Martin's Axiom and ω -resolvability of Baire spaces

FIDEL CASARRUBIAS-SEGURA, FERNANDO HERNÁNDEZ-HERNÁNDEZ, ÁNGEL TAMARIZ-MASCARÚA

Abstract. We prove that, assuming MA, every crowded T_0 space X is ω -resolvable if it satisfies one of the following properties: (1) it contains a π -network of cardinality $< \mathfrak{c}$ constituted by infinite sets, (2) $\chi(X) < \mathfrak{c}$, (3) X is a T_2 Baire space and $c(X) \leq \aleph_0$ and (4) X is a T_1 Baire space and has a network $\mathcal N$ with cardinality $< \mathfrak c$ and such that the collection of the finite elements in it constitutes a σ -locally finite family.

Furthermore, we prove that the existence of a T_1 Baire irresolvable space is equivalent to the existence of a T_1 Baire ω -irresolvable space, and each of these statements is equivalent to the existence of a T_1 almost- ω -irresolvable space.

Finally, we prove that the minimum cardinality of a π -network with infinite elements of a space Seq (u_t) is strictly greater than \aleph_0 .

Keywords: Martin's Axiom, Baire spaces, resolvable spaces, ω -resolvable spaces, almost resolvable spaces, almost- ω -resolvable spaces, infinite π -network

Classification: Primary 54E52, 54A35; Secondary 54D10, 54A10

1. Introduction

Every space in this article is T_0 and crowded (that is, without isolated points) and so it is infinite. A space X is resolvable if it contains two dense disjoint subsets. A space which is not resolvable is called irresolvable. Resolvable and irresolvable spaces were studied extensively first by Hewitt [14]. Later, El'kin and Malykhin published a number of papers on these subjects and their connections with various topological problems. One of the problems considered by Malykhin in [22] refers to the existence of irresolvable spaces satisfying the Baire Category Theorem. Kunen, Symański and Tall in [19] afterwards proved that there is such a space if and only if there is a space X on which every real-valued function is continuous at some point. (The question about the existence of a -Hausdorff-space on which every real-valued function is continuous at some point was posed by M. Katětov in [16].) They also proved (see [18] as well):

- 1. if we assume V = L, there is no Baire irresolvable space,
- 2. the conditions "there is a measurable cardinal" and "there is a Baire irresolvable space" are equiconsistent.

Bolstein introduced in [5] the spaces X in which it is possible to define a real-valued function f with countable range and such that f is discontinuous at every

point of X (he called these spaces almost resolvable), and proved that every resolvable space satisfies this condition. It was proved in [12] that X is almost resolvable iff there is a function $f: X \to \mathbb{R}$ such that f is discontinuous at every point of X. Almost- ω -resolvable spaces were introduced in [26]; these are spaces in which it is possible to define a real-valued function f with countable range, and such that $r \circ f$ is discontinuous in every point of X, for every real-valued finite-to-one function r. It was proved in that article that for a Tychonoff space X, the space of real continuous functions with the box topology, $C_{\square}(X)$, is discrete if and only if X is almost- ω -resolvable. It was also proved that the existence of a measurable cardinal is equiconsistent with the existence of a Tychonoff space without isolated points which is not almost- ω -resolvable, and that, on the contrary, if V = L then every crowded space is almost- ω -resolvable. Later, it was pointed out in [2, Corollary 5.4] that a Baire space is resolvable if and only if it is almost resolvable; so,

1.1 Theorem. A Baire almost- ω -resolvable space is resolvable.

It is unknown if every Baire almost- ω -resolvable space is 3-resolvable. With respect to this problem we have the following theorems.

- **1.2 Theorem** ([24]). Gödel's axiom of constructibility, V = L, implies that every Baire space is ω -resolvable.
- **1.3 Theorem** ([2]). Every T_1 Baire space such that each of its dense subsets is almost- ω -resolvable is ω -resolvable.

These last two results transform our problem to that of finding subclasses of Baire spaces such that each of its crowded dense subsets is almost- ω -resolvable, assuming axioms consistent with ZFC which contrast with V = L. Of course, a classic axiom with these characteristics is MA+¬CH. This bet is strengthened by the following result due to V.I. Malykhin ([23, Theorem 1.2]):

1.4 Theorem [MA_{countable}]. Let a topology on a countable set X have a π -network of cardinality less than $\mathfrak c$ consisting of infinite subsets. Then this topology is ω -resolvable.

It was proved in [2] that every space with countable tightness, every space with π -weight $\leq \aleph_1$ and every σ -space are hereditarily almost- ω -resolvable. So, by Theorem 1.3, every T_1 Baire space with either countable tightness or π -weight $\leq \aleph_1$ or σ is ω -resolvable.

In this article we are going to continue the study of almost- ω -resolvable and Baire resolvable spaces, and we will solve some problems related to these posed in [2]. Section 2 is devoted to establishing basic definitions and results. In Section 3 we prove that under MA every space with either π -weight $< \mathfrak{c}$ or $\chi(X) < \mathfrak{c}$ is ω -resolvable. Furthermore, we are going to see in Section 4 that under SH every T_2 Baire space with countable cellularity is ω -resolvable. Section 5 is devoted to

analyse almost- ω -irresolvable spaces. We prove in this section that there is a T_1 Baire irresolvable space iff there is a T_1 Baire ω -irresolvable space, iff there is a T_1 almost- ω -irresolvable space. Finally in Section 6, we prove that the minimum cardinality of a π -network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than \aleph_0 . Moreover, we propose several problems related to our matter through the article.

2. Basic definitions and preliminaries

A space X is resolvable if it is the union of two disjoint dense subsets. We say that X is irresolvable if it is not resolvable. For a cardinal number $\kappa > 1$, we say that X is κ -resolvable if X is the union of κ pairwise disjoint dense subsets.

The dispersion character $\Delta(X)$ of a space X is the minimum of the cardinalities of non-empty open subsets of X. If X is $\Delta(X)$ -resolvable, then we say that X is maximally resolvable. A space X is hereditarily irresolvable if every subspace of X is irresolvable. And X is open-hereditarily irresolvable if every open subspace of X is irresolvable.

We call a space (X,t) maximal if (X,t') contains at least one isolated point when t' strictly contains the topology t. And a space X is submaximal if every dense subset of X is open. Moreover, maximal spaces are submaximal, and these are hereditarily irresolvable spaces, which in turn are open-hereditarily irresolvable.

It is possible to prove that a space X is almost resolvable if and only if X is the union of a countable collection of subsets each of them with an empty interior [5].

It was proved in [26] that the following formulation can be given as a definition of almost- ω -resolvable space: A space X is called $almost-\omega$ -resolvable if X is the union of a countable collection $\{X_n : n < \omega\}$ of subsets in such a way that for each $m < \omega$, $\operatorname{int}(\bigcup_{i \leq m} X_i) = \emptyset$. In particular, every almost- ω -resolvable space is almost resolvable, every ω -resolvable space is almost- ω -resolvable, every almost resolvable space is infinite, and every T_1 separable space is almost- ω -resolvable.

We are going to say that a space X is hereditarily almost- ω -resolvable if each crowded subspace of X is almost- ω -resolvable, and X is dense-hereditarily almost- ω -resolvable if each crowded dense subspace of X is almost- ω -resolvable.

Let X be a κ -resolvable (resp., almost-resolvable, almost- ω -resolvable) space. A κ -resolution (resp., an almost resolution, an almost- ω -resolution) for X is a partition $\{V_{\alpha} : \alpha < \kappa\}$ (resp., a partition $\{V_n : n < \omega\}$) of X such that each V_{α} is a dense subset of X (resp., int $(V_n) = \emptyset$ for every $n < \omega$, int $(\bigcup_{i=0}^n V_i) = \emptyset$ for every $n < \omega$).

Finally, a space X is almost- ω -irresolvable (resp., κ -irresolvable) if X is not almost- ω -irresolvable (resp., X is not κ -irresolvable). The hereditary version of almost- ω -irresolvability or κ -irresolvability is that which states that every crowded subspace of X is not almost- ω -irresolvable, and, respectively, is not κ -irresolvable.

- **2.1 Example.** There are non- T_0 topological spaces which are almost resolvable but not almost- ω -resolvable. In fact, let X be an infinite set and $x, y \in X$ with $x \neq y$. We define a collection \mathcal{T} of subsets of X as follows: $A \in \mathcal{T}$ if either A is the empty set or $x, y \in A$. The family \mathcal{T} is a topology in X and (X, \mathcal{T}) satisfies the required conditions.
- **2.2 Example.** It was proved in Theorem 4.4 of [19] that the existence of an ω_1 -complete ideal \mathcal{I} over ω_1 which has a dense set of size ω_1 implies the existence of a T_2 Baire strongly irresolvable topology \mathcal{T} on ω_1 . On the other hand, it was observed in [26, Corollary 4.9] that every Baire irresolvable space is not almost resolvable. Therefore, (ω_1, \mathcal{T}) is not almost resolvable.
- **2.3 Example.** If there is a measurable cardinal κ , then there is a resolvable Baire space X which is not almost- ω -resolvable and $\Delta(X) = \kappa$. Indeed, let κ be a non-countable Ulam-measurable cardinal, and let p be a free ultrafilter on κ ω_1 -complete. Let $X = \kappa \cup \{p\}$. We define a topology t for X as follows: $A \in t \setminus \{\emptyset\}$ if and only if $p \in A$ and $A \cap \kappa \in p$. This space is a Baire resolvable non-almost- ω -resolvable space with $\Delta(X) = \alpha$. Now, let \mathcal{T} be equal to $\{A \subseteq X : A \cap \kappa \in p\}$; \mathcal{T} is a topology in X too, and (X, \mathcal{T}) is T_1 submaximal, Baire with $\Delta(X) = \alpha$, but it is not almost resolvable.

Related to the last examples we have:

- **2.4 Question.** Is there a T_2 resolvable Baire space which is not almost- ω -resolvable?
- **2.5 Examples.** In ZFC, there are almost- ω -resolvable spaces which are not resolvable. Indeed, the union of Tychonoff crowded topologies in \mathbb{Q} generates a Tychonoff crowded topology. By Zorn's Lemma, we can consider a maximal Tychonoff topology \mathcal{T} in \mathbb{Q} . The space $(\mathbb{Q}, \mathcal{T})$ is countable (so, almost- ω -resolvable) hereditarily irresolvable ([14, Theorems 15 and 26], [8, Example 3.3]). $(\mathbb{Q}, \mathcal{T})$ is Tychonoff.
- In [1], the authors construct by transfinite recursion a "concrete" (in the sense that we can say how its open sets look) example of a countable dense subset X of the space $2^{\mathfrak{c}}$ which is irresolvable. Since X is countable, it is almost- ω -resolvable.
- **2.6 Example.** For every cardinal number κ , there exists a Tychonoff space X which is almost- ω -resolvable, hereditarily irresolvable and $\Delta(X) \geq \kappa$. In fact, let λ be a cardinal number such that $\kappa \leq \lambda$ and $\operatorname{cof}(\lambda) = \aleph_0$. Let H, G and τ be the topological groups and the topology in G, respectively, defined in [11, pp. 33 and 34], with $|H| = \lambda$. L. Feng proved there that $(H, \tau|_H)$ is an irresolvable cardhomogeneous (every open subset of H has the same cardinality as H) Tychonoff space, and each subset $S \subseteq H$ with cardinality strictly less than λ is a nowhere dense subset of H. Let $(\lambda_n)_{n < \omega}$ be a sequence of cardinal numbers such that $\lambda_n < \lambda_{n+1}$ for every $n < \omega$ and $\sup\{\lambda_n : n < \omega\} = \lambda$. We take subsets H_n of H with the properties $H_n \subseteq H_{n+1}$ and $|H_n| = \lambda_n$ for each $n < \omega$, and

- $H = \bigcup_{n < \omega} H_n$. We have that each H_n is nowhere dense in H; so $\{H_n : n < \omega\}$ is an almost- ω -resolvable sequence on H. That is, H is almost- ω -resolvable. By the Hewitt Decomposition Theorem (see [14, Theorem 28]), there exists a non-empty open subset U of H which is hereditarily irresolvable. Besides, $\Delta(U) = \Delta(H) \ge \kappa$ and U is almost- ω -resolvable.
- **2.7 Examples.** The first example of a Hausdorff maximal group was constructed by Malykhin in [21] under Martin's Axiom. Malykhin also constructed in [23], in the BK model M_{ω_1} (see [3]) a topological group topology \mathcal{T}' in the infinite countable Boolean group Ω of all finite subsets of ω with symmetric difference as the group operation, such that (Ω, \mathcal{T}') is T_2 , irresolvable and its weight is ω_1 (compare with Corollary 3.6 below). Moreover, in M_{ω_1} , $\omega_1 < \mathfrak{c}$. Moreover, he constructed in M_{ω_1} a countable irresolvable dense subset in 2^{ω_1} . This space has of course weight ω_1 .

On the other hand, the class of resolvable spaces includes spaces with well known properties:

- **2.8 Theorem.** (1) If X has a π -network \mathcal{N} such that $|\mathcal{N}| \leq \Delta(X)$ and each $N \in \mathcal{N}$ satisfies $|N| \geq \Delta(X)$, then X is maximally resolvable [9].
 - (2) Hausdorff k-spaces are maximally resolvable [25].
 - (3) Countably compact regular T_1 spaces are ω -resolvable [7].
 - (4) Arc connected spaces are ω -resolvable.
 - (5) Every biradial space is maximally resolvable [29].
 - (6) Every homogeneous space containing a non-trivial convergent sequence is ω -resolvable [28].
 - (7) If G is an uncountable \aleph_0 -bounded topological group, then G is \aleph_1 -resolvable [29].
 - (8) T_1 Baire spaces with either countable tightness or π -weight $\leq \aleph_1$ are ω -resolvable [2].

The following basic results will be very helpful (see, for example, [6]).

- **2.9 Propositions.** (1) If X is the union of κ -resolvable (resp., almost-resolvable, almost- ω -resolvable) subspaces, then X has the same property.
 - (2) Every open and every regular closed subset of a κ -resolvable (resp., almost resolvable, almost- ω -resolvable) space shares this property.
 - (3) Let X be a space which contains a dense subset which is κ -resolvable (resp., almost resolvable, almost- ω -resolvable). Then, X satisfies this property too.

The following results are easy to prove and are well known.

2.10 Proposition. Let Y be a κ -resolvable (resp., almost-resolvable, almost- ω -resolvable) space. If $f: X \to Y$ is a continuous and onto function, and for each

open subset A of X the interior of f[A] is not empty, then X is κ -resolvable (resp., almost-resolvable, almost- ω -resolvable).

- **2.11 Proposition.** Let $f: X \to Y$ be continuous and bijective. If X is κ -resolvable (resp., almost-resolvable, almost- ω -resolvable), so is Y.
- **2.12 Proposition.** (1) If X is κ -resolvable (resp., almost resolvable, almost- ω -resolvable) and Y is an arbitrary topological space, then $X \times Y$ is κ -resolvable (resp., almost resolvable, almost- ω -resolvable).
 - (2) [2] If X and Y are almost resolvable, then $X \times Y$ is resolvable.
 - (3) (O. Masaveu) If X is the product space $\prod_{\alpha < \kappa} X_{\alpha}$ where $\kappa \ge \omega$ and each X_{α} has more than one point, then X is 2^{κ} -resolvable.

The following lemmas will be useful later.

- **2.13 Proposition.** If X is a crowded space such that $cof(|X|) = \aleph_0$ and every open subset of X has cardinality |X|, then X is almost- ω -resolvable.
- **2.14 Proposition.** If X has tightness equal to κ , then each point $x \in X$ is contained in a crowded subset of X of cardinality $\leq \kappa$.

PROOF: Let $x_0 \in X$ be an arbitrary fixed point. Since X is crowded, $x_0 \in \operatorname{cl}_X[X \setminus \{x_0\}]$; so there is a subset $F_1 \subseteq X \setminus \{x_0\}$ of cardinality $\leq \kappa$ such that $x_0 \in \operatorname{cl}_X[X \setminus \{x_0\}]$; so there is a subset $F_1 \subseteq X \setminus \{x_0\}$, then we have finished. Otherwise, for each isolated point x of $F_0 \cup F_1$, there is a subset $F_x^2 \subseteq X \setminus (\{x_0\} \cup F_1)$ of cardinality $\leq \kappa$ such that $x \in \operatorname{cl}_X F_x^2$. Let $F_2 = \bigcup_{x \in G_1} F_x^2$ where G_1 is the set of isolated points of $F_0 \cup F_1$. Again, there are two possible situations: either $F_0 \cup F_1 \cup F_2$ is a crowded subspace of cardinality $\leq \kappa$ containing x_0 , or $G_2 = \{x \in F_2 : x \text{ is an isolated point of } F_0 \cup F_1 \cup F_2\}$ is not empty. In this last case, for each $x \in G_2$ we take a subset $F_x^3 \subseteq X \setminus (F_0 \cup F_1 \cup F_2)$ of cardinality $\leq \kappa$ for which $x \in \operatorname{cl}_X F_x^3$. We write $F_3 = \bigcup_{x \in G_2} F_x^3$. Continuing this process if necessary, we obtain either a finite sequence F_0, \ldots, F_n of subsets of X such that $x_0 \in F = \bigcup_{0 \leq i \leq n} F_n$ and F has cardinality $\leq \kappa$ and is crowded, or we have to go further: $x_0 \in F = \bigcup_{n < \omega} F_n$. In this last case too, F has cardinality $\leq \kappa$ and is crowded.

3. Martin's Axiom, π -netweight and ω -resolvable spaces

First, in this section we are going to present, by using Martin's Axiom, a generalization of Theorem 1.4. As usual, if I and J are two sets, $\operatorname{Fn}(I,J)$ stands for the collection of the finite functions with domain contained in I and range contained in J. We define a partial order \leq in $\operatorname{Fn}(I,J)$ by letting $p \leq q$ iff $p \supseteq q$. The partial order set $(\operatorname{Fn}(I,J),\leq)$ is ccc if and only if $|J|\leq\aleph_0$ (Lemma 5.4, p. 205 in [17]).

Let (X, τ) be a topological space. A collection $\mathcal{N} \subseteq \mathcal{P}(X)$ is a π -network of X if each element $U \in \tau \setminus \{\emptyset\}$ contains an element of \mathcal{N} .

- **3.1 Definitions.** Let κ be an infinite cardinal.
 - (1) A space X is almost- κ -resolvable if X can be partitioned as $X = \bigcup_{\alpha < \kappa'} X_{\alpha}$ where $\omega \le \kappa' \le \kappa$, $X_{\alpha} \ne \emptyset$, and $X_{\alpha} \cap X_{\xi} = \emptyset$ if $\alpha \ne \xi$, such that every non-empty open subset of X has a non-empty intersection with an infinite collection of elements in $\{X_{\alpha} : \alpha < \kappa\}$.
 - (2) Let $\mathcal{X} = \{X_{\alpha} : \alpha < \kappa\}$ be a partition of X. A collection $\mathcal{N} = \{N_{\xi} : \xi < \tau\}$ of infinite subsets of κ is a π -network of \mathcal{X} if for each open set U of X, $\{\alpha < \kappa : X_{\alpha} \cap U \neq \emptyset\} \supseteq N_{\xi}$ for a $\xi < \tau$.
 - (3) A space X is called precisely almost- κ -resolvable if X contains a resolution with a π -network \mathcal{N} such that $|\mathcal{N}| \leq \kappa$.

The following well known result is due to K. Kuratowski.

- **3.2 Lemma** (The disjoint refinement lemma). Let $\{A_{\xi} : \xi < \kappa\}$ be a collection of sets such that, for each $\xi < \kappa$, $|A_{\xi}| \ge \kappa$. Then, there is a collection $\{B_{\xi} : \xi < \kappa\}$ of sets satisfying:
 - (1) $B_{\xi} \subseteq A_{\xi}$ for all $\xi < \kappa$,
 - (2) $|\vec{B}_{\xi}| = \kappa \text{ for all } \xi < \kappa,$
 - (3) $B_{\xi} \cap B_{\zeta} = \emptyset$ for $\xi, \zeta < \kappa$ with $\xi \neq \zeta$.
- **3.3 Proposition.** A space X is precisely almost- ω -resolvable if and only if X is ω -resolvable.

PROOF: Let X be a precisely almost- ω -resolvable space. Let $\mathcal{X} = \{X_{\xi} : \xi < \tau\}$ be a precise partition of X, and $\mathcal{M} = \{M_n : n < \omega\}$ be a π -network of \mathcal{X} . Because of Lemma 3.2, there are infinite and pairwise disjoint sets $T_0, T_1, \ldots, T_n, \ldots$ such that $T_i \subseteq M_i$ for all $i < \omega$.

For each $n < \omega$, we faithfully enumerate T_n : $\{k_i^n : i < \omega\}$. Now we define for each $i < \omega$, $D_i = \bigcup_{j < \omega} X_{k_i^j}$. Each D_n is dense in X and $D_i \cap D_j = \emptyset$ if $i \neq j$.

Moreover, if X is ω -resolvable and $\mathcal{D} = \{D_n : n < \omega\}$ is a collection of pairwise disjoint dense subsets of X, then \mathcal{D} is a precise partition of X and $\mathcal{M} = \{\omega\}$ is a π -network of \mathcal{D} .

When we assume Martin's Axiom, we can generalize Proposition 3.3:

3.4 Theorem. Let $\mathcal{X} = \{X_{\alpha} : \alpha < \tau\}$ be an almost- τ -resolvable partition of X. Let $\mathcal{N} = \{N_{\xi} : \xi < \kappa\}$ be a π -network of \mathcal{X} such that $\kappa < \mathfrak{c}$. If we assume Martin's Axiom, then X is ω -resolvable. In particular, MA implies that ω -resolvability and almost- κ -resolvability precise coincide when $\kappa < \mathfrak{c}$.

PROOF: In this case, we put $\mathbb{P} = (\operatorname{Fn}(\kappa, \omega), \leq)$ where \leq is defined at the beginning of this section. For each $k \in \omega$ and $N \in \mathcal{N}$, we take the set

$$D_N^k = \{ p \in \mathbb{P} : \exists \xi \in N \text{ such that } p(\xi) = k \}.$$

It happens that each D_N^k is dense in \mathbb{P} . In fact, let q be an arbitrary element in \mathbb{P} . We can take $\xi \in N \setminus \text{dom}(q)$ because N is infinite. The function $p = q \cup \{(\xi, k)\}$ belongs to D_N^k and is less than q.

The partially ordered set \mathbb{P} is ccc and $\mathcal{D} = \{D_N^k : k < \omega, N \in \mathcal{N}\}$ has cardinality strictly less than \mathfrak{c} . So, there exists a \mathcal{D} -generic filter G in \mathbb{P} . Take $f = \bigcup G$. Then $f : \kappa \to \omega$ is onto and $\kappa = \bigcup_{n < \omega} Y_n$ where $Y_n = f^{-1}[\{n\}]$.

Now, for each $n < \omega$, we consider the set $X_n = \bigcup_{\alpha \in Y_n} X_\alpha$. It is easy to prove that $\{X_n : n < \omega\}$ is a partition of $\bigcup_{n < \omega} X_n$. Moreover, each X_n is a dense subset of X. Indeed, let n_0 be a natural number. We are going to prove that X_{n_0} is dense. Let U be an open set of X. Because of the properties of \mathcal{N} , there is $N_0 \in \mathcal{N}$ such that $\{\alpha < \tau : X_\alpha \cap U \neq \emptyset\} \supseteq N_0$. We take $p \in D_{N_0}^{n_0} \cap G$. It happens that there is a $\xi \in N_0$ such that $p(\xi) = n_0$. Hence, $f(\xi) = n_0$. This means that $\xi \in f^{-1}[\{n_0\}] = Y_{n_0}$. By definition, X_ξ must have a non-empty intersection with U, and therefore $U \cap X_{n_0} = U \cap \bigcup_{\alpha \in Y_{n_0}} X_\alpha \neq \emptyset$.

Assume that $\{x_{\xi}: \xi < \tau\}$ is a faithful enumeration of a space X. If X possesses a π -network $\mathcal N$ with infinite elements, the collection $\{M_N: N \in \mathcal N\}$ where $M_N = \{\xi < \tau: x_{\xi} \in N\}$, is a π -network of the partition $\{\{x_{\xi}\}: \xi < \tau\}$. So the following result is a corollary of Theorem 3.4.

3.5 Theorem. Let X be a crowded topological space with a π -network $\mathcal N$ with cardinality $\kappa < \mathfrak c$ and such that each element in $\mathcal N$ is infinite. If we assume Martin's Axiom, then X is an ω -resolvable space.

Recall that every biradial space is maximally resolvable. Moreover, every space with $\pi w(X) \leq \Delta(X)$ is maximally resolvable (see [4]). With respect to these ideas we have:

3.6 Corollary [MA]. Every crowded space X with π -weight $< \mathfrak{c}$ is ω -resolvable. In particular, every space with weight $< \mathfrak{c}$ is hereditarily ω -resolvable.

PROOF: Let \mathcal{N} be a π -base of X of cardinality $< \mathfrak{c}$. Since X is crowded and each element of \mathcal{N} is open in X, then $|N| \geq \aleph_0$ for each $N \in \mathcal{N}$. On the other hand, \mathcal{N} is a π -network in X, so the conclusion follows.

It is easy to see that if X has π -character and density $\leq \kappa$, then X has a π -base of cardinality $\leq \kappa$.

3.7 Proposition [MA]. If X is a space with density and π -character $< \mathfrak{c}$, then every dense subset of X is ω -resolvable.

PROOF: The space X has a π -base \mathcal{B} of cardinality $<\mathfrak{c}$. Let H be an arbitrary dense subset of X. It happens now that $\mathcal{M} = \{N \cap H : N \in \mathcal{N}\}$ is a π -base of H and has cardinality $<\mathfrak{c}$. So, by Corollary 3.6, H is ω -resolvable. \square

For every space X, $\max\{t(X), \pi\chi(X)\} \leq \chi(X)$, so, as a consequence of the last result, and related to Theorems 2.8(2) and 2.8(8), we have:

3.8 Theorem [MA]. If X is a space such that $\chi(x, X) < \mathfrak{c}$ for each $x \in X$, then X is hereditarily ω -resolvable.

PROOF: Let Y be a crowded subspace of X. The character of Y is strictly less than \mathfrak{c} ; thus, the tightness of Y is $<\mathfrak{c}$. Hence, each point y in Y is contained in a crowded subspace Y_y of Y of cardinality $<\mathfrak{c}$ (Proposition 2.14). The density and character of each Y_y is strictly less than \mathfrak{c} . By Proposition 3.7, Y_y is ω -resolvable. Then Y is ω -resolvable (see Proposition 2.9(1)).

The following result is a generalization of Theorems 3.5 and 3.8, which answers, affirmatively, a question posed by the referee. A collection $\mathcal{N} \subseteq \mathcal{P}(X)$ is a π -network of X at the point $x \in X$ if every open set of X containing x contains an element of \mathcal{N} . For each point $x \in X$, we define $\pi n w^*(x, X) = \min\{|\mathcal{N}| : \mathcal{N} \text{ is a } \pi\text{-network of } X \text{ at } x \text{ and each element in } \mathcal{N} \text{ is infinite}\}$. Of course, for each $x \in X$, $\pi n w^*(x, X) \leq \chi(x, X)$. Since MA implies that \mathfrak{c} is a regular cardinal, we have that, by Theorem 3.5, MA implies that every space X containing a dense subset Y of cardinality $\leq \kappa < \mathfrak{c}$ and such that for every $y \in Y$, $\pi n w^*(y, X) < \mathfrak{c}$, is ω -resolvable. This result can be ameliorated. Indeed, by using a similar proof to that of Proposition 2.14, if X is a space with $\pi n w^*(x, X) < \mathfrak{c}$ for each $x \in X$, then each point $x \in X$ is contained in a crowded subspace X_x of X of cardinality $< \mathfrak{c}$ and having, for each $y \in X_x$, $\pi n w^*(y, X_x) < \mathfrak{c}$. So:

3.9 Corollary [MA]. Let X be a space such that for every $x \in X$, $\pi nw^*(x, X) < \mathfrak{c}$. Then X is ω -resolvable.

We obtain another result with a slightly different mood of that of the previous corollary by defining for each point $x \in X$ the number $R(x,X) = \min\{|\Lambda| : \Lambda \text{ is a directed partially ordered set and there is a net } (x_{\alpha})_{\alpha \in \Lambda} \text{ in } X \setminus \{x\} \text{ such that } (x_{\alpha})_{\alpha \in \Lambda} \text{ converges to } x \text{ in } X\}$. Indeed, following a similar argumentation to that given in the previous paragraph of Corollary 3.9, we obtain:

3.10 Corollary [MA]. Let X be a space such that for every $x \in X$, $R(x, X) < \mathfrak{c}$. Then X is ω -resolvable.

In Proposition 4.5 of [2] it was proved that every T_2 σ -space is almost- ω -resolvable. When X has a countable network, we can repeat that proof assuming only the weaker condition T_0 . So every space with countable network is almost- ω -resolvable. With respect to σ -spaces, Proposition 4.5 in [2] and Martin's Axiom, Proposition 3.11 allows us to say something else which is, in some sense, stronger that Theorem 3.5:

3.11 Proposition [MA]. Let κ be an infinite cardinal $< \mathfrak{c}$. Let X be a space with a network \mathcal{N} such that for each finite subcollection \mathcal{N}' of \mathcal{N} , $\bigcap \mathcal{N}'$ is infinite or empty, and for each $x \in X$, $|\{N \in \mathcal{N} : x \in N\}| \leq \kappa$. Then, X is hereditarily ω -resolvable.

PROOF: The space X is the condensation of a crowded space Y (Y is X with the topology generated by \mathcal{N} as a base) which has character strictly less than \mathfrak{c} (see Proposition 2.11).

Next, we obtain a result that we can locate between Theorem 3.5 which deals with π -networks and Corollary 3.6 which speaks of bases. First a definition and some remarks. A space X is called σ -locally finite if X can be written as $\bigcup_{n<\omega} X_n$ where, for each $n<\omega$, the collection $\{\{x\}:x\in X_n\}$ is locally finite in X. It can be proved that a σ -locally finite crowded space is hereditarily almost- ω -resolvable.

3.12 Theorem [MA]. Let X be a crowded topological space with a network \mathcal{N} with cardinality $\kappa < \mathfrak{c}$ and such that $\mathcal{N}_0 = \{N \in \mathcal{N} : |N| < \aleph_0\}$ is σ -locally finite in $\bigcup \mathcal{N}_0$. Then X can be written as $Y_0 \cup Y_1$ where Y_0 is a (possibly empty) regular closed ω -resolvable subspace and Y_1 is an open (possibly empty) almost- ω -resolvable, hereditarily ω -irresolvable space. Besides, if Y_1 is not void, it contains a non-empty open subset which is hereditarily almost- ω -resolvable. Moreover, if X is a T_1 Baire space, then X must be ω -resolvable.

PROOF: Let \mathcal{M} be the collection of all subspaces of X which are ω -resolvable. Take $Y_0 = \operatorname{cl}_X \bigcup \mathcal{M}$ and $Y_1 = X \setminus Y_0$. Of course Y_0 is closed and ω -resolvable. Now, if Y_1 is empty, we have already finished; if the contrary happens, Y_1 is hereditarily ω -irresolvable and the collection $\mathcal{N}' = \{N \in \mathcal{N} : N \subseteq Y_1\}$ is a network in Y_1 with cardinality $< \mathfrak{c}$ and such that $\mathcal{N}'_0 = \{N \in \mathcal{N}' : |N| < \aleph_0\}$ is σ -locally finite in $\bigcup \mathcal{N}'_0$. Of course \mathcal{N}'_0 is not empty, because otherwise, by Theorem 3.5, Y_1 would be ω -resolvable, but this is not possible. Let Z be the subspace $\bigcup_{N \in \mathcal{N}'_0} N$ of X. The space Z is σ -locally finite. Since Y_1 is hereditarily ω -irresolvable, Z is a dense subset of Y_1 . Then, Y_1 is almost- ω -resolvable. Furthermore, there must exist a non-empty open subset U of Y_1 such that each element of \mathcal{N}' contained in U is finite because otherwise Y_1 would be ω -resolvable (again by Theorem 3.5). So, int Z is a non-empty open subset which is hereditarily almost- ω -resolvable.

Assume now that X is T_1 and satisfies all the conditions of our proposition including the Baire property. In this case Y_1 must be empty because if this is not the case, the subspace int Z of Y_1 would be a T_1 Baire hereditarily almost- ω -resolvable space. But this means, by Theorem 1.3, that int Z is ω -resolvable, which is not possible.

If we consider in the previous theorem π -networks instead of networks, we still get something interesting.

3.13 Proposition [MA]. Let X be a crowded topological space with a π -network \mathcal{N} with cardinality $\kappa < \mathfrak{c}$ and such that $\mathcal{N}_0 = \{N \in \mathcal{N} : |N| < \aleph_0\}$ is σ -locally finite. Then X is equal to $X_0 \cup X_1$ where $X_0 \cap X_1 = \emptyset$, X_0 is a regular closed (possibly empty) almost- ω -resolvable space and X_1 is an open (possibly empty) ω -resolvable subspace. In particular, X is, in this case, almost- ω -resolvable.

PROOF: Let Y be the subspace $\bigcup_{N\in\mathcal{N}_0} N$. The space Y is σ -locally finite. If Y is empty, we obtain our result by Theorem 3.5. If Y is crowded, then it is almost- ω -resolvable (see Theorem 3.5 in [26]). If Y is not empty and is not crowded, we can find an ordinal number $\alpha > 0$ and, for each $\beta < \alpha$, an ω -resolvable subspace M_{β} of X such that $X_0 = \operatorname{cl}_X(Y \cup \operatorname{cl}_X(\bigcup_{\beta < \alpha} M_{\beta}))$ is almost- ω -resolvable. In fact, let D_0 be the set of isolated points in $Y_0 = Y$. For each $x \in D_0$, there is an open set A_x in X such that $A_x \cap Y_0 = \{x\}$. Observe that $A_x \setminus \{x\}$ is a dense subset of A_x and it satisfies the conditions in Theorem 3.5, so it is ω resolvable. Thus, $M_0 = \operatorname{cl}_X(\bigcup_{x \in D_0} A_x)$ is an ω -resolvable space. Assume that we have already constructed ω -resolvable subspaces M_{β} of X with $\beta < \gamma$. Put $Y_{\gamma} = Y \setminus \operatorname{cl}_X(\bigcup_{\beta < \gamma} M_{\beta})$. If Y_{γ} is empty or crowded, we take $\alpha = \gamma$, and in this case $\operatorname{cl}_X(Y \cup \operatorname{cl}_X(\bigcup_{\beta < \gamma} M_\beta))$ is almost- ω -resolvable because Y_γ is empty or crowded and σ -locally finite. If Y_{γ} is not empty and is not crowded, let D_{γ} be the set of isolated points in Y_{γ} . For each $x \in D_{\gamma}$ there is an open set A_x in X such that $A_x \cap Y_\gamma = \{x\}$ and $A_x \cap \operatorname{cl}_X(\bigcup_{\beta < \gamma} M_\beta) = \emptyset$. Again $A_x \setminus \{x\}$ is a dense subset of A_x and it is ω -resolvable because of Theorem 3.5. Thus, $M_{\gamma} = \operatorname{cl}_X(\bigcup_{x \in D_{\gamma}} A_x)$ is an ω -resolvable space. Continuing with this process we have to find an ordinal number α for which $X_0 = \operatorname{cl}_X(Y \setminus \operatorname{cl}_X(\bigcup_{\beta < \alpha} M_\beta))$ is almost- ω -resolvable.

Now, if $X_1 = X \setminus X_0$ is not empty, then it is a crowded space and $\mathcal{N}_1 = \{N \in \mathcal{N} : N \subseteq X_1\}$ is a π -network in X_1 with infinite elements and $|\mathcal{N}_1| < \mathfrak{c}$. Then, again by Theorem 3.5, X_1 is ω -resolvable. Therefore, $X = X_0 \cup X_1$, and X_0, X_1 satisfy the conditions of our proposition.

- **3.14 Questions.** (1) Let X be a crowded space with cardinality $< \mathfrak{c}$. Does $MA+\neg CH$ imply that X is almost- ω -resolvable?
 - (2) Is there a combinatorial axiom on ω_1 ensuring that every card-homogeneous topology in ω_1 is almost- ω -resolvable?
 - (3) Does \diamondsuit imply that every card-homogeneous topology in ω_1 is almost- ω -resolvable?

4. Martin's Axiom, cellularity and ω -resolvable Baire spaces

It is well known that $MA(\omega_1)$ implies that a Souslin line does not exist. That is, $MA(\omega_1) \Rightarrow SH$. We show that it is enough to assume SH in order to prove that every T_2 space with countable cellularity is almost- ω -resolvable.

4.1 Theorem [SH]. Every crowded T_2 space with countable cellularity is almost- ω -resolvable.

PROOF: Let $a_0 \in X$ and $F_0 = \{a_0\}$. Let C_0 be a maximal cellular family of open sets in $X \setminus F_0$ containing at least two elements. Let X_0 be equal to $\bigcup C_0$. Assume that we have already constructed, by recursion, families $\{C_\alpha : \alpha < \gamma\}$, $\{X_\alpha : \alpha < \gamma\}$ and $\{F_\alpha : \alpha < \gamma\}$, such that

(1) for all $\alpha < \gamma$, C_{α} is a maximal cellular collection of open sets in X;

- (2) if $\alpha < \xi < \gamma$, then C_{ξ} properly refines C_{α} ;
- (3) if $\alpha < \xi < \gamma$ and $C \in \mathcal{C}_{\alpha}$, then \mathcal{C}_{ξ} contains a maximal cellular family of proper open sets of C having more than one element;
- (4) $X_{\alpha} = \bigcup \mathcal{C}_{\alpha}$ for each $\alpha < \gamma$;
- (5) the family $\{X_{\alpha} : \alpha < \gamma\}$ is a strictly decreasing γ -sequence of open sets in X;
- (6) $F_{\alpha} \neq \emptyset$ for every $\alpha < \gamma$;
- (7) $F_{\alpha} \subseteq (\bigcap_{\xi < \alpha} X_{\xi}) \setminus X_{\alpha} \text{ for all } \alpha < \gamma;$
- (8) $\operatorname{int}(F_{\alpha}) = \emptyset$ for all $\alpha < \gamma$.

If γ is a successor ordinal, say $\gamma = \xi + 1$, take for each $C \in \mathcal{C}_{\xi}$ a point $a_C^{\gamma} \in C$. Now, take a maximal cellular family of open proper subsets in $C \setminus \{a_C^{\gamma}\}$ with more than one element, \mathcal{C}_C^{ξ} (this is possible because C is T_2 and infinite). Put $\mathcal{C}_{\gamma} = \bigcup_{C \in \mathcal{C}_{\gamma}} \mathcal{C}_C^{\xi}$, $X_{\gamma} = \bigcup \mathcal{C}_{\gamma}$ and $F_{\gamma} = \{a_C^{\gamma} : C \in \mathcal{C}_{\xi}\}$.

If γ is a limit ordinal, analyse the set $\bigcap_{\xi < \gamma} X_{\xi}$: if $\operatorname{int}(\bigcap_{\xi < \gamma} X_{\xi}) = \emptyset$, declare our process finished; and if $\operatorname{int}(\bigcap_{\xi < \gamma} X_{\xi})$ is not empty, take a point $a_{\gamma} \in \operatorname{int}(\bigcap_{\xi < \gamma} X_{\xi})$ and take a maximal cellular family \mathcal{C}_{γ} with cardinality bigger than one of open proper subsets in $\operatorname{int}(\bigcap_{\xi < \gamma} X_{\xi}) \setminus F_{\gamma}$ where $F_{\gamma} = \{a_{\gamma}\}$. Put $X_{\gamma} = \bigcup \mathcal{C}_{\gamma}$.

In this way we can find an ordinal number α_0 and families $\mathfrak{C} = \{\mathcal{C}_{\alpha} : \alpha < \alpha_0\}$, $\mathcal{X} = \{X_{\alpha} : \alpha < \alpha_0\}$ and $\mathcal{F} = \{F_{\alpha} : \alpha < \alpha_0\}$ satisfying properties from (1) to (8) above where α_0 is an ordinal number such that $\operatorname{int}(\bigcap_{\xi < \alpha_0} X_{\xi}) = \emptyset$ and for each $\alpha < \alpha_0$, $\operatorname{int}(\bigcap_{\xi < \alpha} X_{\xi}) \neq \emptyset$.

First, observe that α_0 must be a limit ordinal and every X_{α} is an open set of X. Now, consider the collection $\mathcal{Y} = \{Y_{\alpha} : \alpha < \alpha_0\}$ of subspaces of X where $Y_0 = X \setminus X_0$, and $Y_{\alpha} = (\bigcap_{\xi < \alpha} X_{\alpha}) \setminus X_{\alpha}$ if $\alpha > 0$. We have that $F_{\alpha} \subseteq Y_{\alpha}$ and $\operatorname{int}(Y_{\alpha}) = \emptyset$ for every $\alpha < \alpha_0$.

The set $\bigcup_{\alpha<\alpha_0} \mathcal{C}_{\alpha}$ with the order relation \subseteq is a tree T and each element in it has at least two immediate successors.

Claim 1. The height of T, α_0 , is at most $c(X)^+ = \omega_1$.

In fact, if $\alpha_0 > \omega_1$, then $C_{\omega_1} \neq \emptyset$. Take $C_{\omega_1} \in C_{\omega_1}$. Let $C = \{C \in T : C \supseteq C_{\omega_1} \text{ and } C \neq C_{\omega_1} \}$. Since T is a tree, C is a well ordered set with order type ω_1 . We can rename C as $\{C_{\alpha} : \alpha < \omega_1\}$ where C_{α} is the only element in C_{α} which belongs to C. For each $\alpha < \omega_1$, there is $A_{\alpha+1} \in C_{\alpha+1}$ such that $A_{\alpha+1} \subseteq C_{\alpha}$ and $A_{\alpha+1} \cap C_{\alpha+1} = \emptyset$. The set $A = \{A_{\alpha+1} : \alpha < \omega_1\}$ is an antichain in T. Indeed, let $A_{\alpha+1}$ and $A_{\xi+1}$ be two different elements of A. Assume that $\alpha < \xi$. Hence, $A_{\xi+1} \subseteq C_{\xi}$ and $C_{\xi} \subseteq C_{\alpha+1}$. But $C_{\alpha+1} \cap A_{\alpha+1} = \emptyset$. Therefore, $A_{\alpha+1} \cap A_{\xi+1} = \emptyset$. This means that $c(X) > \aleph_0$, which is a contradiction. We get that every chain and every antichain of T has cardinality $\leq \aleph_0$. Since we are assuming the Souslin's Hypothesis, there are no Souslin trees. Therefore $\alpha_0 < \omega_1$.

It is not difficult to prove that the set $Z = X \setminus X_{\alpha_0}$ is equal to $\bigcup_{\alpha < \alpha_0} Y_{\alpha}$ and that the collection $\{Y_{\lambda} : \alpha < \alpha_0\}$ is a partition of Z.

Claim 2. The collection $\{Y_{\alpha} : \alpha < \alpha_0\} \cup \{X_{\alpha_0}\}$ is an almost- ω -resolution for X; that is, X is almost- ω -resolvable.

The collection $\mathcal{Y} = \{Y_{\alpha} : \alpha < \alpha_0\} \cup \{X_{\alpha_0}\}$ is a countable partition of X. Assume that A is a non-empty open set of X and $|\{\alpha < \alpha_0 : A \cap Y_{\alpha} \neq \emptyset\}| < \aleph_0$. Assume that $H = \{\alpha < \alpha_0 : A \cap Y_{\alpha} \neq \emptyset\}$ is equal to $\{\xi_1, \ldots, \xi_n\}$ with $\xi_1 < \xi_2 < \cdots < \xi_n$.

If $B = A \cap X_{\alpha_0} \neq \emptyset$, then $A \cap X_{\xi_n} = B$. But A and X_{ξ_n} are open sets in X, so B is a non-empty open set in X, contradicting the fact that $\operatorname{int}(X_{\alpha_0}) = \emptyset$. This means that $A \cap X_{\alpha_0}$ must be empty.

Now, let $B = A \cap Y_{\xi_n}$. B is not empty and $A \cap X_{\xi_{n-1}} = B$. Thus, B is a non-empty open set in X which does not intersect any member of \mathcal{C}_{ξ_n} . If $\xi_n = \alpha + 1$, \mathcal{C}_{ξ_n} is a maximal cellular collection of open sets contained in $(\bigcup \mathcal{C}_{\alpha}) \setminus \{a_C^{\alpha} : C \in \mathcal{C}_{\alpha}\} = X_{\alpha} \setminus \{a_C^{\alpha} : C \in \mathcal{C}_{\alpha}\}$. Hence, $B \cap \{a_C^{\alpha} : C \in \mathcal{C}_{\alpha}\} \neq \emptyset$. Let $a_C^{\alpha} \in B$. We have that $M = (C \cap B) \setminus \{a_C^{\gamma}\}$ is an open set contained in $X_{\alpha} \setminus \{a_C^{\alpha} : C \in \mathcal{C}_{\alpha}\}$ and no element in \mathcal{C}_{ξ} intersects M. By maximality of \mathcal{C}_{ξ} , we must have that M is empty; that is, $C \cap B = \{a_C^{\gamma}\}$, and this is not possible because X does not have isolated points.

Now assume that ξ_n is a limit ordinal. Since B is open and $B \subseteq \bigcap_{\xi < \xi_n} X_{\xi}$, B must be contained in $\operatorname{int}(\bigcap_{\xi < \xi_n} X_{\xi})$. Since $\{a_{\xi_n}\}$ is closed and B does not intersects any element of \mathcal{C}_{ξ_n} which is a maximal cellular family of open sets contained in the set $\operatorname{int}(\bigcap_{\xi < \xi_n} X_{\xi}) \setminus \{a_{\xi_n}\}$, B must be equal to $\{a_{\xi_n}\}$, which is again a contradiction.

Therefore,
$$|\{\xi < \alpha_0 : A \cap Y_{\xi} \neq \emptyset\}|$$
 must be equal to \aleph_0 .

Since the cellularity of a space is a monotone function when it is applied on dense subspaces, and using Theorem 1.3, we conclude:

4.2 Corollary [SH]. Every T_2 Baire space with $c(X) \leq \aleph_0$ is ω -resolvable.

Example 4.3 in [26] (see Example 2.3 above) gives us a space which is Baire, T_1 with countable cellularity but it is not almost- ω -resolvable. This example is constructed assuming the existence of measurable cardinals. Moreover, there is a model M in which SH holds and there are measurable cardinals. So we cannot get anything stronger than our results of this section by assuming only T_1 . Furthermore, we cannot erase the Baire condition in Corollary 4.2 because there is in ZFC a Tychonoff, countable irresolvable space (see Examples 2.5). Finally, in 2.2 we list an example of a space with cellularity $\leq \aleph_1$ which is Baire and is not almost- ω -resolvable. This last example is given by assuming the existence of an ω_1 -complete ideal over ω_1 which has a dense set of cardinality ω_1 . Hence, it is natural to ask:

4.3 Question. Does MA imply that every crowded T_2 space of cellularity $< \mathfrak{c}$ is almost- ω -resolvable?

In this question, we cannot change "almost- ω -resolvable" for "resolvable" since there is in ZFC an irresolvable countable space.

5. Almost- ω -irresolvable spaces

A space is almost- ω -irresolvable if it is not almost- ω -resolvable. In a similar way we define almost irresolvable spaces.

5.1 Proposition. If X is almost- ω -irresolvable, then there is a non-empty open subset U of X which is hereditarily almost- ω -irresolvable.

PROOF: Let \mathcal{U} be the collection of all almost- ω -resolvable subspaces Y of X. The set $Z = \operatorname{cl}_X(\bigcup \mathcal{U})$ is almost- ω -resolvable and $U = X \setminus Z$ is not empty and satisfies the requirements.

5.2 Proposition. If X is open hereditarily almost- ω -irresolvable, then X is a Baire space.

PROOF: Let $\{U_n: n < \omega\}$ be a sequence of open and dense subsets of X. We can choose this sequence to be \subseteq -decreasing. Denote by F the set $\bigcap_{n<\omega}U_n$. We claim that F is dense in X. In fact, if for a $k < \omega$, $\operatorname{cl}_X F \supseteq U_k$, then $\operatorname{cl}_X F \supseteq \operatorname{cl}_X U_k = X$ and F is dense. Now, assume that for each $n < \omega$, $U_n \setminus \operatorname{cl}_X F$ is not empty. In this case, the collection $T = \{i < \omega : (U_i \setminus U_{i+1}) \cap (X \setminus \operatorname{cl}_X F) \neq \emptyset\}$ is infinite. For each $i \in T$, we put $T_i = (U_i \setminus U_{i+1}) \cap (X \setminus \operatorname{cl}_X F)$. The collection $\{T_i: i < \omega\}$ forms an almost- ω -resolution of $X \setminus \operatorname{cl}_X F$. But this is not possible.

5.3 Corollary. If there is an almost resolvable space X which is almost- ω -irresolvable, then there is a resolvable Baire open subspace U of X which is hereditarily almost- ω -irresolvable.

PROOF: Let X be an almost-resolvable almost- ω -irresolvable space. The space X contains a non-empty open subspace U which is hereditarily almost- ω -irresolvable. By Proposition 5.2, U is a Baire space; so, it is resolvable being almost resolvable.

5.4 Corollary. There is an almost resolvable space X which is almost- ω -irresolvable if and only if there is an almost resolvable Baire space which is hereditarily almost- ω -irresolvable.

As a consequence of the previous result, we have that almost resolvability and almost- ω -resolvability coincide in the class of spaces X in which every open subset is not a Baire space. Even more was obtained in [2, Corollary 5.21]: every space which does not contain a Baire open subspace is almost- ω -resolvable.

5.5 Proposition. Let X be a T_1 space. Then X is hereditarily resolvable if and only if X is hereditarily ω -resolvable.

PROOF: Let Y be a crowded subspace of X and assume that Y is not ω -resolvable. Then, there is $k \in \omega$ with k > 1 such that X is k-resolvable but X is not (k+1)-resolvable [15]. So there are D_0, \ldots, D_{k-1} dense and pairwise disjoint subspaces of Y. But, then, each D_i is crowded and irresolvable, a contradiction. \square

5.6 Proposition. Let X have the property that every of its crowded subspaces is Baire. Then X is hereditarily ω -resolvable iff X is hereditarily almost- ω -resolvable iff X is hereditarily almost resolvable.

Several results established in [2, Section 5] and [26, Section 4] relate Baire irresolvable spaces with the property of almost- ω -resolvability (see also [1, Section 3]). In the following theorem we obtain the most general possible result in the mood of these propositions.

- **5.7 Theorem.** For crowded T_1 spaces and for a crowded-hereditarily topological property P, the following assertions are equivalent:
 - (1) every Baire space with P is ω -resolvable,
 - (2) every Baire space with P is resolvable,
 - (3) every space with P is almost- ω -resolvable,
 - (4) every space with P is almost resolvable.

PROOF: The implications $(1) \Rightarrow (2)$ and $(3) \Rightarrow (4)$ are evident.

- $(2)\Rightarrow (3)$: Assume that X is not almost- ω -resolvable and satisfies P. The space X contains an open and non-empty subset U which is hereditarily almost- ω -irresolvable. By Proposition 5.5, U is not hereditarily resolvable, so there is a crowded subspace Y which is not resolvable. Observe that Y is hereditarily almost- ω -irresolvable, then Y is an irresolvable Baire space because of Proposition 5.2. Since P is a crowded-hereditarily topological property, Y satisfies P too.
- $(4) \Rightarrow (2)$: Assume that X is a Baire space with P. By hypothesis, X is almost resolvable and every Baire almost resolvable space is resolvable (see [2, Corollary 5.4]).
- $(3) \Rightarrow (1)$: Assume that X is a Baire space with P. By hypothesis, every crowded subspace Y of X has P and so it is almost- ω -resolvable; hence X is ω -resolvable because of Theorem 1.3.

Taking P equal to "X is a crowded topological space", we have:

- **5.8 Corollary.** For crowded T_1 spaces, the following assertions are equivalent:
 - (1) every Baire space is ω -resolvable,
 - (2) every Baire space is resolvable,
 - (3) every space is almost- ω -resolvable,
 - (4) every space is almost resolvable.

A space is locally homogeneous if each of its points has a homogeneous neighborhood. For a cardinal number $\kappa \geq 1$, we will say that X is exactly κ -resolvable, in symbols $E_{\kappa}R$, if X is κ -resolvable but is not κ^+ -resolvable. The space X is said to be $OE_{\kappa}R$ if every non-empty open set in X is $E_{\kappa}R$. The concept and examples of $E_{\kappa}R$ spaces for $n \in \omega$ have existed in the literature for some time (see, for example, [10] and [8]). It is clear that the $OE_{\kappa}R$ spaces are $E_{\kappa}R$. The above definitions can be viewed as natural generalizations of the concepts of irresolvable and open-hereditarily irresolvable spaces since $E_{1}R$ and irresolvability are the same concept and $OE_{1}R$ and open-hereditarily irresolvability coincide.

It was proved in [1, Theorem 3.13] that every locally homogeneous irresolvable space such that its cardinality is not a measurable cardinal is of the first category. Also, Li Feng and O. Masaveu [13] proved that every crowded topological space X can be written as

$$X = \Omega \cup \operatorname{cl}_X \bigg(\bigcup_{n=1}^{\infty} O_n\bigg),$$

where

- (1) for each n, O_n is an open, possibly empty, subset of X;
- (2) for each n, if $O_n \neq \emptyset$, then it is OE_nR ;
- (3) for $n \neq m$, $O_n \cap O_m = \emptyset$; and
- (4) Ω is an open, possibly empty, ω -resolvable subset of X.

Thus we obtain the following:

5.9 Proposition. Every locally homogeneous Baire space of cardinality strictly less than the first measurable cardinal is resolvable.

PROOF: Let X be a locally homogeneous Baire space. Write X as Feng and Masaveu say: $X = \Omega \cup \operatorname{cl}_X(\bigcup_{n=1}^\infty O_n)$. Assume that O_1 is not empty and take $x \in O_1$. There is a homogeneous neighborhood W of x. (Observe that W has to be contained in $X \setminus \operatorname{cl}_X(\Omega \cup \bigcup_{n>1} O_n) \subseteq \operatorname{int}_X \operatorname{cl}_X O_1$). On the other hand, O_1 is open hereditarily irresolvable, so $\operatorname{int}_X W \cap O_1$ is irresolvable. Since $\operatorname{int}_X W \cap O_1$ is a non-empty open subset of W, W is irresolvable. By Theorem 3.13 in [1], W is of first category. In particular the open and non-empty subset $O_1 \cap \operatorname{int}_X W$ of X is of first category in itself, but this is not possible because X is a Baire space. Hence, $O_1 = \emptyset$ and X is resolvable.

- **5.10 Questions.** (1) Is every pseudocompact (resp., Čech-complete) Tychonoff space almost-ω-resolvable in ZFC?
 - (2) Is every Baire locally homogeneous space (resp., homogeneous space, topological group) ω -resolvable?
 - (3) For each n > 1, is there a Baire OE_nR space?

6. The infinite π -netweight and $Seq(u_t)$ spaces

We define the infinite π -networkweight of a crowded space X, $\pi nw^*(X)$, as the minimum infinite cardinal of a π -network with infinite elements. And $\pi nw(X)$ is the minimum infinite cardinal of a π -network in X. It is easy to prove that $\pi nw(X) = d(X)$ for every topological space X. Moreover, for a crowded space X, we have $d(X) \leq \pi n w^*(X) \leq \min\{d(X) \cdot \sup\{\pi n w^*(x, X) : x \in X\}, d(X) \cdot \}$ $R(X), \pi w(X)$, where $nw^*(x, X)$ and R(X) were defined before Corollaries 3.9 and 3.10. Besides, for every metrizable space X we have d(X) = w(X). So, for a crowded metrizable space X, the equality $\pi n w^*(X) = \pi n w(X)$ always holds. We have the same phenomenon for spaces of the form $C_p(X)$, the space of real continuous function defined on X with the pointwise convergent topology (here, X is not necessarily crowded). Indeed, for $f \in C_p(X)$, the sequence $(f_n)_{n < \omega}$ where $f_n = f + 1/n$, converges to f. So, if D is a dense subset of $C_p(X)$ with cardinality equal to $d(C_p(X))$, the collection $\{f\} \cup \{f_i : i \geq n\} : f \in$ $D, n < \omega$ is a π -network of cardinality $d(C_p(X))$ constituted by infinite elements. So, $\pi n w^*(C_p(X)) = \pi n w(C_p(X))$. In particular, for every cardinal number κ , $\pi n w^*(\mathbb{R}^{\kappa}) = d(\mathbb{R}^{\kappa})$. The same can be said for spaces of the form $C_p(X,2)$ where X is an infinite zero-dimensional T_2 space. In fact, we can take an infinite discrete subspace $Y = \{x_n : n < \omega\}$ of X, and clopen subsets $\{V_n : n < \omega\}$ such that, for each $n < \omega$, $Y \cap V_n = \{x_n\}$. The characteristic functions χ_{V_n} constitute a sequence which converge to the constant function 0. So, in this case too, $\pi n w^*(C_p(X,2)) = d(C_p(X,2)).$

We have already mentioned that in [1] a dense countable subset Y of $2^{\mathfrak{c}}$ which is irresolvable was constructed in ZFC. This space has $\pi nw(Y) = \aleph_0$, but every of its countable π -networks has to have finite elements, because otherwise Y would be maximally resolvable (see Theorem 2.8(1)). The $\operatorname{Seq}(u_t)$ spaces considered below are also examples of spaces of this kind.

We recall that for a $p \in \omega^*$, $\chi(p) = \min\{|b| : b \text{ is a base for } p\}$. Of course we can also define: $\pi\chi(p) = \min\{|b| : b \text{ is a } \pi\text{-base for } p\}$ where a family of infinite sets $\mathcal G$ in ω is a π -base for p if every member of p contains an element of $\mathcal G$. It is not difficult to prove that for every $p \in \omega^*$, $\pi\chi(p) \leq \chi(p)$ and $\pi\chi(p) > \aleph_0$. In fact, assume that N_0, \ldots, N_k, \ldots are infinite subsets of ω . By recursion, we can construct two sequences $A = \{a_0, \ldots, a_n, \ldots\}$ and $B = \{b_0, \ldots, b_n, \ldots\}$ such that the elements in $A \cup B$ are pairwise different, and for each $n < \omega$, $a_n, b_n \in N_n$. If $A \in p$ then A is an element of p which does not contain any N_k . If $A \notin p$, then $\omega \setminus A$ belongs to p and does not contain any N_k .

By Seq we mean the set of all finite sequences of natural numbers. More precisely, for each natural number $n \in \omega$, let ${}^n\omega = \{t : t \text{ is a function and } t : n \to \omega\}$. Then Seq = $\bigcup_{n \in \omega} {}^n\omega$. If $t \in \text{Seq}$, with domain $k = \{0, 1, \dots, (k-1)\}$, and $n \in \omega$, let $t \cap n$ denote the function $t \cup \{(k, n)\}$. For every $t \in \text{Seq}$ let u_t be a non-principal ultrafilter on ω . By Seq($\{u_t : t \in \text{Seq}\}$) we denote the space with underlying set Seq and topology defined by declaring a set $U \subseteq \text{Seq}$ to be open if

and only if

$$(\forall t \in U) \{ n \in \omega : t \cap n \in U \} \in u_t.$$

For short, we write $\operatorname{Seq}(u_t)$ instead of $\operatorname{Seq}(\{u_t : t \in \operatorname{Seq}\})$. We also consider the case where there is a single non-principal ultrafilter p in ω such that $u_t = p$ for all $t \in \operatorname{Seq}$, and in this case we write $\operatorname{Seq}(p)$ instead of $\operatorname{Seq}(u_t)$.

We use the following notation of W. Lindgren and A. Szymanski [20]; put $L_n = \{s \in \text{Seq} : \text{dom}(s) = n\}$, and for any $s \in \text{Seq}$ the *cone over* s is defined by $C(s) = \{t \in \text{Seq} : s \subseteq t\}$. In particular, $L_0 = \{\emptyset\}$. We add some other notations: For each $s \in L_n$, $T(s) = \{t \in L_{n+1} : s \subseteq t\}$. Observe that for every $s \in \text{Seq}$, C(s) is a clopen subset of $\text{Seq}(u_t)$.

It is well-known that for any choice of $\{u_t : t \in \text{Seq}\} \subseteq \omega^*$, the space $\text{Seq}(u_t)$ is a zero-dimensional, extremally disconnected, Hausdorff space with no isolated points. By the way, Seq(p) is homogeneous and if p is Ramsey, there is a binary group operation + such that (Seq(p), +) is a topological group (see [27]).

6.1 Proposition. Every Seq (u_t) space is ω -resolvable.

PROOF: In fact, let $\{E_n : n < \omega\}$ be a partition of ω where each E_n is infinite. Set $D_n = \bigcup_{i \in E_n} L_i$. Each D_n is dense in $Seq(u_t)$ and $D_n \cap D_m = \emptyset$ if $n \neq m$.

6.2 Proposition. Let $\{u_t : t \in \text{Seq}\} \subseteq \omega^*$. Then, the infinite π -netweight of $\text{Seq}(u_t)$ is not countable.

PROOF: For each $n < \omega$, each $s \in L_n$, and each sequence S of subcollections of the form

$$\begin{split} \{B(s)\}, \{B(s,i_{n+1}): i_{n+1} \in B(s)\}, \{B(s,i_{n+1},i_{n+2}): i_{n+1} \in B(s), \\ i_{n+2} \in B(s,i_{n+1})\}, \dots, \{B(s,i_{n+1},\dots,i_{n+k+1}): i_{n+1} \in B(s), \\ i_{n+1} \in B(s,i_{n+1}), \dots, i_{n+k+1} \in B(s,i_{n+1},\dots,i_{n+k})\}, \dots \end{split}$$

where $B(s) \in u_s$ and, if $i_{n+1} \in B(s), i_{n+2} \in B(s, i_{n+1}), \dots, i_{n+k} \in B(s, i_{n+1}, \dots, i_{n+k-1}), B(s, i_{n+1}, \dots, i_{n+k}) \in u_t$ with $t = s \cap i_{n+1} \cap i_{n+k}$, we define a set V(s, S) as follows:

$$V(s,S) = \{s\} \cup \{t \in \text{Seq}(p) : m \in \omega, t \in L_{n+m+1}, s \subseteq t, t(n+1) \in B(s), t(n+2) \in B(s, t(n+1)), \dots, t(n+m+1) \in B(s, t(n+1), t(n+2), \dots, t(n+m))\}.$$

We call this set V(s, S) cascade of Seq(p) defined by (s, S). Moreover, we will called each sequence S, described as above, fan on $(s, (u_t))$.

Of course, the collection of cascades forms a base of clopen sets for $Seq(u_t)$.

Claim 1. If $\mathcal{N} = \{N_0, \dots, N_k, \dots\}$ is a countable set of infinite subsets of $\operatorname{Seq}(u_t)$, then \mathcal{N} is not a π -network of $\operatorname{Seq}(u_t)$.

We are going to prove Claim 1 in several lemmas.

Claim 1.1. If \mathcal{M} is a finite collection of subsets of Seq, then there is a non-empty open set A of Seq (u_t) such that $M \setminus A \neq \emptyset$ for all $M \in \mathcal{M}$.

PROOF: Take s_0, \ldots, s_n elements in Seq such that each M in \mathcal{M} contains one of this points. There is $k < \omega$ such that $s_i \in L_m$ implies m < k for all $i \in \{0, \ldots, n\}$. Take $s \in L_k$. The cone C(s) is open and contains no element in \mathcal{M} .

Claim 1.2. Assume that $F \subseteq \text{Seq}(u_t)$ is such that $|F \cap T(s)| \leq 1$ for every $s \in \text{Seq}$. Then, F is a proper closed subset of $\text{Seq}(u_t)$.

PROOF: Let P be the set $\{s < \text{Seq} : F \cap T(s) \neq \emptyset\}$. Let z_s be the only point belonging to $F \cap T(s)$ for each $s \in P$. Let $x \in \text{Seq}(u_t) \setminus F$. Assume that $x = (n_0, \ldots, n_k)$ (the argument is similar if $x = \emptyset$). Let

$$S = \{\{B(x)\}, \{B(x, i_0) : i_0 \in B(x)\}, \{B(x, i_0, i_1) : i_0 \in B(x), i_1 \in B(x, i_0)\}, \dots, \{B(x, i_0, \dots, i_{k+1}) : i_0 \in B(x), i_1 \in B(x, i_1), \dots, i_{k+1} \in B(x, i_0, \dots, i_k)\}, \dots\}$$

be a fan on $(x,(u_t))$. We claim that the set $V(x,S) \setminus F$ is an open set. Indeed, if $y \in V(x,S) \setminus F$, y is of the form $(n_0,\ldots,n_k,i_0,\ldots,i_{m+1})$ where $m < \omega$, $i_0 \in B(x), i_1 \in B(x,i_0),\ldots,i_{m+1} \in B(x,i_0,i_1,\ldots,i_m)$.

The set $\{l < \omega : (n_0, \dots, n_k, i_0, \dots, i_{m+1}, l) \in V(x, s) \setminus F\}$ is equal to

$$B(x, i_0, i_1, \ldots, i_{m+1}) \setminus F$$
.

Moreover, the set $B(x,i_0,i_1,\ldots,i_{m+1})\cap F=G$ is either empty if $F\cap T(x,i_0,i_1,\ldots,i_{m+1})=\emptyset$, or $G=\{z_{(x,i_0,i_1,\ldots,i_{m+1})}\}$ if $F\cap T(x,i_0,i_1,\ldots,i_{m+1})\neq\emptyset$. Of course, in both cases, $B(x,i_0,i_1,\ldots,i_{m+1})\setminus F$ belongs to u_t where $t=x^{\frown}i_0^{\frown}\ldots^{\frown}i_{m+1}$. This means that $V(x,s)\setminus F$ is open.

Claim 1.3. Let $\mathcal{M} = \{N \in \mathcal{N} : \forall s \in \text{Seq}(|N \cap T(s)| < \aleph_0)\}$. Then, there is a non-empty open set A of $\text{Seq}(u_t)$ such that $N \setminus A \neq \emptyset$ for all $N \in \mathcal{M}$.

PROOF: First, we define in Seq a well order \sqsubseteq as follows: \emptyset is the \sqsubseteq -first element, and for two elements s and t different to \emptyset , we define $s \sqsubseteq t$ if either $s \in L_{n+1}$, $t \in L_{m+1}$ and n < m, or n = m and s(n) < t(n).

Because of Claim 1.1, we can assume that \mathcal{M} is infinite. We faithfully enumerate \mathcal{M} as $\{M_0, M_1, \ldots, M_k, \ldots\}$. Consider the set $J = \{s \in \text{Seq} : \exists M \in \mathcal{M} \text{ such that } T(s) \cap M \neq \emptyset\}$. Because of the definition of \mathcal{M} , we must have $|J| = \aleph_0$. Hence, we can enumerate J as $\{s_m : m < \omega\}$ in such a way that $s_0 \sqsubset s_1 \sqsubset \cdots \sqsubset s_n \sqsubset s_{n+1} \sqsubset \cdots$

Let k_0 be the first natural number m such that $M_m \cap T(s_0) \neq \emptyset$. We take $z_0 \in M_{k_0} \cap T(s_0)$. Assume that we have already defined two finite sequences k_0, \ldots, k_l and z_0, \ldots, z_l such that

- (1) for each $i \in \{0, ..., l-1\}$, k_{i+1} is the first natural number $m \in \omega \setminus \{k_0, ..., k_i\}$ such that $M_m \cap T(s_{i+1}) \neq \emptyset$, and
- (2) $z_{i+1} \in M_{k_{i+1}} \cap T(s_{i+1})$ for each $i \in \{0, \dots, l-1\}$.

We define now k_{l+1} as the first natural number $m \in \omega \setminus \{k_0, \ldots, k_l\}$ such that $M_m \cap T(s_{l+1}) \neq \emptyset$. Take $z_{l+1} \in M_{k_{l+1}} \cap T(s_{l+1})$.

Observe that $\{k_i : i < \omega\} = \omega$. Indeed, assume that $\{0, \ldots, m\} \subseteq \{k_i : i < \omega\}$ and $\{k_{i_0}, \ldots, k_{i_m}\} = \{0, \ldots, m\}$. Let j be a natural number greater than k_{i_l} for all $l \in \{0, \ldots, m\}$ and such that $M_{m+1} \cap T(s_j) \neq \emptyset$. Then we must have $m+1 \in \{k_0, \ldots, k_j\}$.

We put $F = \{z_i : i < \omega\}$. The set F satisfies the conditions required in Claim 1.2; so, F is a proper closed subset of $\text{Seq}(u_t)$. Therefore, $A = \text{Seq}(u_t) \setminus F$ is a non-empty open set which does not contain any of the sets $M \in \mathcal{M}$.

Claim 1.4. Let $\mathcal{O} = \mathcal{N} \setminus \mathcal{M} = \{ N \in \mathcal{N} : \exists s \in \text{Seq}(|N \cap T(s)| \geq \aleph_0) \}$. Then, there is an open set B of $\text{Seq}(u_t)$ such that $N \setminus B \neq \emptyset$ for all $N \in \mathcal{O}$.

PROOF: Let $T = \{n < \omega : N_n \in \mathcal{O}\}$. The open set B will be an open cascade V(s,S) defined by (s,S) where $s = \emptyset$ and the fan

$$\begin{split} S &= \{\{B(s)\}, \{B(s,i_1): i_1 \in B(s)\}, \{B(s,i_1,i_2): i_1 \in B(s),\\ i_2 \in B(s,i_1)\}, \dots, \{B(s,i_1,\dots,i_{k+1}): i_1 \in B(s), i_1 \in\\ B(s,i_1), \dots, i_{k+1} \in B(s,i_1,\dots,i_k)\}, \dots \} \end{split}$$

will be constructed by recursion.

Assume that we have already selected

$$\{\{B(s)\}, \{B(s,i_1): i_1 \in B(s)\}, \{B(s,i_1,i_2): i_1 \in B(s), i_2 \in B(s,i_1)\}, \dots, \{B(s,i_1,\dots,i_k): i_1 \in B(s), i_2 \in B(s,i_1), \dots, i_k \in B(s,i_1,\dots,i_{k-1})\}\}.$$

For each sequence $i_1 \in B(s), i_2 \in B(s,i_1), \ldots, i_{k+1} \in B(s,i_1,i_2,\ldots,i_k)$, consider the ultrafilter u_t where $t = s ^\frown i_1^\frown \ldots ^\frown i_k$, and consider the set $P(s,i_1,\ldots,i_{k+1}) = \{n \in T: |N_n \cap T(s,i_1,\ldots,i_k)| \geq \aleph_0\}$. If $P(s,i_1,\ldots,i_{k+1})$ is empty, we choose $B(s,i_1,\ldots,i_{k+1})$ to be an arbitrary element of u_t . If $P(s,i_1,\ldots,i_{k+1})$ is not empty, there is $B(s,i_1,\ldots,i_{k+1}) \in u_t$ such that $N_n \setminus B(s,i_1,\ldots,i_{k+1}) \neq \emptyset$ for every $n \in P(s,i_1,\ldots,i_{k+1})$ because $\pi \chi(u_t) > \aleph_0$.

We have already finished the description of the recursive process that define the fan S. The set B = V(s, S) is the required open set. We finished the proof of Claim 1 by saying that the open set $A \cap B$, where A was defined in the proof of Claim 1.3 and B in that of Claim 1.4, is not empty and does not contain any of the elements in \mathcal{N} .

References

- Alas O., Sanchis M., Tkačhenko M.G., Tkachuk V.V., Wilson R.G., Irresolvable and submaximal spaces: Homogeneity versus σ discreteness and new ZFC examples, Topology Appl. 107 (2000), 259–273.
- [2] Angoa J., Ibarra M., Tamariz-Mascarúa Á., On ω-resolvable and almost-ω-resolvable spaces, Comment. Math. Univ. Carolin. 49 (2008), 485–508.
- [3] Bell M., Kunen K., On the π-character of ultrafilters, C.T. Math. Rep. Acad. Sci. Canada 3 (1981), 351–356.
- [4] Biernias J., Terepeta M., A sufficient condition for maximal resolvability of topological spaces, Comment. Math. Univ. Carolin. 41 (2004), 139–144.
- [5] Bolstein R., Sets of points of discontinuity, Proc. Amer. Math. Soc. 38 (1973), 193-197.
- [6] Comfort W.W., Feng L., The union of resolvable spaces is resolvable, Math. Japonica 38 (1993), 413–114.
- [7] Comfort W.W., García-Ferreira S., Resolvability: a selective survey and some new results, Topology Appl. 74 (1996), 149–167.
- [8] van Douwen E.K., Applications of maximal topologies, Topology Appl. 51 (1993), 125–139.
- [9] El'kin A.G., On the maximal resolvability of products of topological spaces, Soviet Math. Dokl. 10 (1969), 659–662.
- [10] El'kin A.G., Resolvable spaces which are not maximally resolvable, Moscow Univ. Math. Bull. 24 (1969), 116–118.
- [11] Feng L., Strongly exactly n-resolvable spaces of arbitrary large dispersion character, Topology Appl. 105 (2000), 31–36.
- [12] Foran J., Liebnits P., A characterization of almost resolvable spaces, Rend. Circ. Mat. Palermo (2) 40 (1991), 136–141.
- [13] Feng L., Masaveu O., Exactly n-resolvable spaces and ω-resolvability, Math. Japonica 50 (1999), 333–339.
- [14] Hewitt E., A problem of set-theoretic topology, Duke Math. J. 10 (1943), 306–333.
- [15] Illanes A., Finite and ω -resolvability, Proc. Amer. Math. Soc. 124 (1996), 1243–1246.
- [16] Katětov M., On topological spaces containing no disjoint dense sets, Mat. Sb. 21 (1947), 3–12
- [17] Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102, North Holland, sixth impression, Amsterdam, London, New York, Tokyo, 1995.
- [18] Kunen K., Tall F., On the consistency of the non-existence of Baire irresolvable spaces, Topology Atlas, http://at.yorku.ca/v/a/a/a/27.htm (1998).
- [19] Kunen K., Szymansky A., Tall F., Baire irresolvable spaces and ideal theory, Ann. Math. Silesiana 2 (14) (1986), 98-107.
- [20] Lindgren W.F., Szymanski A.A., A non-pseudocompact product of countably compact spaces via Seq, Proc. Amer. Math. Soc. 125 (1997), 3741–3746.
- [21] Malykhin V.I., On extremally disconnected topological groups, Soviet Math. Dokl. 16 (1975), 21–25.
- [22] Malykhin V.I., On the resolvability of the product of two spaces and a problem of Katětov, Dokl. Akad. Nauk SSSR 222 (1975), 765–729.
- [23] Malykhin V.I., Irresolvable countable spaces of weight less than c, Comment. Math. Univ. Carolin. 40 (1999), no. 1, 181–185.

- [24] Pavlov O., On resolvability of topological spaces, Topology Appl. 126 (2002), 37-47.
- [25] Pytke'ev E.G., On maximally resolvable spaces, Proc. Steklov. Inst. Math. 154 (1984), 225–230.
- [26] Tamariz-Mascarúa Á., Villegas-Rodríguez H., Spaces of continuous functions, box products and almost-ω-resolvable spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 687–705.
- [27] Vaughan J.E., Two spaces homeomorphic to Seq(p), manuscript.
- [28] Villegas L.M., On resolvable spaces and groups, Comment. Math. Univ. Carolin. 36 (1995), 579–584.
- [29] Villegas L.M., Maximal resolvability of some topological spaces, Bol. Soc. Mat. Mexicana 5 (1999), 123–136.

F. Casarrubias-Segura, Á. Tamariz-Mascarúa:

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, MEXICO D.F., 04510, MÉXICO

E-mail: guli@servidor.unam.mx atamariz@servidor.unam.mx

F. Hernández-Hernández:

FACULTAD DE CIENCIAS FÍSICO-MATEMÁTICAS, UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO, MORELIA, MICHOACÁN, MÉXICO

E-mail: fhernandez@fismat.umich.mx

(Received August 12, 2009, revised March 17, 2010)