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On the existence of a σ-closed dense subset

Jindřich Zapletal

Abstract. It is consistent with the axioms of set theory that there are two co-
dense partial orders, one of them σ-closed and the other one without a σ-closed
dense subset.
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1. Introduction

One of the oldest properties of partial orders occurring in forcing arguments is
σ-closedness. A partial ordering 〈P,≤〉 is σ-closed if every countable decreasing
sequence of elements of P has a lower bound. This property easily implies that
forcing with P adds no new reals, preserves stationary subsets of ω1 and so on.
In this note, partially answering a question of Bohuslav Balcar, I will prove that
having a σ-closed dense subset is not a forcing property of partial orders — it is
not invariant under the co-density equivalence. The story is somewhat parallel
to the Axiom A case. While Axiom A is a property of posets that was used with
great success in the early years of forcing and still occurs in many textbooks, it
is not really a forcing property of posets in this sense. I will prove

Theorem 1.1. It is consistent with ZFC set theory that there is a partial order

〈P ∪ Q,≤〉 such that both P and Q are dense parts in it, P is σ-closed, while Q
has no σ-closed dense subset.

The method of proof closely follows the argument of [3]. The result is perhaps
not entirely satisfactory in the sense that the existence of such partial orders may
be a theorem of ZFC, and it is even not excluded that the σ-closed part P may be
isomorphic to one of the standard σ-closed partial orders such as adding ℵ2 many
subsets of ω1 with countable approximations. In the model for the theorem, the
continuum hypothesis holds and the posets have size ℵ2, which is minimal possible
by the results of Foreman [1] and Vojtáš [5].

The notation of the paper follows the set theoretic standard of [2].
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2. The proof

Work in the theory ZFC+CH. The partial orders P and Q are added by
countable approximations. Define a partial order R to consist of quintuples
r = 〈Pr, Qr,≤r, Cr, Fr〉 such that

(1) Pr, Qr are disjoint countable subsets of ω2;
(2) ≤r is a partial order on Pr ∪ Qr such that both Pr and Qr are dense in

it, and moreover α ≤r β → β ∈ α ∨ β = α;
(3) Cr is a countable set of descending chains in the poset 〈Qr,≤r〉 with no

lower bound in ≤r;
(4) Fr : Pr × Cr → Qr is a function such that Fr(p, c) ∈ c is an element of

the chain c such that every common lower bound p′ ≤ p, Fr(p, c) in Pr is
incompatible with some element of the chain c in ≤r.

The ordering on R is defined by r1 ≤ r0 if each coordinate of r0 is a subset of the
corresponding coordinate of r1 and moreover, if p, q ∈ Pr0

∪Qr0
are incompatible

(resp. incomparable) in ≤r0
then they are also incompatible (resp. incomparable)

in ≤r1
.

A bit of explanation is necessary here. Let G ⊂ R be a generic filter and look
into the model V [G]. The partial order 〈P ∪ Q,≤〉 from the main theorem is
obtained from the generic filter G as the unions of the first three coordinates of
the conditions in the generic filter. The last requirement in the second item is
necessary to avoid the possibility that the density of P is ℵ1, which would be
impossible by Foreman’s result. The σ-closedness of P will be guaranteed by a
density argument. The descending chains in the set C =

⋃
r∈G Cr will have no

lower bounds and will be plentiful enough so that Q will contain no σ-closed dense
subset. The function Fr is a technical tool that guarantees that adding a lower
bound to a countable decreasing chain in P does not necessitate adding a lower
bound to one of the chains in C.

I will proceed with a series of more or less immediate lemmas.

Lemma 2.1. The forcing R is σ-closed.

Proof: If 〈rn : n ∈ ω〉 is a descending chain of conditions in R then its coordi-
natewise union is still a condition in R and is the lower bound. �

Lemma 2.2. The forcing R has ℵ2-c.c.

In fact, I will prove that R has the ℵ2-p.i.c. introduced by Shelah [4, Chapter VIII].
Strictly speaking, the lemma is not necessary for the proof of the main theorem.
Its proof is embedded in the proof of Lemma 2.4 and should be viewed as a warm-
up for that more complicated argument. Note that the poset P ∪Q must have size
greater than ℵ1 in order to satisfy the desired properties, and therefore I must at
least show that the forcing R preserves ℵ2.

Proof: Suppose that 〈rα : α ∈ ω2〉 is a collection of conditions in R. I must
produce α 6= β such that the conditions rα and rβ are compatible in R. Choose a
large enough cardinal θ and countable elementary submodels Mα of Hθ containing
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the collection of conditions as well as the ordinal α. By standard ∆-system and
counting arguments, using the continuum hypothesis assumption, I will be able
to find ordinals α ∈ β such that the corresponding models are isomorphic via a
function π : Mα → Mβ which is the identity on their intersection (the root) and
satisfies π(α) = β. I can also require that all ordinals in ω2 and the root are
smaller than all ordinals in ω2 ∩ Mα and not the root, which are in turn smaller
than all the ordinals in ω2∩Mβ and not the root. I will prove that the conditions
rα and rβ have a lower bound. Write rα = 〈Pα, Qα,≤α, Cα, Fα〉 and similarly for
β and note that π(rα) = rβ .

The common lower bound r is defined as the coordinatewise union on the first
three coordinates of rα and rβ . The function Fr must extend Fα ∪ Fβ . It is
necessary to define Fr(p, c) where p ∈ Pα \ Pβ and c ∈ Cβ \ Cα, or vice versa,
where p ∈ Pβ \ Pα and c ∈ Cα \ Cβ . The latter case is just a mirror image of the
former case. In the former case, note that c must contain some condition q /∈ Mα

(otherwise c = π−1c ∈ Cα) and let Fr(p, c) be one such condition in the chain c.
It is not difficult to verify that indeed r ∈ R. Consider for example the con-

dition (4) in the case where p ∈ Pα and the root and c ∈ Cβ and not the root.
Then, Fr(p, c) is a condition in Qβ and not the root. All conditions ≤r p are in
Pα ∪ Qα and not the root, all conditions ≤r Fr(p, c) are in Pβ ∪ Qβ and not the
root, these two sets are disjoint, therefore p, Fr(p, c) are ≤r-incompatible and (4)
holds.

In order to verify that r ≤ rα, rβ , I need to show that the incompatibility
relation on ≤r extends that of ≤α and ≤β. For this, note that if a condition
p ∈ Pα ∪ Qα does not belong to the root, it has no elements of Pβ ∪ Qβ below
it. �

Lemma 2.3. R  Ṗ is σ-closed.

Proof: Suppose that r ∈ R forces ȧ = 〈ṗn : n ∈ ω〉 is a descending chain of

elements of Ṗ . I must find a stronger condition forcing a lower bound to this
chain. A reference to genericity will then complete the argument.

Use the σ-closedness of R to strengthen r if necessary to decide the names ṗn

to be certain specific elements pn ∈ Pr. Define a condition r′ ≤ r by extending
the poset Pr ∪ Qr by adding an element p ∈ Pr′ such that for every q ∈ Pr ∪ Qr,
p ≤r′ q if and only if there is n ∈ ω with pn ≤r q; and adding a countable chain b
below p which contains alternately elements of Pr′ and Qr′ . Define Cr′ = Cr and
Fr′ to be a certain extension of Fr. I must define the values Fr′(p, c) for every
chain c ∈ Cr. The values Fr′(q, c) for q ∈ b will be defined in the same way.

For the definition, write d = {q ∈ c : ∃n ∈ ω pn ≤ q}. Note that d 6= c:
either Fr(p0, c) /∈ d, or else, if Fr(p0, c) ∈ d as witnessed by pn, then pn is
incompatible with some element of c by the properties of the function Fr , and
this element then must fall out of d. In any case, let Fr′(p, c) be any element of
c \ d. It is immediate that Fr′(p, c) is incompatible with p in ≤r′ and therefore
the condition (4) is satisfied in this case.
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It is now not difficult to check that r′ ∈ R, r′ ≤ r and r′  p̌ is a lower bound
of ȧ as desired. �

Lemma 2.4. R  Q̇ does not have a dense σ-closed subset.

Proof: Suppose that r  Ḋ ⊂ Q̇ is dense. I will find a condition r′ ≤ r such
that there is a chain d ∈ Cr′ such that for every q ∈ d, r′  q̌ ∈ Ḋ. Such condition
of course forces that ď is a descending chain in Ḋ with no lower bound.

For every ordinal α ∈ ω2 find a condition rα ≤ r such that there is a condition
qα ∈ Qrα

which is as an ordinal larger than α and rα  q̌α ∈ Ḋ. This is

possible by the second requirement in (2), R  Q̇∩α is not dense in Q̇. Thinning
out if necessary, I may assume that 〈qα : α ∈ ω2〉 in fact form an increasing
sequence as ordinals. Now, let θ be a large enough cardinal number and for every
ordinal α ∈ ω2 choose a countable elementary submodel Mα ≺ Hθ containing
Ḋ as well as rα, qα. By a standard ∆-system and counting arguments using
the continuum hypothesis assumptions, find ordinals αn : n ∈ ω such that the
models 〈Mαn

: n ∈ ω〉 form a ∆-system, they are pairwise isomorphic via functions
πmn : Mαm

→ Mαn
which form a commuting system and are equal to the identity

on the root of the ∆-system, πmn(rαm
) = rαn

, πmn(qαm
) = qαn

, and moreover,
whenever m ∈ n then all ordinals in ω2∩Mαm

\Mαn
are smaller than all ordinals in

ω2∩Mαn
\Mαm

, but greater than all ordinals in the root and ω2. I will produce a
lower bound r′ of the conditions {rαn

: n ∈ ω} such that d = {qαn
: n ∈ ω} ∈ Cr′ .

This will complete the proof.
In fact, there is a canonical such condition r′. In order to facilitate the notation

during the construction, write rαn
= 〈Pn, Qn,≤n, Cn, Fn〉 and qαn

= qn ∈ Qn

for every number n ∈ ω. We are going to have Pr′ =
⋃

n Pn, Qr′ =
⋃

n Qn.
The ordering ≤r′ is the inclusion-minimal one which extends all ≤n: n ∈ ω and
contains d as a chain. Since I want to make sure to get a condition ≤ rn for all n,
I must verify that the incompatibility relation of ≤r′ extends the incompatibility
relations of all ≤n: n ∈ ω. Well, suppose that n 6= m ∈ ω and p, p′ ∈ Pn ∪ Qn are
conditions and q ∈ Pm ∪ Qm is their lower bound in ≤r′ ; I must find their lower
bound in ≤n. There are two cases. Either q belongs to the root, in which case
it is enough to observe that ≤n=≤r′ on the root and therefore q is the required
lower bound in Pn as well. Or q does not belong to the root. In such a case, the
minimality condition on ≤r′ implies that either q ≤m p, or n ∈ m and qn ≤n p
and q ≤m qm (and the same condition on p′). In any case, this means that πmn(q)
is the required lower bound of p, p′ in ≤n. A similar break into cases also proves
the following implications for every p ∈ Pn ∪ Qn and q ∈ Pm ∪ Qm: if p ≥r′ q
then p ≥n πmn(q), and if p and q are compatible in ≤r′ then p and πmn(q) are
compatible in ≤n.

Let Cr′ = {d}∪
⋃

n Cn. Note that d has no lower bound in Pr′ ∪Qr′ since it is
cofinal in this set with the ordinal ordering. Finally, the function Fr′ will extend⋃

n Fn. Note that
⋃

n Fn is indeed a function: if p ∈ Pn and c ∈ Cn for some n ∈ ω
then either c is not in the root and then 〈p, c〉 is not in the domain of the functions
Fm : m 6= n, and if p, c both belong to the root then so does Fn(p, c) and for every
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m ∈ ω, Fn(p, c) = πnm(Fn(p, c)) = (πnmFn)(πnmp, πnmc) = Fm(p, c). To verify
that (4) holds, suppose that p ∈ Pn, c ∈ Cn, and q ≤r′ p, F (p, c). I must show
that q is not compatible with all elements of the chain c. Indeed, if q ∈ Pm ∪Qm

were compatible with all elements of the chain c (which are all in Pn ∪ Qn), by
the last sentence of the previous paragraph πmnq would be ≤n compatible with
all elements of c, contradicting the property (4) of the function Fn.

I must define the values Fr′(p, c) where p ∈ Pn and not in the root, and
c ∈ Cm not in the root, for some n 6= m ∈ ω, Here, observe that all but finitely
many elements of c fall out of the root of the ∆-system: the π embeddings move
countable sequences pointwise and if they fixed all elements of c, they would all
fix c and put c in the root. Then note that all but finitely many elements of c are
not above qm in ≤m because qm is not a lower bound of c in that ordering. The
definition of Fr′(p, c) divides into two possibilities, m ∈ n and n ∈ m. If m ∈ n,
let Fr′(p, c) = q be an element of c which is not above qm and not in the root.
The minimality of the ordering ≤r′ then implies that p and q are incompatible
and therefore (4) is satisfied. If n ∈ m then let Fr′(p, c) = q be an element of
c which is not in the root, not above qm, and below Fm(qm, c). The verification
of (4) is more complicated here. If p 6≥n qn then p is incompatible with q and
therefore (4) holds. If p ≥n qn then indeed there may be a lower bound p′ of p
and q. By the minimality of ≤r′ it must be the case that p′ ∈ Pm ∪ Qm but not
in the root, and p′ ≤ qm. Then p′ is incompatible with one of the elements of c
by (4) applied to Fm(qm, c) and the minimality of ≤r′.

Finally, I have to define the values of Fr′(p, d) for p ∈ Pr′ . Just let Fr′(p, d) =
q0. To see that (4) holds, let p′ ≤ p be an arbitrary element of Pr′ below q0.
p′ does not belong to the root, and must belong to Pn for some n ∈ ω. The
minimality of ≤r′ implies that p′ ≤r′ qn. However, p′ 6= qn since qn /∈ Pn, and the
minimality of ≤r′ implies that p′ is incompatible with qn+1. (4) follows. �

Together, the lemmas show that V [G] has the same cardinals and reals as V ,
and P, Q are codense partial orders, one of them σ-closed and the other without
a σ-closed dense subset, proving the theorem.

References

[1] Foreman M., Games played on Boolean algebras, J. Symbolic Logic 48 (1983), 714–723.
[2] Jech T., Set Theory , Academic Press, San Diego, 1978.
[3] Jech T., Shelah S., On countably closed complete boolean algebras, J. Symbolic Logic 61

(1996), 1380–1386, math.LO/9502203.
[4] Shelah S., Proper and Improper Forcing, second edition, Springer, New York, 1998.
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