Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions

RYOTARO SATO

This paper is dedicated to the memory of Sen-Yen Shaw.

Abstract. It will be proved that if N is a bounded nilpotent operator on a Banach space X of order k+1, where $k\geq 1$ is an integer, then the γ -th order Cesàro mean $C_t^{\gamma}:=\gamma t^{-\gamma}\int_0^t (t-s)^{\gamma-1}T(s)\,ds$ and Abel mean $A_{\lambda}:=\lambda\int_0^{\infty}e^{-\lambda s}T(s)\,ds$ of the uniformly continuous semigroup $(T(t))_{t\geq 0}$ of bounded linear operators on X generated by iaI+N, where $0\neq a\in\mathbb{R}$, satisfy that (a) $\|C_t^{\gamma}\|\sim t^{k-\gamma}$ $(t\to\infty)$ for all $0<\gamma\leq k+1$; (b) $\|C_t^{\gamma}\|\sim t^{-1}$ $(t\to\infty)$ for all $\gamma\geq k+1$; (c) $\|A_{\lambda}\|\sim \lambda$ $(\lambda\downarrow 0)$. A similar result will be also proved for the uniformly continuous cosine function $(C(t))_{t>0}$ of bounded linear operators on X generated by $(iaI+N)^2$.

Keywords: Cesàro mean, Abel mean, growth order, uniformly continuous operator semi-group and cosine function

Classification: 47D06, 47D09, 47A35

1. Introduction and results

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup of bounded linear operators on a complex Banach space X. As for the γ -th order Cesàro mean C_t^{γ} of the semigroup $(T(t))_{t\geq 0}$, Chen-Sato-Shaw [1] studied the following question. Does there exist for any real $\delta>0$ an example of $(T(t))_{t\geq 0}$ such that $\sup_{t>0}\|C_t^{\gamma}\|=\infty$ for all $0<\gamma<\delta$, and $\sup_{t>0}\|C_t^{\gamma}\|<\infty$ for all $\gamma>\delta$? They proved in [1] the following result. Let $k\geq 1$ be an integer and N be a bounded nilpotent operator on X of order k+1 (i.e., $N^k\neq 0$ and $N^{k+1}=0$). Let $(T(t))_{t\geq 0}$ be the uniformly continuous semigroup of bounded linear operators on X generated by A:=iaI+N, where $0\neq a\in\mathbb{R}$, so that T(t) has the form

(1)
$$T(t) := e^{tA} = e^{iat}e^{tN} = e^{iat} \sum_{n=0}^{k} \frac{t^n N^n}{n!}.$$

Then the γ -th order Cesàro mean C_t^{γ} and Abel mean A_{λ} of $(T(t))_{t\geq 0}$ satisfy that $\|C_t^{\gamma}\| \sim t^{k-\gamma} \ (t \to \infty)$ for all integers $\gamma = 1, 2, \ldots, k+1; \ \|C_t^{\gamma}\| \sim t^{-1} \ (t \to \infty)$ for all $\gamma \geq k+1; \ \|A_{\lambda}\| \sim \lambda \ (\lambda \downarrow 0); \ \sup_{t>0} \|C_t^{\gamma}\| = \infty$ for all $0 < \gamma < k$, and $\sup_{t>0} \|C_t^{\gamma}\| < \infty$ for all $\gamma \geq k$. Here $a(t) \sim b(t) \ (t \to \infty)$ [resp. $(t \downarrow 0)$] means that both the ratios a(t)/b(t) and b(t)/a(t) are bounded in some open interval (ϵ, ∞) [resp. $(0, \epsilon)$]. Thus they gave a partial solution to the question. It remains

still open for $\delta > 1$ which is not an integer. (If $0 < \delta < 1$, then the question has a positive answer. See Theorem 4.2 in [1].)

The aim of this article is to prove that the relation $\|C_t^{\gamma}\| \sim t^{k-\gamma}$ $(t \to \infty)$ holds not only for all integers $\gamma = 1, 2, \dots, k+1$ but also for all real numbers γ with $0 < \gamma \le k + 1$. That is,

Theorem 1. Let $(T(t))_{t\geq 0}$ be the above semigroup of operators. Let C_t^{γ} and A_{λ} denote the γ -th order Cesàro and Abel means of $(T(t))_{t\geq 0}$, respectively. Then

- $\begin{array}{ll} \text{(a)} & \|C_t^{\gamma}\| \sim t^{k-\gamma} \ (t \to \infty) \ \text{for all} \ 0 < \gamma \leq k+1; \\ \text{(b)} & \|C_t^{\gamma}\| \sim t^{-1} \ (t \to \infty) \ \text{for all} \ \gamma \geq k+1; \end{array}$
- (c) $||A_{\lambda}|| \sim \lambda \ (\lambda \downarrow 0)$.

We also consider the uniformly continuous cosine function $(C(t))_{t\geq 0}$ of bounded linear operators on X generated by $B := A^2$ (cf. [4]). Thus C(t) has the form

(2)
$$C(t) = \frac{1}{2} (e^{tA} + e^{-tA}) = \sum_{n=0}^{k} \left(\frac{e^{iat}t^n + e^{-iat}(-t)^n}{2} \right) \frac{N^n}{n!}$$
$$= \sum_{0 \le n \le k}' \frac{t^n \cos at}{n!} N^n + \sum_{0 \le n \le k}'' i \frac{t^n \sin at}{n!} N^n,$$

where $\sum_{0 \le n \le k}' [\text{resp. } \sum_{0 \le n \le k}']$ means that the summation is taken for all n such that $0 \le n \le k$, and n is even [resp. odd]. In this case the γ -th order Cesàro mean C_t^{γ} and Abel mean A_{λ} of $(C(t))_{t\geq 0}$ are defined as $C_t^{\gamma}:=\gamma t^{-\gamma}\int_0^t (t-t)^{-\gamma} dt$ $(s)^{\gamma-1}C(s) ds$ and $A_{\lambda}:=\lambda \int_0^\infty e^{-\lambda s}C(s) ds$, respectively. It was proved in [1] that $\sup_{t>0} \|C_t^{\gamma}\| = \infty$ for all $0 < \gamma < k$, and $\sup_{t>0} \|C_t^{\gamma}\| < \infty$ for all $\gamma \geq k$. The next theorem improves the result considerably.

Theorem 2. Let $(C(t))_{t\geq 0}$ be the above cosine function of operators. Let C_t^{γ} and A_{λ} denote the γ -th order Cesàro and Abel means of $(C(t))_{t>0}$, respectively. Then

- (a) $\|C_t^{\gamma}\| = O(t^{k-\gamma})$ $(t \to \infty)$, $\|C_t^{\gamma}\| \neq o(t^{k-\gamma})$ $(t \to \infty)$, and $\|C_t^{\gamma}\| \not\sim$ $t^{k-\gamma}(t\to\infty)$ for all $0<\gamma< k+2$;
- (b) $\|C_t^{\gamma}\| \sim t^{-2} (t \to \infty)$ for all $\gamma \ge k + 2$;
- (c) $||A_{\lambda}|| \sim \lambda^2 \ (\lambda \downarrow 0)$.

For related topics the author would like to refer the reader to [2] and [3] (see also [5]).

Lemmas

For a complex-valued continuous function u on $[0, \infty)$, we let

$$\mathfrak{c}_t^{\gamma}(u) := \gamma t^{-\gamma} \int_0^t (t-s)^{\gamma-1} u(s) \, ds \qquad (\gamma, \, t > 0).$$

Let u_n be the function defined by $u_n(t) := t^n e^{it}$ for $t \ge 0$, where $n \ge 0$ is an integer. Then we have

$$\mathfrak{c}_t^{\gamma}(u_n) = \frac{\gamma}{t^{\gamma}} \int_0^t (t-s)^{\gamma-1} s^n e^{is} \, ds = \frac{\gamma}{t^{\gamma}} e^{it} \int_0^t s^{\gamma-1} (t-s)^n e^{-is} \, ds,$$

so that, by letting

(3)
$$U_n(\gamma, t) := \int_0^t s^{\gamma - 1} (t - s)^n e^{-is} ds \qquad (\gamma, t > 0),$$

we have

(4)
$$\mathbf{c}_{t}^{\gamma}(u_{n}) = \frac{\gamma}{t\gamma} e^{it} U_{n}(\gamma, t) \qquad (\gamma, t > 0).$$

Integration by parts gives

(5)
$$U_0(\gamma, t) = it^{\gamma - 1}e^{-it} - i(\gamma - 1)U_0(\gamma - 1, t) \qquad (\gamma > 1, t > 0).$$

Lemma 1. Let $n \geq 0$ be an integer. Then $U_n(\gamma,t) \sim t^n$ $(t \to \infty)$ for all $0 < \gamma < 1$.

PROOF: (i) First we consider the case n=0. Suppose $0<\gamma<1$. Then, since the function $s\mapsto s^{\gamma-1}$ is decreasing on $(0,\infty)$ and since

$$U_0(\gamma, t) = \int_0^t s^{\gamma - 1} e^{-is} \, ds = \int_0^t s^{\gamma - 1} \cos s \, ds - i \int_0^t s^{\gamma - 1} \sin s \, ds,$$

it follows easily that

$$0 < \int_0^{2\pi} s^{\gamma - 1} \sin s \, ds \le \inf_{t > 2\pi} \int_0^t s^{\gamma - 1} \sin s \, ds \le \sup_{t > 2\pi} |U_0(\gamma, t)|$$
$$\le \int_0^{\pi/2} s^{\gamma - 1} \cos s \, ds + \int_0^{\pi} s^{\gamma - 1} \sin s \, ds \le 2 \int_0^{\pi} s^{\gamma - 1} \, ds = \frac{2\pi^{\gamma}}{\gamma}.$$

Hence $U_0(\gamma,t) \sim t^0$ $(t \to \infty)$. To use an induction argument we need to consider the case $\gamma \geq 1$. First we have $U_0(1,t) = i(e^{-it}-1)$. Suppose $1 < \gamma \leq 2$. Then, since $|U_0(\gamma-1,t)| \leq 2\pi^{\gamma-1}/(\gamma-1)$ for all $t > \pi$, it follows from (5) that $U_0(\gamma,t) = it^{\gamma-1}e^{-it}(1+o(1))$ $(t \to \infty)$. We then apply an induction argument to $\gamma > 2$. Suppose $U_0(\gamma,t) = it^{\gamma-1}e^{-it}(1+o(1))$ $(t \to \infty)$ for all γ with $n < \gamma \leq n+1$, where $n \geq 1$ is an integer, and suppose $n+1 < \beta \leq n+2$. Then, since $U_0(\beta,t) = it^{\beta-1}e^{-it} - i(\beta-1)U_0(\beta-1,t)$ by (5), it follows that $U_0(\beta,t) = it^{\beta-1}e^{-it}(1+o(1))$ $(t \to \infty)$. Consequently, $U_0(\gamma,t) = it^{\gamma-1}e^{-it}(1+o(1))$ $(t \to \infty)$ for all $\gamma > 1$, which will be used below.

(ii) We consider the case $n \geq 1$. Suppose the lemma holds for n-1. We note that

$$(6) U_{n}(\gamma,t) = \int_{0}^{t} s^{\gamma-1}(t-s)^{n} e^{-is} ds$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} t^{k} \int_{0}^{t} s^{\gamma+n-k-1} e^{-is} ds = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} t^{k} U_{0}(\gamma+n-k,t)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^{k} \left(it^{\gamma+n-k-1} e^{-it} - i(\gamma+n-k-1) U_{0}(\gamma+n-k-1,t) \right)$$

$$+ \binom{n}{n} (-1)^{0} t^{n} U_{0}(\gamma,t) (by (5))$$

$$= -it^{\gamma+n-1} e^{-it} - i \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^{k} (\gamma-1+n-k) U_{0}(\gamma-1+n-k,t)$$

$$+ \binom{n}{n} (-1)^{0} t^{n} U_{0}(\gamma,t),$$

where the last equality comes from the fact that $0 = (1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k$. Suppose $0 < \gamma < 1$. If $0 \le k \le n-2$, then, since $\gamma - 1 + n - k > 1$, the result obtained in (i) shows that

$$t^k U_0(\gamma - 1 + n - k, t) \sim t^{\gamma + n - 2} = o(t^{n - 1}) \ (t \to \infty)$$

Similarly, if k = n - 1, then

$$t^{n-1}U_0(\gamma - 1 + n - (n-1), t) = t^{n-1}U_0(\gamma, t) \sim t^{n-1} (t \to \infty).$$

Thus, from (6) and the fact that $t^n U_0(\gamma, t) \sim t^n(t \to \infty)$, it follows that $U_n(\gamma, t) \sim t^n$ $(t \to \infty)$. This completes the proof.

Next, let v_n and w_n be the functions on $[0, \infty)$ defined by $v_n(t) := t^n \cos t$ and $w_n(t) := t^n \sin t$, where $n \ge 0$ is an integer. Then we have

$$c_t^{\gamma}(v_n) = \frac{\gamma}{t^{\gamma}} \int_0^t (t-s)^{\gamma-1} s^n \cos s \, ds = \frac{\gamma}{t^{\gamma}} \int_0^t s^{\gamma-1} (t-s)^n \cos(t-s) \, ds$$
$$= \frac{\gamma}{t^{\gamma}} \left(\cos t \int_0^t s^{\gamma-1} (t-s)^n \cos s \, ds + \sin t \int_0^t s^{\gamma-1} (t-s)^n \sin s \, ds\right)$$

so that, letting

(7)
$$F_n(\gamma, t) := \int_0^t s^{\gamma - 1} (t - s)^n \cos s \, ds,$$

(8)
$$G_n(\gamma, t) := \int_0^t s^{\gamma - 1} (t - s)^n \sin s \, ds,$$

(9)
$$V_n(\gamma, t) := F_n(\gamma, t) \cos t + G_n(\gamma, t) \sin t,$$

(10)
$$W_n(\gamma, t) := F_n(\gamma, t) \sin t - G_n(\gamma, t) \cos t,$$

we have

(11)
$$\mathbf{c}_{t}^{\gamma}(v_{n}) = \frac{\gamma}{t^{\gamma}} V_{n}(\gamma, t) \qquad (\gamma, t > 0);$$

and similarly

(12)
$$\mathbf{c}_t^{\gamma}(w_n) = \frac{\gamma}{t^{\gamma}} \int_0^t (t-s)^{\gamma-1} s^n \sin s \, ds = \frac{\gamma}{t^{\gamma}} W_n(\gamma, t) \qquad (\gamma, \ t > 0).$$

Lemma 2. $F_0(\gamma, t)$ and $G_0(\gamma, t)$ satisfy that

(13)
$$\begin{cases} \lim_{t \to \infty} F_0(\gamma, t) = \int_0^\infty s^{\gamma - 1} \cos s \, ds > 0, \\ 0 < \inf_{t > \pi} G_0(\gamma, t) \le \sup_{t > \pi} G_0(\gamma, t) < \infty \end{cases}$$
 for all $0 < \gamma < 1$;

(14)
$$F_0(1,t) = \sin t, \quad G_0(1,t) = 1 - \cos t;$$

(15)
$$\begin{cases} F_0(\gamma, t) = t^{\gamma - 1} (\sin t + o(1)) \ (t \to \infty), \\ G_0(\gamma, t) = t^{\gamma - 1} (-\cos t + o(1)) \ (t \to \infty) \end{cases}$$
 for all $\gamma > 1$.

PROOF: Suppose $0 < \gamma < 1$. Then, since the function $s \mapsto s^{\gamma - 1}$ is decreasing and convex on $(0, \infty)$, we have as in the proof of Lemma 1

$$\lim_{t \to \infty} F_0(\gamma, t) = \lim_{n \to \infty} \sum_{i=0}^n \int_{2j\pi}^{2(j+1)\pi} s^{\gamma - 1} \cos s \, ds \ge \int_0^{2\pi} s^{\gamma - 1} \cos s \, ds > 0.$$

Similarly

$$\int_0^{\pi} s^{\gamma - 1} \sin s \, ds \ge G_0(\gamma, t) \ge \int_0^{2\pi} s^{\gamma - 1} \sin s \, ds > 0 \qquad (t > \pi).$$

The proof of (14) is direct.

Next suppose $\gamma > 1$. Then integration by parts gives

(16)
$$F_0(\gamma, t) = \int_0^t s^{\gamma - 1} \cos s \, ds = t^{\gamma - 1} \sin t - (\gamma - 1) \int_0^t s^{\gamma - 2} \sin s \, ds$$
$$= t^{\gamma - 1} \sin t - (\gamma - 1) G_0(\gamma - 1, t);$$

and similarly

(17)
$$G_0(\gamma, t) = \int_0^t s^{\gamma - 1} \sin s \, ds = -t^{\gamma - 1} \cos t + (\gamma - 1) F_0(\gamma - 1, t).$$

Thus, if $1 < \gamma \le 2$, then, by the results for $0 < \gamma - 1 \le 1$, we see that $F_0(\gamma, t) = t^{\gamma-1}(\sin t + o(1))$ $(t \to \infty)$, and $G_0(\gamma, t) = t^{\gamma-1}(-\cos t + o(1))$ $(t \to \infty)$. We can repeat this process to prove (15) for all $\gamma > 1$.

Lemma 3. Let $n \geq 1$. Then $F_n(\gamma, t)$ and $G_n(\gamma, t)$ satisfy that

(18)
$$\begin{cases} F_n(\gamma, t) = t^n(F_0(\gamma, t) + o(1)) \ (t \to \infty), \\ G_n(\gamma, t) = t^n(G_0(\gamma, t) + o(1)) \ (t \to \infty) \end{cases}$$
 for all $0 < \gamma < 1$;

(19)
$$\begin{cases} F_n(1,t) = O(t^{n-1}) \ (t \to \infty), \\ G_n(1,t) = t^n(1+o(1)) \ (t \to \infty); \end{cases}$$

(20)
$$\begin{cases} F_n(\gamma, t) = -(\gamma - 1)G_n(\gamma - 1, t) + nG_{n-1}(\gamma, t), \\ G_n(\gamma, t) = (\gamma - 1)F_n(\gamma - 1, t) - nF_{n-1}(\gamma, t) \end{cases}$$
 for all $\gamma > 1$.

PROOF: It follows from (7) that

21)
$$F_{n}(\gamma,t) = \int_{0}^{t} s^{\gamma-1}(t-s)^{n} \cos s \, ds$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} t^{k} \int_{0}^{t} s^{\gamma+n-k-1} \cos s \, ds$$

$$= \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} t^{k} F_{0}(\gamma+n-k,t)$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^{k} \left(t^{\gamma+n-k-1} \sin t - (\gamma+n-k-1)G_{0}(\gamma+n-k-1,t) \right) + t^{n} F_{0}(\gamma,t) \quad \text{(by (16))}$$

$$= -t^{\gamma+n-1} \sin t - \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^{k} (\gamma-1+n-k)G_{0}(\gamma-1+n-k,t) + t^{n} F_{0}(\gamma,t).$$

Similarly

$$G_n(\gamma, t) = \int_0^t s^{\gamma - 1} (t - s)^n \sin s \, ds$$

$$(22) \qquad = t^{\gamma + n - 1} \cos t + \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^k (\gamma - 1 + n - k) F_0(\gamma - 1 + n - k, t) + t^n G_0(\gamma, t).$$

First suppose $0 < \gamma < 1$. Then by Lemma 2

$$t^{k} F_{0}(\gamma - 1 + n - k, t) = \begin{cases} O(t^{\gamma + n - 2}) & (t \to \infty) & \text{for } 0 \le k \le n - 2, \\ O(t^{n - 1}) & (t \to \infty) & \text{for } k = n - 1; \end{cases}$$

and

$$t^{k}G_{0}(\gamma - 1 + n - k, t) = \begin{cases} O(t^{\gamma + n - 2}) & (t \to \infty) & \text{for } 0 \le k \le n - 2, \\ O(t^{n - 1}) & (t \to \infty) & \text{for } k = n - 1. \end{cases}$$

Thus (18) follows from (21) and (22).

Next suppose $\gamma = 1$. Then by (21) and (14)

$$F_n(1,t) = -t^n \sin t - \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^k (n-k) G_0(n-k,t) + t^n F_0(1,t)$$
$$= -\sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^k (n-k) G_0(n-k,t);$$

and similarly by (22) and (14)

$$G_n(1,t) = t^n + \sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^k (n-k) F_0(n-k,t).$$

Here it follows from (14) and (15) that

$$\begin{cases} t^k F_0(n-k,t) = O(t^{n-1}) \ (t \to \infty) \\ t^k G_0(n-k,t) = O(t^{n-1}) \ (t \to \infty) \end{cases}$$
 for all $0 \le k \le n-1$,

whence (19) follows.

Finally suppose $\gamma > 1$. Then by (21) and (16)

$$F_{n}(\gamma,t) = -t^{\gamma+n-1}\sin t - (\gamma-1)\sum_{k=0}^{n-1} \binom{n}{k} (-1)^{n-k} t^{k} G_{0}(\gamma-1+n-k,t)$$

$$+n\sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^{n-1-k} G_{0}(\gamma-1+n-k,t) + t^{n} F_{0}(\gamma,t)$$

$$= -(\gamma-1)\sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} t^{k} G_{0}(\gamma-1+n-k,t)$$

$$+n\sum_{k=0}^{n-1} \binom{n-1}{k} (-1)^{n-1-k} t^{k} G_{0}(\gamma+n-1-k,t)$$

$$= -(\gamma-1)G_{n}(\gamma-1,t) + nG_{n-1}(\gamma,t);$$

and similarly by (22) and (17)

$$G_n(\gamma, t) = (\gamma - 1)F_n(\gamma - 1, t) - nF_{n-1}(\gamma, t).$$

This proves (20), and hence the proof is complete.

Lemma 4. $V_0(\gamma,t)$ and $W_0(\gamma,t)$ satisfy that

(23)
$$\begin{cases} V_{0}(\gamma,t) = O(t^{0}) \ (t \to \infty), \ V_{0}(\gamma,t) \neq o(t^{0}) \ (t \to \infty), \\ V_{0}(\gamma,t) \not\sim t^{0} \ (t \to \infty), \ and \\ W_{0}(\gamma,t) = O(t^{0}) \ (t \to \infty), \ W_{0}(\gamma,t) \neq o(t^{0}) \ (t \to \infty), \\ W_{0}(\gamma,t) \not\sim t^{0} \ (t \to \infty) \end{cases}$$

for all $0 < \gamma < 1$:

(24)
$$V_0(1,t) = \sin t, \quad W_0(1,t) = 1 - \cos t;$$

(25)
$$\begin{cases} V_{0}(\gamma, t) = O(t^{0}) \ (t \to \infty), \ V_{0}(\gamma, t) \neq o(t^{0}) \ (t \to \infty), \\ V_{0}(\gamma, t) \not\sim t^{0} \ (t \to \infty), \ and \\ W_{0}(\gamma, t) = t^{\gamma - 1} (1 + o(1)) \ (t \to \infty) \end{cases}$$

for all $1 < \gamma < 2$.

PROOF: (23) and (24) follow directly from Lemma 2 together with the definitions of $V_0(\gamma, t)$ and $W_0(\gamma, t)$ (cf. (9), (10)). Suppose $\gamma > 1$. Then by (16) and (17)

$$V_{0}(\gamma,t) = F_{0}(\gamma,t)\cos t + G_{0}(\gamma,t)\sin t$$

$$= (t^{\gamma-1}\sin t - (\gamma-1)G_{0}(\gamma-1,t))\cos t$$

$$+ (-t^{\gamma-1}\cos t + (\gamma-1)F_{0}(\gamma-1,t))\sin t$$

$$= -(\gamma-1)G_{0}(\gamma-1,t)\cos t + (\gamma-1)F_{0}(\gamma-1,t)\sin t$$

$$= (\gamma-1)W_{0}(\gamma-1,t);$$

and similarly

(27)
$$W_0(\gamma, t) = t^{\gamma - 1} - (\gamma - 1)V_0(\gamma - 1, t).$$

Thus (25) follows from (23). This completes the proof.

Lemma 5. Let $n \geq 1$. Then $V_n(\gamma, t)$ and $W_n(\gamma, t)$ satisfy that

(28)
$$\begin{cases} V_n(\gamma, t) = t^n(V_0(\gamma, t) + o(1)) \ (t \to \infty), \\ W_n(\gamma, t) = t^n(W_0(\gamma, t) + o(1)) \ (t \to \infty) \end{cases}$$
 for all $0 < \gamma < 1$;

(29)
$$\begin{cases} V_n(1,t) = t^n(\sin t + o(1)) \ (t \to \infty), \\ W_n(1,t) = -t^n(\cos t + o(1)) \ (t \to \infty); \end{cases}$$

(30)
$$\begin{cases} V_n(\gamma, t) = (\gamma - 1)W_n(\gamma - 1, t) - nW_{n-1}(\gamma, t), \\ W_n(\gamma, t) = -(\gamma - 1)V_n(\gamma - 1, t) + nV_{n-1}(\gamma, t) \end{cases}$$
 for all $\gamma > 1$.

PROOF: Suppose $0 < \gamma < 1$. Then

$$V_{n}(\gamma, t) = F_{n}(\gamma, t) \cos t + G_{n}(\gamma, t) \sin t$$

$$= t^{n}(F_{0}(\gamma, t) + o(1)) \cos t + t^{n}(G_{0}(\gamma, t) + o(1)) \sin t \qquad \text{(by (18))}$$

$$= t^{n}(F_{0}(\gamma, t) \cos t + G_{0}(\gamma, t) \sin t + o(1))$$

$$= t^{n}(V_{0}(\gamma, t) + o(1)) (t \to \infty);$$

and similarly $W_n(\gamma,t) = t^n(W_0(\gamma,t) + o(1))$ $(t \to \infty)$. (29) follows easily from (9), (10) and (19). Finally suppose $\gamma > 1$. Then by (20)

$$V_{n}(\gamma,t) = F_{n}(\gamma,t)\cos t + G_{n}(\gamma,t)\sin t$$

$$= \left(-(\gamma-1)G_{n}(\gamma-1,t) + nG_{n-1}(\gamma,t)\right)\cos t$$

$$+ \left((\gamma-1)F_{n}(\gamma-1,t) - nF_{n-1}(\gamma,t)\right)\sin t$$

$$= (\gamma-1)\left(F_{n}(\gamma-1,t)\sin t - G_{n}(\gamma-1,t)\cos t\right)$$

$$-n\left(F_{n-1}(\gamma,t)\sin t - G_{n-1}(\gamma,t)\cos t\right)$$

$$= (\gamma-1)W_{n}(\gamma-1,t) - nW_{n-1}(\gamma,t),$$

so that the first half of (30) follows. The second half follows similarly.

As an immediate consequence of Lemmas 4 and 5 (see especially (30)) we have the following

Lemma 6. Let $n \geq 1$. Then $V_n(\gamma, t)$ and $W_n(\gamma, t)$ satisfy that

(31)
$$\begin{cases} V_n(\gamma,t) = O(t^n) \ (t \to \infty), \ V_n(\gamma,t) \neq o(t^n) \ (t \to \infty), \\ V_n(\gamma,t) \not\sim t^n \ (t \to \infty), \ and \\ W_n(\gamma,t) = O(t^n) \ (t \to \infty), \ W_n(\gamma,t) \neq o(t^n) \ (t \to \infty), \\ W_n(\gamma,t) \not\sim t^n \ (t \to \infty) \end{cases}$$

for all $0 < \gamma < 2$.

3. Proofs of the theorems

PROOF OF THEOREM 1: We may assume without loss of generality that a=1. By (1), (4) and Lemma 1, if $0 \le \gamma < 1$, then $\|C_t^\gamma\| \sim t^{k-\gamma}$ $(t \to \infty)$, where $C_t^0 := T(t)$. Further, since $0 \in \rho(A)$, we may apply [1, Theorem 3.3] to infer that $\|C_t^{\gamma+1}\| \sim \|C_t^\gamma - I\|t^{-1}$ $(t \to \infty)$. By this and an induction argument, if $0 \le \gamma < k+1$, then $\|C_t^\gamma\| \sim t^{k-\gamma}$ $(t \to \infty)$. The fact that $\|C_t^{k+1}\| \sim t^{-1}$ $(t \to \infty)$

has been proved in [1, Theorem 3.4]. Next suppose $k+1 < \gamma \le k+2$. Then, since $\lim_{t\to\infty} \|C_t^{\gamma-1}\| = 0$, the equation

(32)
$$AC_t^{\gamma} = \gamma t^{-1} (C_t^{\gamma - 1} - I)$$

(cf. [3]) yields that

(33)
$$\lim_{t \to \infty} \frac{t}{\gamma} C_t^{\gamma} = \lim_{t \to \infty} A^{-1} (C_t^{\gamma - 1} - I) = -A^{-1}.$$

This argument can be repeated, and hence (33) holds for all $\gamma > k + 1$. Finally

$$\lim_{\lambda \downarrow 0} \lambda^{-1} A_{\lambda} = \lim_{\lambda \downarrow 0} \int_0^{\infty} e^{-\lambda t} T(t) dt = \lim_{\lambda \downarrow 0} (\lambda I - A)^{-1} = -A^{-1}.$$

Hence in particular $||A_{\lambda}|| \sim \lambda \ (\lambda \downarrow 0)$, and $||C_t^{\gamma}|| \sim t^{-1} \ (t \to \infty)$ for all $\gamma > k+1$. This completes the proof.

PROOF OF THEOREM 2: This is similar to the above proof. We may assume that a=1. By (2), (11), (12), and Lemmas 4 and 6, if $0 \le \gamma < 2$, then (a) in Theorem 2 holds. We then use the equation

(34)
$$BC_t^{\gamma} = \frac{\gamma(\gamma - 1)}{t^2} (C_t^{\gamma - 2} - I) \qquad (\gamma \ge 2, \ t > 0),$$

where $C_t^0 := C(t)$ (cf. [3]). Since $0 \in \rho(B) = \rho(A^2)$, it follows that $\|C_t^{\gamma+2}\| \sim \|C_t^{\gamma} - I\|t^{-2}$ ($t \to \infty$), and so if $0 \le \gamma < k+2$, then (a) in Theorem 2 holds. Next, let $x \in X$ be such that $\|x\| = 1$ and Nx = 0. Then, since $\lim_{t \to \infty} C_t^k x = \lim_{t \to \infty} (k/t^k) \left(\int_0^t (t-s)^{k-1} \cos s \, ds \right) x = 0$, it follows that $\lim \inf_{t \to \infty} \|C_t^k - I\| \ge \lim \inf_{t \to \infty} \|C_t^k x - x\| = \|x\| = 1$, whence $\|C_t^{k+2}\| \sim t^{-2}$ ($t \to \infty$). Now suppose $k+2 < \gamma \le k+4$. Then $\lim_{t \to \infty} \|C_t^{\gamma-2}\| = 0$, and so

(35)
$$\lim_{t \to \infty} \frac{t^2}{\gamma(\gamma - 1)} C_t^{\gamma} = \lim_{t \to \infty} B^{-1} (C_t^{\gamma - 2} - I) = -B^{-1}.$$

This argument can be repeated, and hence (35) holds for all $\gamma > k + 2$. Finally

$$\lim_{\lambda \downarrow 0} \lambda^{-2} A_{\lambda} = \lim_{t \to \infty} \lambda^{-1} \int_0^{\infty} e^{-\lambda t} C(t) dt = \lim_{\lambda \downarrow 0} (\lambda^2 I - B)^{-1} = -B^{-1}$$

(cf. [4]). Hence in particular $||A_{\lambda}|| \sim \lambda^2$ ($\lambda \downarrow 0$), and $||C_t^{\gamma}|| \sim t^{-2}$ ($t \to \infty$) for all $\gamma > k + 2$. This completes the proof.

Remark. $\lim_{t\to\infty} (t/(k+1))C_t^{k+1}$ does not exist in Theorem 1. To see this we write $AC_t^k = (k/t)(C_t^{k-1} - I) =: (k/t)C_t^{k-1} + D_t^1$, where $\lim_{t\to\infty} \|D_t^1\| = 0$, and finally $A^kC_t^k =: (k!/t^k)T(t) + D_t^k$, where $\lim_{t\to\infty} \|D_t^k\| = 0$. Since

$$\frac{k!}{t^k} T(t) = k! e^{iat} \sum_{n=0}^k \frac{t^{n-k} N^n}{n!} =: e^{iat} (N^k + E_t^k), \text{ where } \lim_{t \to \infty} ||E_t^k|| = 0,$$

it follows that if $N^k x \neq 0$, then $\lim_{t\to\infty} C_t^k x$ does not exist. Hence $\lim_{t\to\infty} (t/(k+1))C_t^{k+1}$ does not exist by (32). Similarly $\lim_{t\to\infty} (t^2/(k+2)(k+1))C_t^{k+2}$ does not exist in Theorem 2.

References

- [1] Chen J.-C., Sato R., Shaw S.-Y., Growth orders of Cesàro and Abel means of functions in Banach spaces, Taiwanese J. Math., to appear.
- [2] Li Y.-C., Sato R., Shaw S.-Y., Boundedness and growth orders of means of discrete and continuous semigroups of operators, Studia Math. 187 (2008), 1–35.
- [3] Sato R., On ergodic averages and the range of a closed operator, Taiwanese J. Math. 10 (2006), 1193-1223.
- [4] Sova M., Cosine operator functions, Rozprawy Math. 49 (1966), 1–47.
- [5] Tomilov Y., Zemànek J., A new way of constructing examples in operator ergodic theory, Math. Proc. Cambridge Philos. Soc. 137 (2004), 209–225.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY, OKAYAMA, 700-8530 JAPAN Current address:

19-18, HIGASHI-HONGO 2-CHOME, MIDORI-KU, YOKOHAMA, 226-0002 JAPAN *E-mail:* satoryot@math.okayama-u.ac.jp

(Received August 21, 2009, revised March 18, 2010)