measurable cardinal is resolvable.

Proof: Let X be a locally homogeneous Baire space. Write X as Feng and
Masaveu say: X = Ω ∪ clX (

⋃∞
n=1 On). Assume that O1 is not empty and take

x ∈ O1. There is a homogeneous neighborhood W of x. (Observe that W has to
be contained in X \ clX(Ω∪

⋃

n>1 On) ⊆ intX clX O1). On the other hand, O1 is
open hereditarily irresolvable, so intX W ∩ O1 is irresolvable. Since intX W ∩ O1

is a non-empty open subset of W , W is irresolvable. By Theorem 3.13 in [1], W
is of first category. In particular the open and non-empty subset O1 ∩ intX W of
X is of first category in itself, but this is not possible because X is a Baire space.
Hence, O1 = ∅ and X is resolvable. �

5.10 Questions. (1) Is every pseudocompact (resp., Čech-complete) Tychonoff
space almost-ω-resolvable in ZFC?

(2) Is every Baire locally homogeneous space (resp., homogeneous space, topo-
logical group) ω-resolvable?

(3) For each n > 1, is there a Baire OEnR space?
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6. The infinite π-netweight and Seq(ut) spaces

We define the infinite π-networkweight of a crowded space X , πnw∗(X), as the
minimum infinite cardinal of a π-network with infinite elements. And πnw(X)
is the minimum infinite cardinal of a π-network in X . It is easy to prove that
πnw(X) = d(X) for every topological space X . Moreover, for a crowded space
X , we have d(X) ≤ πnw∗(X) ≤ min{d(X) · sup{πnw∗(x, X) : x ∈ X}, d(X) ·
R(X), πw(X)}, where nw∗(x, X) and R(X) were defined before Corollaries 3.9
and 3.10. Besides, for every metrizable space X we have d(X) = w(X). So, for
a crowded metrizable space X , the equality πnw∗(X) = πnw(X) always holds.
We have the same phenomenon for spaces of the form Cp(X), the space of real
continuous function defined on X with the pointwise convergent topology (here,
X is not necessarily crowded). Indeed, for f ∈ Cp(X), the sequence (fn)n<ω

where fn = f + 1/n, converges to f . So, if D is a dense subset of Cp(X)
with cardinality equal to d(Cp(X)), the collection {{f} ∪ {fi : i ≥ n} : f ∈
D, n < ω} is a π-network of cardinality d(Cp(X)) constituted by infinite ele-
ments. So, πnw∗(Cp(X)) = πnw(Cp(X)). In particular, for every cardinal num-
ber κ, πnw∗(Rκ) = d(Rκ). The same can be said for spaces of the form Cp(X, 2)
where X is an infinite zero-dimensional T2 space. In fact, we can take an infinite
discrete subspace Y = {xn : n < ω} of X , and clopen subsets {Vn : n < ω}
such that, for each n < ω, Y ∩ Vn = {xn}. The characteristic functions χVn

constitute a sequence which converge to the constant function 0. So, in this case
too, πnw∗(Cp(X, 2)) = d(Cp(X, 2)).

We have already mentioned that in [1] a dense countable subset Y of 2c which
is irresolvable was constructed in ZFC. This space has πnw(Y ) = ℵ0, but every of
its countable π-networks has to have finite elements, because otherwise Y would
be maximally resolvable (see Theorem 2.8(1)). The Seq(ut) spaces considered
below are also examples of spaces of this kind.

We recall that for a p ∈ ω∗, χ(p) = min{|b| : b is a base for p}. Of course we
can also define: πχ(p) = min{|b| : b is a π-base for p} where a family of infinite
sets G in ω is a π-base for p if every member of p contains an element of G. It
is not difficult to prove that for every p ∈ ω∗, πχ(p) ≤ χ(p) and πχ(p) > ℵ0. In
fact, assume that N0, . . . , Nk, . . . are infinite subsets of ω. By recursion, we can
construct two sequences A = {a0, . . . , an, . . . } and B = {b0, . . . , bn, . . . } such that
the elements in A ∪ B are pairwise different, and for each n < ω, an, bn ∈ Nn. If
A ∈ p then A is an element of p which does not contain any Nk. If A /∈ p, then
ω \ A belongs to p and does not contain any Nk.

By Seq we mean the set of all finite sequences of natural numbers. More
precisely, for each natural number n ∈ ω, let nω = {t : t is a function and
t : n → ω}. Then Seq =

⋃

n∈ω
nω. If t ∈ Seq, with domain k = {0, 1, . . . , (k−1)},

and n ∈ ω, let t⌢n denote the function t ∪ {(k, n)}. For every t ∈ Seq let ut be
a non-principal ultrafilter on ω. By Seq({ut : t ∈ Seq}) we denote the space with
underlying set Seq and topology defined by declaring a set U ⊆ Seq to be open if
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and only if
(∀t ∈ U) {n ∈ ω : t⌢n ∈ U} ∈ ut.

For short, we write Seq(ut) instead of Seq({ut : t ∈ Seq}). We also consider the
case where there is a single non-principal ultrafilter p in ω such that ut = p for
all t ∈ Seq, and in this case we write Seq(p) instead of Seq(ut).

We use the following notation of W. Lindgren and A. Szymanski [20]; put
Ln = {s ∈ Seq : dom(s) = n}, and for any s ∈ Seq the cone over s is defined by
C(s) = {t ∈ Seq : s ⊆ t}. In particular, L0 = {∅}. We add some other notations:
For each s ∈ Ln, T (s) = {t ∈ Ln+1 : s ⊆ t}. Observe that for every s ∈ Seq, C(s)
is a clopen subset of Seq(ut).

It is well-known that for any choice of {ut : t ∈ Seq} ⊆ ω∗, the space Seq(ut)
is a zero-dimensional, extremally disconnected, Hausdorff space with no isolated
points. By the way, Seq(p) is homogeneous and if p is Ramsey, there is a binary
group operation + such that (Seq(p), +) is a topological group (see [27]).

6.1 Proposition. Every Seq(ut) space is ω-resolvable.

Proof: In fact, let {En : n < ω} be a partition of ω where each En is infinite.
Set Dn =

⋃

i∈En
Li. Each Dn is dense in Seq(ut) and Dn ∩ Dm = ∅ if n 6= m.

�

6.2 Proposition. Let {ut : t ∈ Seq} ⊆ ω∗. Then, the infinite π-netweight of
Seq(ut) is not countable.

Proof: For each n < ω, each s ∈ Ln, and each sequence S of subcollections of
the form

{B(s)}, {B(s, in+1) : in+1 ∈ B(s)}, {B(s, in+1, in+2) : in+1 ∈ B(s),

in+2 ∈ B(s, in+1)}, . . . , {B(s, in+1, . . . , in+k+1) : in+1 ∈ B(s),

in+1 ∈ B(s, in+1), . . . , in+k+1 ∈ B(s, in+1, . . . , in+k)}, . . .

where B(s) ∈ us and, if in+1 ∈ B(s), in+2 ∈ B(s, in+1), . . . , in+k ∈ B(s, in+1,
. . . , in+k−1), B(s, in+1, . . . , in+k) ∈ ut with t = s⌢i⌢n+1 . . .⌢ in+k, we define a

set V (s, S) as follows:

V (s, S) = {s} ∪ {t ∈ Seq(p) : m ∈ ω, t ∈ Ln+m+1, s ⊆ t, t(n + 1) ∈ B(s),

t(n + 2) ∈ B(s, t(n + 1)), . . . ,

t(n + m + 1) ∈ B(s, t(n + 1), t(n + 2), . . . , t(n + m))}.

We call this set V (s, S) cascade of Seq(p) defined by (s, S). Moreover, we will
called each sequence S, described as above, fan on (s, (ut)).

Of course, the collection of cascades forms a base of clopen sets for Seq(ut).
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Claim 1. If N = {N0, . . . , Nk, . . . } is a countable set of infinite subsets of
Seq(ut), then N is not a π-network of Seq(ut).

We are going to prove Claim 1 in several lemmas.

Claim 1.1. If M is a finite collection of subsets of Seq, then there is a non-empty
open set A of Seq(ut) such that M \ A 6= ∅ for all M ∈ M.

Proof: Take s0, . . . , sn elements in Seq such that each M in M contains one of
this points. There is k < ω such that si ∈ Lm implies m < k for all i ∈ {0, . . . , n}.
Take s ∈ Lk. The cone C(s) is open and contains no element in M. �

Claim 1.2. Assume that F ⊆ Seq(ut) is such that |F ∩ T (s)| ≤ 1 for every
s ∈ Seq. Then, F is a proper closed subset of Seq(ut).

Proof: Let P be the set {s < Seq : F ∩ T (s) 6= ∅}. Let zs be the only point
belonging to F ∩ T (s) for each s ∈ P . Let x ∈ Seq(ut) \ F . Assume that
x = (n0, . . . , nk) (the argument is similar if x = ∅). Let

S = {{B(x)}, {B(x, i0) : i0 ∈ B(x)}, {B(x, i0, i1) : i0 ∈ B(x), i1 ∈ B(x, i0)}, . . . ,

{B(x, i0, . . . , ik+1) : i0 ∈ B(x), i1 ∈ B(x, i1), . . . , ik+1 ∈ B(x, i0, . . . , ik)}, . . . }

be a fan on (x, (ut)). We claim that the set V (x, S) \ F is an open set. Indeed,
if y ∈ V (x, S) \ F , y is of the form (n0, . . . , nk, i0, . . . , im+1) where m < ω,
i0 ∈ B(x), i1 ∈ B(x, i0), . . . , im+1 ∈ B(x, i0, i1, . . . , im).

The set {l < ω : (n0, . . . , nk, i0, . . . , im+1, l) ∈ V (x, s) \ F} is equal to

B (x, i0, i1, . . . , im+1) \ F.

Moreover, the set B(x, i0, i1, . . . , im+1)∩F = G is either empty if F ∩ T (x, i0, i1,
. . . , im+1) = ∅, or G = {z(x,i0,i1,...,im+1)} if F ∩ T (x, i0, i1, . . . , im+1) 6= ∅.

Of course, in both cases, B(x, i0, i1, . . . , im+1) \ F belongs to ut where t =
x⌢i⌢0 . . .⌢ im+1. This means that V (x, s) \ F is open. �

Claim 1.3. Let M = {N ∈ N : ∀s ∈ Seq(|N ∩ T (s)| < ℵ0)}. Then, there is a
non-empty open set A of Seq(ut) such that N \ A 6= ∅ for all N ∈ M.

Proof: First, we define in Seq a well order ⊑ as follows: ∅ is the ⊑-first element,
and for two elements s and t different to ∅, we define s ⊏ t if either s ∈ Ln+1,
t ∈ Lm+1 and n < m, or n = m and s(n) < t(n).

Because of Claim 1.1, we can assume that M is infinite. We faithfully enume-
rate M as {M0, M1, . . . , Mk, . . . }. Consider the set J = {s ∈ Seq : ∃M ∈ M
such that T (s)∩M 6= ∅}. Because of the definition of M, we must have |J | = ℵ0.
Hence, we can enumerate J as {sm : m < ω} in such a way that s0 ⊏ s1 ⊏ · · · ⊏

sn ⊏ sn+1 ⊏ . . . .
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Let k0 be the first natural number m such that Mm ∩ T (s0) 6= ∅. We take
z0 ∈ Mk0

∩ T (s0). Assume that we have already defined two finite sequences
k0, . . . , kl and z0, . . . , zl such that

(1) for each i ∈ {0, . . . , l − 1}, ki+1 is the first natural number m ∈ ω \
{k0, . . . , ki} such that Mm ∩ T (si+1) 6= ∅, and

(2) zi+1 ∈ Mki+1
∩ T (si+1) for each i ∈ {0, . . . , l − 1}.

We define now kl+1 as the first natural number m ∈ ω \ {k0, . . . , kl} such that
Mm ∩ T (sl+1) 6= ∅. Take zl+1 ∈ Mkl+1

∩ T (sl+1).

Observe that {ki : i < ω} = ω. Indeed, assume that {0, . . . , m} ⊆ {ki : i < ω}
and {ki0 , . . . , kim} = {0, . . . , m}. Let j be a natural number greater than kil
for all l ∈ {0, . . . , m} and such that Mm+1 ∩ T (sj) 6= ∅. Then we must have
m + 1 ∈ {k0, . . . , kj}.

We put F = {zi : i < ω}. The set F satisfies the conditions required in
Claim 1.2; so, F is a proper closed subset of Seq(ut). Therefore, A = Seq(ut) \F
is a non-empty open set which does not contain any of the sets M ∈ M. �

Claim 1.4. Let O = N \ M = {N ∈ N : ∃s ∈ Seq(|N ∩ T (s)| ≥ ℵ0)}. Then,
there is an open set B of Seq(ut) such that N \ B 6= ∅ for all N ∈ O.

Proof: Let T = {n < ω : Nn ∈ O}. The open set B will be an open cascade
V (s, S) defined by (s, S) where s = ∅ and the fan

S = {{B(s)}, {B(s, i1) : i1 ∈ B(s)}, {B(s, i1, i2) : i1 ∈ B(s),

i2 ∈ B(s, i1)}, . . . , {B(s, i1, . . . , ik+1) : i1 ∈ B(s), i1 ∈

B(s, i1), . . . , ik+1 ∈ B(s, i1, . . . , ik)}, . . . }

will be constructed by recursion.
Assume that we have already selected

{{B(s)}, {B(s, i1) : i1 ∈ B(s)}, {B(s, i1, i2) : i1 ∈ B(s),

i2 ∈ B(s, i1)}, . . . , {B(s, i1, . . . , ik) : i1 ∈ B(s), i2 ∈

B(s, i1), . . . , ik ∈ B(s, i1, . . . , ik−1)}}.

For each sequence i1 ∈ B(s), i2 ∈ B(s, i1), . . . , ik+1 ∈ B(s, i1, i2, . . . , ik), con-
sider the ultrafilter ut where t = s⌢i⌢1 . . .⌢ ik, and consider the set P (s, i1, . . . ,
ik+1) = {n ∈ T : |Nn ∩ T (s, i1, . . . , ik)| ≥ ℵ0}. If P (s, i1, . . . , ik+1) is empty, we
choose B(s, i1, . . . , ik+1) to be an arbitrary element of ut. If P (s, i1, . . . , ik+1) is
not empty, there is B(s, i1, . . . , ik+1) ∈ ut such that Nn \ B(s, i1, . . . , ik+1) 6= ∅
for every n ∈ P (s, i1, . . . , ik+1) because πχ(ut) > ℵ0.

We have already finished the description of the recursive process that define
the fan S. The set B = V (s, S) is the required open set.
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We finished the proof of Claim 1 by saying that the open set A ∩ B, where A
was defined in the proof of Claim 1.3 and B in that of Claim 1.4, is not empty
and does not contain any of the elements in N . �
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