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Growth orders of Cesaro and Abel means of uniformly

continuous operator semi-groups and cosine functions

RYOTARO SATO

This paper is dedicated to the memory of Sen-Yen Shaw.

Abstract. It will be proved that if N is a bounded nilpotent operator on a Banach
space X of order k + 1, where k > 1 is an integer, then the «-th order Cesaro
mean C} := ~yt=7 fg(t—s)“fflT(s) ds and Abel mean Ay := X [ e=**T(s) ds of
the uniformly continuous semigroup (T'(t));>¢ of bounded linear operators on X
generated by ial+ N, where 0 # a € R, satisfy that (a) ||C} || ~ t*~7 (t — oo) for
all0 < v < k+1; (b) |[CF || ~t=1 (t — o0) for all v > k+1; (c) |[Ax]l ~ A (A 0).
A similar result will be also proved for the uniformly continuous cosine function
(C(t))t>0 of bounded linear operators on X generated by (ial + N)2.

Keywords: Cesaro mean, Abel mean, growth order, uniformly continuous oper-
ator semi-group and cosine function

Classification: 47D06, 47D09, 47A35

1. Introduction and results

Let (T'(t))1>0 be a Cy-semigroup of bounded linear operators on a complex Ba-
nach space X. As for the y-th order Cesaro mean C}' of the semigroup (7'(t)):>0,
Chen-Sato-Shaw [1] studied the following question. Does there exist for any real
d > 0 an example of (T'(t));>0 such that sup,. [|C}]| = oo for all 0 < v < §, and
Sup,s [|CY || < oo for all ¥ > §7 They proved in [1] the following result. Let k > 1
be an integer and N be a bounded nilpotent operator on X of order k + 1 (i.e.,
NF £ 0 and N1 =0). Let (T'(t));>0 be the uniformly continuous semigroup of
bounded linear operators on X generated by A :=ial + N, where 0 # a € R, so
that T'(t) has the form

k

. - tPNT
. tA _ _dat tN __ _iat
(1) T(t) :=e =% =e E Tt

n=0

Then the y-th order Cesaro mean C}' and Abel mean Ay of (T'(t)):>¢ satisfy that
|CY|| ~ th=7 (t — oo) for all integers v = 1,2,..., k+1; |C]|| ~t~! (t — o0)
for all v > k+1; [|Ax]| ~ A (A | 0); sup,q |C{|| = oo for all 0 < v < k, and
Sup,s [|CY ]| < oo for all v > k. Here a(t) ~ b(t) (t — oo) [resp. (¢ | 0)] means
that both the ratios a(t)/b(t) and b(t)/a(t) are bounded in some open interval
(e,00) [resp. (0,€)]. Thus they gave a partial solution to the question. It remains



442

R. Sato

still open for § > 1 which is not an integer. (If 0 < § < 1, then the question has
a positive answer. See Theorem 4.2 in [1].)

The aim of this article is to prove that the relation ||C} || ~ t*~7 (¢ — oo) holds
not only for all integers v = 1,2,..., k+ 1 but also for all real numbers v with
0 <y <k+1. That is,

Theorem 1. Let (T(t));>0 be the above semigroup of operators. Let C} and A,
denote the ~y-th order Cesaro and Abel means of (T'(t)):>0, respectively. Then

(@) ||CY|| ~t*=7 (t — o0) forall 0 <y < k+1;
(b) [|C7|| ~t~1 (t — o0) for all v > k + 1;
(©) [[Axl[ ~ A (A1 0).

We also consider the uniformly continuous cosine function (C(t))¢>o of bounded
linear operators on X generated by B := A? (cf. [4]). Thus C(t) has the form

k . .
B 1 A Ay ezattn + e*“lt(ft)n Nn
@ t t = t t
r t"cosat . n  thsinat .,
- Z nl NT+ Z L N7,
0<n<k 0<n<k

where Zlogngk [resp. Z/O/Sngk] means that the summation is taken for all n
such that 0 < n < k, and n is even [resp. odd]. In this case the ~-th order
Cesaro mean C, and Abel mean Ay of (C(t));>0 are defined as C} := vt~ fot (t—
s)771C(s)ds and Ay = )\fooo e~ (s) ds, respectively. It was proved in [1] that
Supsq [|CY ]| = oo for all 0 < v < k, and sup,~ ||C/|| < oo for all ¥ > k. The
next theorem improves the result considerably.

Theorem 2. Let (C(t))t>0 be the above cosine function of operators. Let C}
and Ay denote the y-th order Cesaro and Abel means of (C(t))i>0, respectively.
Then

(@) G 1l = O() (t — o0, G7]l # oft™) (t — o0), and |7 #
th=7 (t — o0) for all 0 <~y <k +2;

(b) |IC|| ~t72 (t — o0) for all v > k + 2;

(©) 43l ~ X2 (A L 0).

For related topics the author would like to refer the reader to [2] and [3] (see
also [5]).

2. Lemmas

For a complex-valued continuous function u on [0, c0), we let

¢/ (u) = fyt”/o (t — s)" tu(s) ds (v, t > 0).
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Let u, be the function defined by u,(t) := t"e® for t > 0, where n > 0 is an
integer. Then we have

v [ : N |
¢ (up) == [ (t—3s)""ts"eds=—e" | TNt —s)"e " ds,
7 Jo v 0

so that, by letting

t

(3) U t)i= [ 73— se s (3t 0)
0

we have

(4) G lun) = 2 Un(,t) (3, ¢ > 0).

Integration by parts gives
(6)  Uslrt) =it e —i(y—)Usly—1,6)  (y>1,¢>0).

Lemma 1. Let n > 0 be an integer. Then Up(y,t) ~ t™ (t — oo) for all
0<y <1

ProoF: (i) First we consider the case n = 0. Suppose 0 < 7 < 1. Then, since
the function s — s7~! is decreasing on (0, 00) and since

t t t
Uo(v,t) = / s leTi ds = / s7 !t cossds — z/ s7 sinsds,
0 0 0

it follows easily that

27 t
0< / s7 tsinsds < inf / s7 tsinsds < sup |Ug(7,t)]
0 t>2m 0 t>2m

/2 ™ T 2y
§/ s”ilcossder/ s”ilsinsds§2/ 7 lds = 2.
0 0 0 v
Hence Up(7y,t) ~ t° (t — o). To use an induction argument we need to consider
the case v > 1. First we have Up(1,t) = i(e”® — 1). Suppose 1 < v < 2.
Then, since |Up(y — 1,t)] < 27771/(y — 1) for all ¢ > T, it follows from (5) that
Uo(v,t) = it te™ (1 + o(1)) (t — o00). We then apply an induction argument
to v > 2. Suppose Up(7,t) = it?"te (1 + o(1)) (t — oo) for all v with n <
v < n+1, where n > 1 is an integer, and suppose n +1 < # < n + 2. Then,
since Up(B3,t) = it’~te™" —i(B — 1)Uo(B — 1,t) by (5), it follows that Uy(83,t) =
itP~le=®(140(1)) (t — 0o). Consequently, Uy(v,t) = it""te~*(14+0(1)) (t — o)

for all v > 1, which will be used below.
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(ii) We consider the case n > 1. Suppose the lemma holds for n — 1. We note
that

t
©)  Ualnt) = [ 5= se s
0
n ¢ : - n
<k> (71)717]9 tk/ gytn—k=1,—is 7o _ Z (k) (71)nfktkU0(,y +n— k,t)
0

I
M3

h=0 k=0
= nol (Z) (—1)F gk (itv+n—k—1e—it —i(y+n—k—1DU(y+n—k— 1,t))

k=0

i (Z)<—1>Ot”Uo<%t> (by (5))

I
-

n

= —it7tlem <Z> ()" Fth(y =14+ n—k)Us(y — 1 +n — k,t)
0

+ <Z> (—1)%"Uo (v, 1),

el
Il

where the last equality comes from the fact that 0 = (1 —1)" =37 () (=1)".
Suppose 0 < v < 1. If 0 < k <n — 2, then, since v — 1 +n — k > 1, the result
obtained in (i) shows that

Uy =14+ n —k,t) ~ T2 = o(t"™1) (t — 0).
Similarly, if kK =n — 1, then
tnilUO(’y —14n-— (n - ]‘)ﬂt) = tnilU()(’Yat) ~ ! (t - OO)

Thus, from (6) and the fact that t"Up(y,t) ~ t" (t — 00), it follows that Uy, (v, t) ~
t" (t — 00). This completes the proof. O

Next, let v, and w, be the functions on [0, c0) defined by vy, (t) := ™ cost and
wp (t) := t"sint, where n > 0 is an integer. Then we have

t

t t
() = / (t—s)""'s"cossds = % /0 sT7Ht — s)™ cos(t — s) ds

" t
= tl"Y (cost/ s77L(t — 5)" cos s ds + sint/ s7Ht — s)"sins ds)
0 0

so that, letting

t

(7) F.(v,t) = s77H(t — )™ cos s ds,

/
(8) Gn(v,t) = /57 Lt — s)"sin s ds,
0
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(9) Va(v,t) = Fu(y,t)cost + Gn(7,1)sint,
(10) Wn(v,t) = Fu(v,t)sint — Gp(7,t) cost,
we have

(11) ) = ZValrt) (3 t> 0%

and similarly

t
(12) ¢/ (wy) = l/ (t—s)""ts"sinsds = an('y,t) (v, t>0).
o Jy £

Lemma 2. Fy(v,t) and Go(v,t) satisfy that

. . o0 —1
tlirgo Fo(v,t) = [, 87 ' cossds >0,

(13) 0< tn>1f Go(y,t) < sup Go(,£) < 00 forall 0 <y <1;
4 t>m
(14) Fo(l,t) =sint, Go(l,t) =1 — cost;
— 7 1(gi
(15) Folt) = 1(Smt o(L)) {t = o) for all v > 1.
Go(7,t) = t7H(—cost + o(1)) (t — o)

PROOF: Suppose 0 < v < 1. Then, since the function s — 57! is decreasing and
convex on (0, 00), we have as in the proof of Lemma 1

n

2(j+1)m 27
lim Fy(y,t) = lim / 7 tcossds > / s7 L cossds > 0.
t—oo n—oo 4 2 0
j=0 27

Similarly
T 2
/ s7  sinsds > Go(y,t) > / s7 tsinsds > 0 (t > m).
0 0

The proof of (14) is direct.
Next suppose v > 1. Then integration by parts gives

t t
Fo(y,t) = / s7  cossds =7 sint — (v — 1)/ s7 %sinsds
0 0

=" sint — (v = 1)Go(y — 1,1);

(16)

and similarly

t
(17) Go(v,t) = / 7 sinsds = —t""tcost + (v — 1) Fy(y — 1,1).
0
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Thus, if 1 < v <2, then, by the results for 0 < v —1 < 1, we see that Fy(v,t) =
7" I(sint 4+ o(1)) (t — o0), and Go(7,t) = 7~ (—cost + o(1)) (t — o0). We can
repeat this process to prove (15) for all v > 1. O

Lemma 3. Let n > 1. Then F,(v,t) and G,(v,t) satisfy that

(18) {F”(%t) =t B0yt +o(1) (E—=o00), oy 0<~y<1;

Gn(7,1) = "(Go(7,t) + o(1)) (t — o0)

F,(1,t) = O(t" 1) (t — o0),
(19) {Gn(l,t) ={"(1+0(1)) (t — o0);

20) {Fn(%t)(vl)Gn(vl,t)JrnGnd%t), forall 4> 1.

Gn('%t) = (7 - 1)Fn(’y - Lt) - nFn—l(’yat)

PRrROOF: It follows from (7) that

t
(21) Fn('y,t):/ sTHt — 5)" cos s ds
0

n

n ¢
= Z (kz) (71)"*’“151“/ sTTn=k=1 cos s ds
k=0 0

(]

S =
— o

S (n) (—1) K¢k (twn,k,l sint — (y+n—k—1)Go(y+n—k— Lt))

k=0 k
+t" Fo (7, t) (by (16))

n—1
= —ttlgint — Z (Z) (=) Fth(y =14+ n —k)Go(y — 14+ n — k,t)
k=0
—anFQ(’y,ﬁ).
Similarly
¢
Gn(y,t) = / s77Ht — 5)"sin s ds
0

(22 _ 7l cost + Z (Z) (=) Fth(y =14 n—k)Fo(y — 1 +n — k,t)
k=0

+ tnGo("}/, t)
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First suppose 0 < v < 1. Then by Lemma 2

O(t7tm=2) (t — o00) for 0<k<n-2,

tPFy(y —14+n—k,t) =
oy k) {O(t"—l) (t — 00) for k=n—1;
and

Ot+"=2) (t—o00)  for 0<k<n-2

t"Go(y —1+n—k,t) =
oty ki) {O(t"—l) (t — o0) for k=n—1.

Thus (18) follows from (21) and (22).
Next suppose v = 1. Then by (21) and (14)

F,(1,t) = —t"sint— i (:) (=)™ *t*(n — k)Go(n — k,t) + t"Fy(1,1)
k=0

- (" (1) *tF(n — k)Go(n — K, t);
> (1) :

and similarly by (22) and (14)

Gn(1,t) =t" + z_: (Z) (=1)"Ftk(n — k) Fy(n — k, t).

k=0

Here it follows from (14) and (15) that

{thO(”_k’t):O(t"_l) (t=o0) Al 0<k<n—1

t*Go(n — k,t) = O™ 1) (t — o0)

whence (19) follows.
Finally suppose v > 1. Then by (21) and (16)

n—1

— 7 gint — (y = 1) kz_% (Z) (=D F*Go(y — 1 +n — k,t)

Fu(v,t)

n—1
-1
+ny (n k >(1)"_1_kGo(’Y —14n—kt)+t"Fo(y,t)

n—1
-1
+nz (n k )(—1)”_1_’“th0(7 +n—1—k,t)

= _('Y - 1)Gn('7 —1,t) + nGn—l(%t);
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and similarly by (22) and (17)
Gn(’)/a t) = (,7 - 1)Fn(7 - 17t) - nFn—l(’)/a t)
This proves (20), and hence the proof is complete. O
Lemma 4. Vy(v,t) and Wy(~,t) satisfy that
Vo(v,t) = O(t°) (t — 00), Vo(y,1) # ot°) (t — o0),
Vo(v,t) # t° (t — 00), and

VV()(’Y; t) = O(to) (t - OO), Wo(%t) 7é O(to) (t - oo)ﬂ
Wo(y,t) # 1% (t — o0)

(23)

forall 0 < v < 1;

(24) Vo(1,t) =sint, Wy(1,t) =1 — cost;

VO(’Y; t) = O(to) (t - OO), V()("}/,t) 7é O(to) (t - OO),
(25) Vo(3.1) £ 10 (t — 50), and

Wo(y,t) =t7 11+ o(1)) (t — o0)
foralll <~y < 2.

PROOF: (23) and (24) follow directly from Lemma 2 together with the definitions
of Vo(y,t) and Woy(v,t) (cf. (9), (10)). Suppose v > 1. Then by (16) and (17)

Vo(v,t) = Fo(v,t) cost + Go(v,t) sint
= (" 'sint — (y = 1)Go(y — 1,t)) cost
(26) + (=t eost + (v — 1) Fo(y — 1,1)) sint
=—(y—=1)Go(y—1,t)cost + (y — 1) Fo(y — 1,¢) sint
= (v = YWoly —1,1);

and similarly

(27) Wo(y,t) =71 = (v = DVo(y = L,1).

Thus (25) follows from (23). This completes the proof. O
Lemma 5. Let n > 1. Then V,(v,t) and W, (v,t) satisfy that

o {mwww%wm+w?aam»

for all 0 <~y <1,
Wi (y,t) = " (Wo(7,1) + o(1)) (£ — o0)

Va(1,t) = t"(sint + o(1)) (t — 00),
(29) {Wn(l,t) = —t"(cost + o(1)) (t — o0);
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(50) {vm,t) = (= OWaly =L —nWaa(nt),

Wn(’ya t) = _(7 - 1)‘/n('y - 17t) + nVn—l('Yat)
PROOF: Suppose 0 < v < 1. Then

Va(y,t) = Fu(y,t)cost + Gn(7,t)sint
= t"(Fo(7,t) +o(1)) cost + t*(Go(7,t) + o(1))sint  (by (18))
= t”(FO('y,t) cost + Go(7,1) sint+o(1))
= t"(Vo(7,1) +0(1)) (t — o0);

and similarly W, (v,t) = t"(Wy(vy,t) + o(1)) (t — o0). (29) follows easily from
(9), (10) and (19). Finally suppose v > 1. Then by (20)

Va(y,t) = Fu(y,t)cost + Gn(v,t)sint
= ( — (v = 1DGn(y = L,t) + nGp-1(7, t)) cost
+((r = VFu(y = 1,8) = nFy 1 (3,1) ) sint
= (y-— 1)<Fn(’y —1,t)sint — Gn(y — 1,¢t) cost)
—n(Fn_l('y, £)sint — Gn_1(7,1) cost)
= (y=DWaly —1L1) = nWn_1(y,1),

so that the first half of (30) follows. The second half follows similarly. O

As an immediate consequence of Lemmas 4 and 5 (see especially (30)) we have
the following

Lemma 6. Let n > 1. Then V,(v,t) and W, (v,t) satisfy that

Va(y,1) = O(t") (t — 00), Va(y,t) # o(t") (t — o0),
Va(3,8) # 47 (t — o0), and

Wi (7,1) = O@t") (t — 00), Wa(y,t) # o(t") (t — o0),
Wi (7,t) # 1" (t — o0)

forall 0 < v < 2.

(31)

3. Proofs of the theorems

PrROOF OF THEOREM 1: We may assume without loss of generality that a = 1.
By (1), (4) and Lemma 1, if 0 < v < 1, then ||C]| ~ t*=7 (¢ — o), where
C?Y := T(t). Further, since 0 € p(A), we may apply [1, Theorem 3.3] to infer
that ||C7 Y| ~ [|CY — I|t~" (t — co). By this and an induction argument, if
0 <~ <k+1, then |C]| ~ t*=7 (t — 00). The fact that [|[CFT|| ~ ¢! (t — o0)
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has been proved in [1, Theorem 3.4]. Next suppose k + 1 < 7 < k + 2. Then,
since lim; o, ||C7 || = 0, the equation

(32) AC) =yt~ H (7 =)
(cf. [3]) yields that

(33) Jim C’ = lim A~ ey t—1n=-4A"1
— 00 ’y
This argument can be repeated, and hence (33) holds for all v > k + 1. Finally

lim A7'Ay =lim [ e MT(t)dt =1lim (M — A)~' = —A71,

A0 A0 Jo Al0
Hence in particular ||Ax]| ~ A (A ] 0), and ||C]|| ~t~! (t — o0) for all v > k + 1.
This completes the proof. (Il

PrROOF OF THEOREM 2: This is similar to the above proof. We may assume
that a = 1. By (2), (11), (12), and Lemmas 4 and 6, if 0 < v < 2, then (a) in
Theorem 2 holds. We then use the equation

3 By =D 220,

where C? := C(t) (cf. [3]). Since 0 € p(B) = p(A?), it follows that ||C7 || ~
|C} —I||t72 (t — 00), and so if 0 < v < k + 2, then (a) in Theorem 2 holds.
Next, let € X be such that ||| = 1 and Nz = 0. Then, since lim;_.o, CFz =
limy oo (k/tk)(fot(t — )" cossds)x = 0, it follows that liminf, . [|CF — I >
liminf, .o [|CFz — || = ||z = 1, whence ||CF™2|| ~ =2 (t — o0). Now suppose
k+2 <~ <k+4. Then limy . |C7 || =0, and so

2

. t ) _
35 lim ———C7 hm B Y ¢V *—-1)=-B"'.

This argument can be repeated, and hence (35) holds for all v > k + 2. Finally

lim A\724, = Jim A~ / e MO(t)dt =1im (A>T — B)™! = —-B7!
L0 0 L0

(cf. [4]). Hence in particular ||Ax| ~ A% (A | 0), and ||C]|| ~ t~2 (t — o) for all
v > k + 2. This completes the proof. O
Remark. lim; . (t/(k + 1))C’kJrl does not exist in Theorem 1. To see this we
write ACF = (k/t)(CF1 —I) =: (k/t)CF~' + D}, where lim; o || D}|| = 0, and
finally AKCF =: (k!/tF)T(t) + D757 where lim;_ ||DkH = 0. Since

k! | ptat : " an iat k k : k
m T(t) =kle Z:O e (N® 4+ EY), where tlin&HEtHZO,
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it follows that if N*z # 0, then lim;_, Cfz does not exist. Hence lim;_, . (t/(k+
1))CF ! does not exist by (32). Similarly lim; o (£2/(k + 2)(k + 1))CF2 does
not exist in Theorem 2.
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