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Neochromatica

Panagiotis Cheilaris, Ernst Specker, Stathis Zachos

Abstract. We create and discuss several modifications to traditional graph color-
ing. In particular, we classify various notions of coloring in a proper hierarchy.
We concentrate on grid graphs whose colorings can be represented by natural
number entries in arrays with various restrictions.
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1. Introduction and related work

A vertex coloring of a graph G = (V, E) is a (coloring) function C : V → N
+

such that adjacent vertices are colored with different colors. Formally:

(∀e ∈ E)(e = {v, v′} ∧ v 6= v′ → C(v) 6= C(v′)).

A hypergraph H = (V, E) is a generalization of a graph for which hyperedges

can be subsets of V of arbitrary size. Vertex coloring in hypergraphs can be
defined in many ways, so that restricting the definition to simple graphs coincides
with traditional graph coloring. On one extreme, it is only required that the
vertices of each hyperedge are not all colored with the same color. Formally:

(∀e ∈ E)(∃v ∈ e)(∃v′ ∈ e)(|e| = 1 ∨ C(v) 6= C(v′)).

On the other extreme, it is required that the vertices of each hyperedge are all
colored with different colors. Formally:

(∀e ∈ E)(∀v ∈ e)(∀v′ ∈ e)(v 6= v′ → C(v) 6= C(v′)).

In between these two extremes, there is another possible generalization: A vertex
coloring C of hypergraph H is called conflict-free if the vertices of each hyperedge
are colored in such a way that there is a vertex whose color is unique. Formally:

(∀e ∈ E)(∃v ∈ e)(∀v′ ∈ e)(v′ 6= v → C(v′) 6= C(v)).

Conflict-free coloring can model frequency assignment for cellular networks.
A cellular network consists of two kinds of nodes: base stations and mobile agents .
Base stations have fixed positions and make up the backbone of the network; they
are modeled by vertices in V . Mobile agents are the clients of the network, served
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by base stations, as follows: Every base station has a fixed frequency; this fact is
modeled by the coloring C, i.e., colors represent frequencies. When agents want
to establish a link with a base station they tune to the base station’s frequency.
Since agents are mobile, they can be in the range of many different base stations.
The range of communication of every agent is modeled by a hyperedge e ∈ E,
which is the set of base stations that are able to communicate with the agent.
To avoid interference, the system must assign frequencies to base stations in the
following way: For any range, there must be a base station in the range with
a frequency that is not reused by some other base station in the range. This
requirement is fulfilled by the conflict-free property. One can of course solve the
problem by assigning n different frequencies to the n base stations. However, using
many frequencies is expensive, and therefore, a scheme that reuses frequencies,
wherever possible, is preferable.

The study of conflict-free colorings originated in the work of Even et al. [11].
In addition to the practical motivation described above, this new coloring model
has drawn much attention of researchers through its purely theoretical interest
and such colorings have been the focus of several recent papers (see, e.g., [21],
[13], [7], [3], [5]).

A chain or path is the graph Pn = ({1, . . . , n}, {{i, i + 1} | 1 ≤ i < n}). For
n ≥ 3, a ring or cycle is the graph Cn defined as a Pn with the additional edge
{n, 1}. A grid graph Gm is the cartesian product of two paths, Pm × Pm.

2. Conflict-free coloring with respect to paths of a graph

Given is a graph G, with vertex set V (G) and edge set E(G). The aim is to
color the vertices of the graph so that for each path p in the graph, there is a
vertex v in p whose color is different than the color of any other vertex in p. This
coloring is called conflict-free (CF) coloring of graph G with respect to paths. It
is a minimization problem, i.e., the goal is to find such a coloring with as few
colors as possible. Formally:

Definition 1. A k-CF-coloring is a function C : V (G) → {1, . . . , k} such that:

(∀path p ∈ G)(∃v ∈ p)(∀v′ ∈ p)(v′ 6= v → C(v′) 6= C(v)).

The conflict-free chromatic number of a graph G, denoted by χcf(G), is the min-
imum k for which G has a k-CF-coloring.

Since the above coloring involves sets of vertices included in a path, one can
ask the same question in terms of hypergraphs.

Definition 2. Given a graph G = (V, E), let:
(a) paths(G) be the set of paths of G,
(b) vert(p) be the set of vertices of path p,
(c) HG be the hypergraph:

HG = (V, {vert(p) | p ∈ paths(G)}).
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Fact 3. A conflict-free coloring of graph G with respect to paths is a conflict-free

coloring of HG and vice versa.

3. Relation of conflict-free coloring with other problems

3.1 Ordered coloring. A closely related problem to CF coloring with respect to
paths is ordered coloring [16] or vertex ranking [14]. Ordered coloring is conflict-
free coloring with an additional constraint: the unique color in each path must
also be the maximum color in the path (where colors are from the set {1, . . . , k}).
Definition 4. A unique maximum (UM) coloring is a CF coloring in which the
maximum color in every path p is unique in path p.

We remark that the aforementioned definition is not what is typically given in
the literature [16]. Instead the following definition is more typical:

Definition 5. An ordered k-coloring of a graph G is a function C : V (G) →
{1, . . . , k} such that for every pair of distinct vertices v, v′, and every path p from
v to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that C(v) < C(v′′).
The ordered chromatic number of a graph G, denoted by χo(G), is the minimum
k for which G has an ordered k-coloring.

We prove that the two definitions are equivalent:

Proposition 6. C is a UM coloring if and only if C is an ordered coloring.

Proof: If C is a UM coloring, then for any two same-color vertices v, v′, every
(v, v′)-path p has a unique maximum color, greater than C(v), which occurs in
some internal vertex of p.

If C is an ordered coloring, then consider any path p in G. The maximum color
in p has to occur exactly in one vertex. If it occurs in two vertices v, v′ of p then
there is a (v, v′)-path contained in p which has an internal vertex with a greater
color; a contradiction to the maximality of C(v) in p. �

Corollary 7. Every ordered coloring is also a CF coloring. Thus χcf(G) ≤ χo(G).

In ordered colorings, an even stronger property is true:

Proposition 8. In any ordered coloring C of G, in every connected subset S
of vertices of G, the maximum color occurring in S, i.e., max{C(v) | v ∈ S}, is

unique in S.

Proof: By contradiction; if there are two different vertices x, y in S with the
maximum color, then there is a (x, y)-path in S, for which there is no internal
vertex with higher color. �

If we relax the requirement that in every connected subset the maximum color
is unique so that there is just a unique color (not necessary the maximum in the
connected subset), we get the notion of a centered coloring (and the corresponding
centered chromatic number), which was introduced in [19]. In [19] it was proved
that for every graph the centered chromatic number equals the ordered chromatic
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number, i.e., the conflict-free and unique maximum chromatic numbers with re-
spect to connected subsets equal each other. However, an analogous statement
is not true for the conflict-free and unique maximum chromatic numbers with
respect to paths: The smallest graph G for which χcf(G) < χo(G) consists of a
triangle, K3, a complement of a triangle, K3, and a matching of three edges where
each edge has one vertex in K3 and the other in K3. It is not difficult to prove
that χcf(G) = 3 whereas χo(G) = 4 (see [6]).

Both χcf and χo are monotone with respect to subgraphs:

Proposition 9. If X ⊆ Y , then χcf(X) ≤ χcf(Y ) and χo(X) ≤ χo(Y ).

Proof: Graph X contains a subset of the paths of Y , so the restriction of an
optimal coloring of V (Y ) to V (X) is a CF-coloring for X . �

Additionally, the ordered chromatic number is monotone with respect to mi-
nors. A graph X is a minor of Y , denoted as X 4 Y , if there is a subgraph G of Y ,
and a sequence G0, . . . , Gk, with G0 = G and Gk = X , such that Gi = Gi−1/ei−1,
where ei−1 ∈ E(Gi−1) (i.e., edge ei−1 is contracted in Gi−1), for i ∈ {1, . . . , k}.
We give a self-contained proof of χo’s monotonicity under minors for completeness,
although one can also be deduced from results in [19]:

Proposition 10. If X 4 Y , then χo(X) ≤ χo(Y ).

Proof: If G is a subgraph of Y , and C an ordered coloring of Y , the restriction
of C to V (G) is an ordered coloring of G. Given G and an ordered coloring C of
G, then the following is an ordered coloring of G/xy: For v different from x, y,
use the same color as in C. For the vertex vxy that arises from the contraction
of edge xy, use max{C(x), C(y)}. For every path p of G/xy, either vxy /∈ p, in
which case p is also a path in G, and thus it contains a maximum unique color,
or p = p1vxyp2 (with p1, p2 possibly empty paths), in which case the unique color
of p occurs either in vxy or in some vertex of p1 or p2, because there is a path in
G containing p1, p2 and at least one of x, y. �

3.2 Squarefree colorings. We obtain another related problem by looking at
colorings of paths as strings. We impose the following restriction: Every coloring
of a path, when viewed as a string, shall not contain a repetition. Formally, a
string w ∈ (N+)∗ is called squarefree if there is no substring of w of the form
x2 = xx, where x is a nonempty string. Given a coloring C of the vertices
of a graph, for every path p = v1 . . . vℓ, we define the color string of p to be
C(v1) . . . C(vℓ).

Definition 11. A coloring C : V (G) → {1, . . . , k} is a squarefree k-coloring if the
color string of every path in G is squarefree.

Corollary 12. Every CF-coloring is squarefree and thus χsf(G) ≤ χcf(G).
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We have the following hierarchical relation between colorings:

C ⊃ SF ⊃ CF ⊃ OC

where C is the class of ‘traditional’ vertex colorings of graphs. The above is a
proper hierarchy as can be exhibited by the following colorings of the chain P8:

12121212 traditional but not squarefree;

12312131 squarefree but not conflict-free;

41421431 conflict-free but not ordered;

12131214 ordered.

In terms of chromatic numbers:

Proposition 13. For every graph G, χ(G) ≤ χsf(G) ≤ χcf(G) ≤ χo(G).

For many graphs, squarefree coloring requires substantially fewer colors than
CF coloring and ordered coloring: For example, a seminal result by Thue shows
that 3 colors suffice to color any chain [25]. As we will see, for chains, both ordered
coloring and CF coloring require Ω(log n) colors. Traditional chain coloring can be
done, of course, with at most 2 colors. A coloring of a chain can be seen as a string,
over an alphabet of possible colors. The proof of Thue relies on squarefreeness pre-
serving morphisms. The following is a squarefreeness preserving morphism on the
three letter alphabet {a, b, c}: a 7→ abcab, b 7→ acabcb, c 7→ acbcacb. Starting with
the word a, and by repetitive applications, the above morphism gives arbitrarily
long squarefree words on three letters: abcabacabcbacbcacbabcabacabcb . . .

More recently, in [8] it was proved that every ring can be squarefree colored
with 3 colors, except a few of them (C5, C7, C10, C14, C17) that require 4 colors.
As we will see, for rings, both ordered coloring and CF coloring require Ω(log n)
colors. Traditional ring coloring can be done, of course, with at most 3 colors. The
above squarefree result for rings can be also interpreted as follows: For every ring,
there is a subdivision of it which is squarefree colorable using 3 colors. Recently, in
[22], it was proved that every graph has a subdivision which is squarefree colorable
using 3 colors, which is a striking generalization of Thue’s result.

3.3 Cubefree and other colorings. Another related class of colorings consists
of cubefree colorings, where color strings of paths can not contain a x3 substring,
for x non-empty. It is known ([25] and implicit in [23]) that 2 colors suffice to color
any chain. A cubefreeness preserving morphism, on a two letter alphabet {a, b},
is quite simple: a 7→ ba, b 7→ ba. A cubefree word starts like: abbabaabbaab.
Cubefree colorings can also be put in the above hierarchy over squarefree colorings
but they are not comparable with traditional colorings. Squarefree, cubefree, and
related colorings have been studied extensively for strings (i.e., for the chain graph
in our setting). A good starting point for the interested reader is the book by
Allouche and Shallit [1]. Both squarefree and cubefree colorings are special cases of
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nonrepetitive colorings [2], [12]. The relationship between nonrepetitive colorings
and other notions, including ordered colorings, was recently investigated in [20].

4. Conflict-free coloring some families of graphs

4.1 Chain. Conflict-free coloring of a chain is better known as conflict-free
coloring with respect to intervals [7]. For completeness, we give a proof that
χcf(Pn) = 1 + ⌊lg n⌋. The method yields a CF coloring which is also an ordered
coloring and is highly symmetric, which we call recursively palindromic coloring.

4.1.1 A lower bound for χcf (Pn). Observe that in any conflict-free coloring
of Pn there is a uniquely colored vertex v and thus every path that contains v
has the conflict-free property. Graph G − v consists of at least two chains, one
of which has at least ⌊n/2⌋ vertices. Therefore we have the following recurrence
for χcf(Pn): χcf(P1) = 1 and χcf(Pn) ≥ 1 + χcf(P⌊n/2⌋), which easily implies
χcf(Pn) ≥ 1 + ⌊lg n⌋.

4.1.2 An optimal conflict-free coloring of Pn. An optimal coloring is ac-
quired by taking the first n terms of the sequence Ck with k such that n ≤ 2k −1,
defined recursively as follows: C1 = (1), and for k > 1, Ck = Ck−1 ◦ (k) ◦ Ck−1,
where ◦ is the concatenation operation for sequences of symbols. Color i is used
only if n ≥ 2i−1, so in fact 1 + ⌊lg n⌋ colors are used by the coloring. It is not
difficult to prove that the coloring is conflict-free.

4.2 Ring. To conflict-free color a ring, we use the conflict-free coloring of a chain.
We pick an arbitrary vertex v and color it with a unique color (not to be reused
anywhere else in the coloring). The remaining vertices form a chain that we color
with the method for chains described in Section 4.1. This method colors Cn, a
ring of n vertices, with 2 + ⌊lg(n− 1)⌋ colors. For example, if n = 8, the coloring
is 41213121, where ‘4’ is the first unique color used for v.

Claim 14. A conflict-free coloring of Cn requires 2 + ⌊lg (n − 1)⌋ colors.

Proof: Assume for the sake of contradiction that you can color with 1+⌊lg (n−1)⌋
colors. Remove a uniquely colored vertex in the ring. The remaining n−1 vertices
use ⌊lg(n − 1)⌋ colors and constitute a CF coloring of Pn−1, which is impossible
since at least 1 + ⌊lg(n − 1)⌋ colors are required to CF color Pn−1. �

4.3 Tree. For a tree graph, we use the idea of a 1/2-separator [15], [17], [10].
A 1/2-separator is a vertex which, when removed, leaves connected components
whose size is bounded by n/2. The method to color a tree is as follows: Find a
1/2-separator, color it with a unique color. Then color recursively the connected
components, after the removal of the 1/2-separator. Thus, χcf(T ) ≤ 1+⌊lgn⌋ for a
tree with n vertices. See also [16]. If a maximum color is used for every separator,
the above coloring is an ordered coloring. Moreover, one can find optimal ordered
colorings of trees [14], [24].
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4.4 Grid. A grid of size m × m, i.e, with n = m2 vertices can be colored with
an ordered coloring with at most 4m colors: The idea is to use unique maximum
colors for the row closest to the middle and column closest to the middle (that
is less than 2m colors), and then color recursively in the 4 subgrids with size at
most ⌊m/2⌋ × ⌊m/2⌋ each. A slight variation gives a coloring with at most 3m
color: Use m unique maximum colors for the row closest to the middle, and then
use about m/2 more unique colors for the part of the middle column over the
middle row, and the same m/2 colors for the middle column under the middle
row; then use recursion in the 4 subgrids with size at most ⌊m/2⌋ × ⌊m/2⌋ each.
The above coloring is good enough even if we add one edge in every internal
face of the standard drawing of Gm to make every internal face triangular (we
get a triangular grid), or even if we add two edges in every face. This indicates
that 3m is not optimal and, in fact, it has been improved in [4]. For a general
planar graph G, using separator theorems [18], [9], it can be proved that χo(G) ≤
3(
√

6+2)
√

n ≈ 13.3485
√

n (see [16]). As we have seen, the previous result can be
far from optimal for well structured planar graphs like the grid. There is also a
lower bound of χo(Gm) ≥ m (also from [16]). We give another proof of the basic
lower bound of χo(Gm) ≥ m, based on a minor graphs argument:

Proposition 15. If Gm is the m × m grid, χo(Gm) ≥ m.

Proof: By induction. Base: For m = 1, it is true, as χo(K1) = 1. For the
inductive step, consider a Hamilton path p of Gm, with m > 1. If Gm is ordered
colored, then there is a vertex v with a unique color in p (and thus in G). So,
for some v, χo(Gm) = 1 + χo(Gm − v). However, for every v, Gm−1 4 Gm − v
(easy proof). Therefore, from Proposition 10, χo(G) ≥ 1 + χo(Gm−1) and from
the inductive hypothesis, χo(G) ≥ 1 + m − 1 = m. �

In order to improve the upper bound of 3m, we need to find more intricate
separators, that will be colored with unique colors. The idea is to use separators
along diagonals in the grid. We will also need to find efficient colorings of some
subgraphs that are left after we remove diagonal-like separators. Such a subgraph
of the grid is the rhombus Rx, shown in the left part of Figure 1; it has height and
width x. For example, it is proved in [4] that χo(Rx) ≤ 3x/2 (see the right part
of Figure 1 for the separation method) and that χo(Gm) ≤ 18m/7 ≈ 2.5714m
as a consequence of a partition of the grid with the help of separators shown in
Figure 2. A lower bound of 4m/3 ≈ 1.333m is also proved in [4].

5. Conflict-free coloring in arrays

5.1 Arrays and meander paths. Consider the m×m grid with a conflict-free
coloring with respect to paths. The paths defined in the graph are simple, in the
sense that they are not self-intersecting, and in the standard drawing of a graph
(see Figure 3) they always go along the horizontal or the vertical direction. Thus
they look like meanders .
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Figure 1. The rhombus subgraph Rx and its separation

Figure 2. An 18m/7 upper bound

Figure 3. A conflict-free coloring of the 3× 3 grid with respect
to paths and of the 3 × 3 array with respect to meander paths

Instead of placing colors on a grid drawn like the one in the left part of Figure 3,
it is more convenient to fill the colors in a two-dimensional array, of size m in each
dimension, as in the right part of Figure 3.
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5.2 Arrays, subarrays, and thin subarrays. We are going to relax some of
the constraints of conflict-free coloring with respect to meander paths (that forces
linear use of colors with respect to m), in order to achieve logarithmic colorings
with respect to m. We relax constraints in the following two ways:

• In every subarray, there must be a unique color.
• In every thin subarray (i.e., a subarray which has length 1 in one of the

two dimensions), there must be a unique color.

We are going to extensively use the conflict-free coloring of the chain, given in
Section 4.1. If points are numbered 1 through n, from left to right on a chain,
then the i-th point’s color is denoted by C(i), i.e., C(1) = 1, C(2) = 2, C(3) = 1,
C(4) = 3, and so on. We mention some results without proof details.

Proposition 16. There is a conflict-free coloring with respect to subarrays of

the m × m array with asymptotically 2 lg m colors.

Proof: Each entry in the 2-dimensional array is encoded by a pair (i, j), where
i is the row, and j is the column of the entry. The entry (i1, i2) is colored as
C(i1, i2) = C(i1) + C(i2) − 1. �

Proposition 17. There is a conflict-free coloring with respect to thin subarrays

of the m × m array with asymptotically lg m colors.

Proof: Color (i1, i2) with C(i1, i2) = (C(i1)+C(i2)−1) mod1⌈lg(m+1)⌉, where
mod1 is the modulo operator, but returning ⌈lg(m + 1)⌉ instead of 0 (i.e., its
minimum output value is 1). �

5.3 Multidimensional arrays. One can generalize the previous results to mul-

tidimensional grids or arrays. A grid in d dimensions, in which each side has
length m, contains md vertices. A multidimensional grid can also be viewed as a
multidimensional array. One can conflict-free color with respect to subarrays, or
with respect to thin subarrays (subarrays which have length different than one in
at most one dimension). Each point (or cell) of the grid (or array) is denoted by
its d coordinates: (i1, . . . , id). Each coordinate ranges from 1 to m. We mention
some results without proof details.

Proposition 18. There is a conflict-free coloring with respect to subarrays of

the m × m × · · · × m d-dimensional array with asymptotically d lg m colors.

Proof: The point (i1, . . . , id) of the d-dimensional grid is colored as follows:

C(i1, . . . , ik) =

d
∑

k=1

C(ik) − (d − 1).

�

Proposition 19. There is a conflict-free coloring with respect to thin subarrays

of the m × m × · · · × m d-dimensional array with asymptotically lg m colors.
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Proof: The point (i1, . . . , id) of the d-dimensional grid is colored as follows:

C(i1, . . . , ik) =

(

d
∑

k=1

C(ik) − (d − 1)

)

mod1⌈lg(m + 1)⌉

where mod1 is the modulo operator, but returning ⌈lg(m + 1)⌉ instead of 0 (i.e.,
its minimum output value is 1). �

It is interesting that the above coloring with respect to thin subarrays uses
asymptotically only lg m colors, i.e., the number of colors used does not depend
on the dimension d. Another interesting fact is that the coloring is very far from
satisfying the unique maximum property. It is an open problem, whether one can
use O(log m) colors with this additional stronger constraint.

5.4 Conflict-free coloring with respect to first minor submatrices. Given
is a matrix A (i.e., a two dimensional array) with r rows and c columns. For
every row i and every column j of A, a submatrix Mij , called a first minor

submatrix , is defined by removing the elements of row i and the elements of column
c. Determinants of first minor submatrices are used in the Laplace expansion of
the determinant of a square matrix A.

We denote by χcf(Hr,c) the minimum number of colors required to conflict-
free color the r × c matrix with respect to first minor submatrices. Because of
symmetry, we have χcf(Hr,c) = χcf(Hc,r). We denote by χum(Hr,c) the minimum
number of colors required to conflict-free color the r × c matrix, with the addi-
tional constraint that the unique color is the maximum color. Again, because of
symmetry, χum(Hr,c) = χum(Hc,r).

One can conflict-free color a r × c matrix with respect to all first minor sub-
matrices by using a constant number of colors. In fact, four colors suffice, even if
we require the stronger property of unique maximum color.

Proposition 20. For all r, c, χcf(Hr,c) ≤ χum(Hr,c) ≤ 4.

Proof: Color all entries of the matrix with 1, except a 2 × 2 submatrix which
is colored as ( 3 2

2 4 ). Every first minor is conflict-free colored with the unique
maximum property, because it either (a) contains one of 3 or 4, or (b) if it contains
no 3 and 4, then it contains exactly one 2. �

The above result is tight for both χcf(Hr,c) and χum(Hr,c), except for some
small values of r, c. For example, χcf(H2,2) = χcf(H2,2) = 1, χum(H2,c) = 3 for
c ≥ 2, χcf(H3,c) = 3 for c ≥ 3. Moreover, for some small values of r, c, the two
chromatic numbers differ, e.g., χum(H2,4) = 3, whereas χcf(H2,4) = 2.

6. Open problems and future research

One could study the conflict-free coloring problem in an online setting; for
relevant results, see [7], [5]. The most important open problem in the online
setting for chains is narrowing the gap between lower and upper bound in the
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deterministic online model: Ω(log n), and O(log2 n), respectively, which are a
logarithmic factor apart.

Another open problem is finding the exact ordered and conflict-free chromatic
number of the m × m grid, improving the lower and upper bounds of [4].

Finally, it would be nice to develop a better understanding of the relationship
between conflict-free and ordered colorings. We have seen that the two respective
chromatic numbers, χcf and χo, are not always equal, but how far can they be?
There are some initial results in that direction in [6]. One particularly interesting
open problem is whether the conflict-free chromatic number with respect to paths
is monotone under taking minors, like the ordered chromatic number.
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[23] Prouhet E., Mémoire sur quelques relations entre les puissances des nombres, Comptes

Rendus de l’Académie des Sciences, Paris, Série I 33 (1851), 225.
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ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland
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