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Sharp generalized Trudinger inequalities via truncation

for embedding into multiple exponential spaces

ROBERT CERNY

Abstract. We prove that the generalized Trudinger inequality for Orlicz-Sobolev
spaces embedded into multiple exponential spaces implies a version of an in-
equality due to Brézis and Wainger.
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1. Introduction

Let Q C R™, n > 2, be a bounded domain. The classical Sobolev embedding
theorem asserts that VVO1 P(Q) is continuously embedded into L" (Q) if 1 < p <n
and p* = 2. Further WyP(Q), p > n, is embedded to L>(Q). Even though p*
tends to infinity as p — n—, there are unbounded functions in VVO1 Q).

A famous result by Trudinger [25] (see also [12], [22], [24] and [26]) states that
the space W, "™ (Q2) is continuously embedded in the Orlicz space exp L7-1 (2) (see
Preliminaries for the definition of Orlicz spaces), i.e. there exist C; = C;(n) and
Cy = C3(n) such that

(1.1) /Qexp((cﬂgiiﬁ)!n(m)ﬁ) dr < CsL0 ()

for every non-trivial function u € Wy ().

It is known (see [13], [7] and [3]) that exp L7 () is the smallest Orlicz space
with this property. However, even sharper inequalities exist in other scales. By
a result of Brézis and Wainger [1] and independently Hansson [11] (see also [19]
for a simple proof) we know that

L () dt
(1.2) /0 Jog" (a0 ¢ < O Vullfn(g)
t

for every u € VVO1 "(2). This inequality can be also derived from capacitary
estimates by Maz’ya [17]. The results in [8] and [4] tell us that this inequality
gives us the smallest rearrangement invariant Banach function space Y (§2) such
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578 R. Cerny

that W, (Q) is continuously embedded into Y (Q). From [1, Proof of Theorem
3(b)] one can easily see that equality (1.2) is stronger than (1.1).

Next we would like to have a version of (1.2) which is suitable for Orlicz-
Sobolev spaces embedded into multiple exponential Orlicz spaces. Recall that for
s > 0, a measure pu on Q, f : Q +— R p-measurable and for ¢ : [0, L, ()] —
[0, 00) non-decreasing and continuous on [0, £, (£2)], differentiable on (0, £, (£2))
and satisfying ¥(0) = 0, we have the following well-known identity

L () 0
an [ o= [ e e i@l > s

0

( ;. denotes the non-increasing rearrangement of f with respect to the measure 1).
Using (1.3) and some easy estimates we obtain that (1.2) is equivalent to

oo tn—l
(1.4) / dt < C|Vul2,
0 10g”71 ( eLn () ) L)

L ((zeu(@)[=1])

with the convention that we integrate only over ¢t € (0,00) such that L, ({|u| >
t}) > 0 (we define (1) = log" " (=) for t € (0, £,(Q)] and ¥(0) = 0). We
use this convention throughout the paper.

When {2 is sufficiently nice, (1.1) turns to the following inequality for functions
that do not have a zero trace on the boundary: there are C; = C1(n) and Cy =
Cs(n) so that for every non-trivial u € W1Hm(Q) we have

—_n_

. lu(z) —c| a3
1. f @) Z e VT g < o9
(15) éER/QeXp<(Cl||vu|Ln(m) ) dr < CoLLa(9)

and (1.4) turns to

tnfl

ceR n—1 el (Q2)
0 log (cn({weﬂ:\u(z)—cet}))

for every u € WHn(Q).

It is a surprising result by Koskela and Onninen [16] that if §2 is such that (1.5)
is valid for every u € WHm(Q), then (1.6) is also valid for every u € WhHn(Q).
That is, with no additional requirement on 2 we have that the validity of the
embedding (1.5) implies the validity of the sharper embedding (1.6). It is also
proved in [16] that the Sobolev inequality for W'P(Q) — LP"(Q), 1 < p < n,
improves the same way into an inequality by O’Neil [20] and Peetre [21].

In recent paper [15], Hencl proves a version of the result from [16] for Orlicz-
Sobolev spaces embedded into single and double exponential spaces.

The aim of this note is to show that the same phenomenon occurs in all Orlicz-
Sobolev spaces embedded into multiple exponential Orlicz spaces.

Let us give some information concerning the spaces we are interested in. The
space WoL™log® L(2), & < m — 1, of the (first order) Sobolev type, modeled on
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the Zygmund space L™ log® L(£2), is continuously embedded into the Orlicz space
with the Young function that behaves like exp(tﬁ) for large t. These results
are due to Fusco, Lions, Sbordone [9] for & < 0 and Edmunds, Gurka, Opic [5]
in general. Moreover it is shown in [5] (see also [3] and [7]) that in the limiting
case &« = n — 1 we have the embedding into a double exponential space, i.e. the
space WoL"log" ' Llog®log L(Q), o« < n — 1, is continuously embedded into
the Orlicz space with the Young function that behaves like exp(exp(tﬁ )) for
large t. Further in the limiting case @ = n — 1 we have the embedding into triple
exponential space and so on. The borderline case is always « = n — 1 and for
a > n—1 we have the embedding into L>°(Q2). It is well-known that the Zygmund
space L" log® L(f2) coincides with the Orlicz space L® (), where

o(t)
im ———— =1,
t—oo t" log®(t)
the space L™ log" " Llog® log L(Q) coincides with L*(Q) where

, o(t)
11}111 n n—1 @ -
t=o0 ¢ log" ™ (t) log™ (log(t))

and so on. For a further discussion about the limiting cases @ = n — 1 see [6].
To simplify our notation when working with the multiple exponential spaces,
let us write for £ € N, £ > 2

logyy (t) = log(logyy_11(t)), where logp(t) = log(t)
and
expyy (t) = exp(expp_q)(t)), where expp(t) = exp(t).
Next, let us recall the version of (1.1) for embedding into multiple exponential
spaces. Let Q C R™, n > 2, be a bounded domain, let /e N, £ > 2, let a <n —1
and let ® be a Young function satisfying
d(t
tlim -1 (1)
== (nz.;1 logl}” (t)) logfy, ()

Then it is shown in [5] and [9] (see also [3], [14] and [2]) that there are constants
(1 and C5 such that

/Q expy ((01|||€1(LT)L|¢(Q;) —) dr < Co

for every non-trivial u € W L®(Q).

Following [16] and [15] we state our results in the generality which can be
applied in the context of analysis on metric measure spaces. In what follows X
is always a metric space equipped with a Borel measure y and € is a measurable
subset of X.

=1
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580 R. Cerny

In the sequel we consider differentiable Young functions ® such that

=1

(1.7) Jim ‘If_(f)
= g (T2 logi (1)) ogfy ()

with £ € N, £ > 2, s > 1 and o < s — 1. We further suppose that there are
C, 0 > 0 satistying

(1.8) éts <®(t) < Ct* for t € [0, 6).

Theorem 1.1. Let  C X be a domain with () < oo and let u,g : @ — R.
FixteN £>2 se€(l,0) anda € R, a < s—1. Set E = expm(l). Suppose
that ® is a Young function satistying (1.7) and (1.8). Assume that the inequality

. lu(y) —¢| \s=i=a
1.9 1nf/exp —_— d <C
(19) cek Jo m((clngumm) ) dutw) < s

is stable under truncation. Then

0 ts—l
(110) igﬂg/ s—1—a Eu(Q) dt < oo.
0 logiy " (rremiage= )

The requirement that the inequality (1.9) is stable under truncation means that
foreveryd € R, 0 < t; <ty < oo and z € {—1,1} the pairs vff, gff = gX{t,<v<ts}s
where v = z(u — d) and v;> = min{max{0,v — t1},t5 — t1}, also satisfy (1.9):

nt [ e (A=) ) gy <

Cillgi |l Lo o)

Notice that the function u clearly satisfies the truncation property if 2 C R,
s=mn, p= Ly, and g = |Vu|. For further applications of the powerful truncation
technique which was first used in [18] we refer the reader to [17], [10] and references
given there.

The validity of (1.10) is known in the Euclidean setting if we deal only with
functions with zero traces (see [5], [8] and [4]). Again these spaces serve as the
best rearrangement invariant target space of the embedding of Wy LT (). Our ap-
proach gives a new proof of these embeddings and we have additional information
if we deal with functions that do not have a zero trace on the boundary.

The paper is organized the following way. In the third section we study some
properties of the functions exp; and log(;;, j € N. The fourth section is devoted
to the proof of Theorem 1.1.
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2. Preliminaries

We denote by L, the n-dimensional Lebesgue measure. For two functions
h,g : I — R we write h ~ g on [ if there is a constant C > 1 such that
Sh(t) < g(t) < Ch(t) for every t € I. When I = [0, 00) we simply write h ~ g.

A function @ : [0,00) — [0, 00) is a Young function if ®(0) = 0, ® is increasing,
convex and lim;_, & = 0o. For a fixed measure u, we denote by L?(Q) the
Orlicz space corresponding to a Young function ® on a set 2 with a measure pu.

This space is equipped with the Luxemburg norm

||f||L¢(Q):inf{A>o:/QcI>(@)du(x)g1}.

For an introduction to Orlicz spaces see [23]. By WL®(Q2) we denote the set of
functions f such that f,|Vf| € L*(Q2) and by Wy L®(Q2) we denote the closure of
Cee () in WLE(Q).

Let £e N, ¢ >2 s>1and a < s — 1. Suppose that the Young function &
satisfies (1.7) and (1.8). Let us define auxiliary functions ¢, ®;1 : [0, 00) — [0, 00)
by

14
(H E+t)1ogﬁ](E+t), Oi(t) = t5p1(t), >0

From conditions (1.7), (1.8) we see that for any fixed ¢y > 0 we have
1
(21) q)l(t) Z Ets, D~ q)l, 1 ~ 1 on [O,to] and (I)l(t) ~t° on [O,to].

We say that a function ® satisfies the As-condition if there is Ca > 0 such
that ®(2t) < Ca®(t) for every ¢ > 0. If ® satisfies the Ag-condition then (see
[23, Proposition 6, p. 77])

(2.2) / @(M) du(z) =1  provided ||f|| e+ > 0.
o Mfllze)
Notice that our function ® satisfies Ag-condition thanks to (1.7) and (1.8). And
so do 1 and ;.
Let ¥ : [0,00) — [0,00) be an increasing convex function and let h : S — R
be a non-negative function. Then we can use the following version of Jensen’s
inequality:

(2.3) ﬁ/gh(m)dxg\Il_l(ﬁ/sllf(h(ac))dm).

We also use a simple lemma from [16].
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Lemma 2.1. Let v be a finite measure on a set Y. If w : Y — [0,00) is a v-
measurable function such that v({y € Y : w(y) = 0}) > VQY)
t > 0 we have

, then, for every

e w2 ) <2t v({ye vl —d > 7}).

By C we denote a generic positive constant that may depend on ¢, s, o, Cy, K,
lgllLe ) and || f|| L#(q)- This constant may vary from expression to expression as
usual.

3. Some properties of the functions expyj] and logm

Lemma 3.1. Let a,b,d > 1. Then for every j € N, j < { we have

(3.1) log(;;(E + ab) < 2log(E + b) log;1(E + a)
and

PROOF: Let us prove (3.1). Using the fact that for z,y > 1 we have z +y < 2zy
we obtain

log(E + ab) < log(Eb + ab) = log(b) + log(E + a)
<log(E +b) + log(E + a) < 2log(E + b)log(E + a).

Similarly we use the inequality 2log(E + b) < E 4 b and above estimate to obtain
logo) (£ + ab) < log (2 log(E + b) log(E + a)) < log((E +b)log(E + a))
= log(E +b) + logp (£ + a) < 2log(E + b) logy (E + a)

and we continue by induction.
Now, let us prove (3.2). We have

log(E + a?) <log((E + a)*) = dlog(E + a)
and thus
logpy (E + a®) < log(Clog(E + a)) = log(C) + logpo) (E +a) < Clogg(E + a).
We continue by induction. O

Lemma 3.2. If t > 0, then

4
[Ty k!
Hf—l kkqj+1

i=1 "

the <

expyy (1)

whenever k; e N, i =1,... L.
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PROOF: We have exp(t) = >_°_ ';:—11!,
) k 00 st k2 k
B exp”(t) exp klﬁ ky2th2
expy (t) = Z ko Z Z Ty V!
k1=0 k1=0 17 >=0

and by induction

o
expy (t) = 2=l m ke
k1,...,ke=0 Hi:l kz!

Each summand on the right hand side is estimated by expyy (t) and we are done.

O
Lemma 3.3. Suppose that £,1 > 0 satisfy
+ HZ lk]T 1
e §C’7k+w where k; e N, k; <k, i=1,...,¢.
=ik
Then
a1 He_l a;_z
Eae gCﬁw for every a; € [1,00), a; < ag, i=1,...,¢.
ITizia; ™
PRroOF: First let us show that we have
ki
; T, k°
(3.3) ¢v<C /:11 ¢ forevery be[l,o0), ki <b+1,i=1,....¢
Hi;l kz ’
Let m € N be the integer part of b. Then by assumption we have
¢ ¢
1 . k™ km+1
& < max(€m+l gm) < C,(/}maX( Hz:l i -, Hz 1™ — )
=1, =0 o1
5.0 ke e
. .
L ™
< Onp—ti=Lli
=1 5 T
Hi:l kl
Next let us prove
ki ki1 it
(3.5) ki < C’kzb ,i=1,...,¢ and k, b <CEM,di=1,...,0—1.

The first inequality in (3.5) follows from

k; k; k;(b—m) k;

kTt =k, o < kP

(2 (2 K2
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The second inequality in (3.5) is proved by

kip1  Kig1 kiy1(m+1—b) ki1 -
kbt =g MY <k < (b4 1)

3 3

< (3m)nF = (3m)" < C.

Now, (3.3) follows from (3.4) and (3.5).

Next, we are going to prove assertion of the lemma applying inequality (3.3)
with k; being the integer parts of a;, i =1,...,¢. Fori=1,...,¢ — 1 we observe
that

aq',_b+1 a; 5 aq,b+1 _kq,b+1 kq:b+1 2,1 kil;u 9 1 kil;u kil;u
o =(2) "k kv <2k P < 22(2b)bk, T < Ck;
K2

Therefore

e k7 Lo
(3.6) =l < C=E=ELE forevery be [1,00), a; <b+1,i=1,...,¢.

-1 1;1 H271 D
Hi:l kz =1 az

Now, we set ag = b and (3.3) together with (3.6) conclude the proof. O

Lemma 3.4. Let ¥ be a non-negative increasing function satisfying W (t) ~ tp1(t)
for t > 0. Then there is Cy > 0 such that the inverse function W' satisfies

on [0, 00)
—1
() < C@(j]i[l logl*(E + t)) logjg" (B +) = Cy—os =i (1),

PROOF: First, let us prove that there is ¢; > 0 such that

(3.7) 1og[j](E+t%)2 log;)(E+t) for t>t, jEN, j<{.

N =

For j =1 it is obvious. For j = 2 we have

logpy) (B + 1)

N =

1 1
logpy)(E +1t%) > 1og(§ log(E + t)) = logy)(E +t) — log(2) >

provided ¢ is large enough. And we continue by induction.
Further, we see that for a > 0 there is t3 > t; such that for t > t; we have
from (3.7)

- 1 1

while for a < 0 we find t3 > 1 so that for every ¢t > t5 we obtain

(e el 1 (e
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Therefore by (3.7), (3.8) and (3.9) we have for t > ty

5
C -1 —1
=G (H og]] E+t)1ogm (E+1) (Hlog (E+9(t )))
o e
x logfy (E + (1))
> C@ (Hlog (B +1)) log* (B +1)
1 -1
X 26D (Hlog[] E+t)> Sla llogm(Eth)
Jj=1
Cy
> ?t.

Thus W—(t) < ¥(t) on [tz,00) provided Cy is large enough. On the other hand
we have U(t) ~ t on every bounded interval by (2.1) and thus ¥~1(¢) ~ ¢ on every
bounded interval. As i is bounded away from zero on any bounded interval, we

have W(t) ~ t there and we are done. O

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Our proof is very similar to the proofs
from [15] (thanks to our auxiliary lemmata from the previous section).

Lemma 4.1. Suppose that the functions fr : 0 — R have pairwise disjoint
supports and that f = > ;- fi € L®(Q). We further assume that for every
k € N such that || fx||L+q) > 0 we have

1 En(9)
(41) (S+2) 10g(m> < 10g(m) +C

Then

ZkaHSL@(Q) <00.

k=1

ProOOF: Denote A\ = || fx||L# (). Without loss of generality we can suppose that
Ak > 0 for every k € N. We can further suppose that || f| ¢ = 1. Indeed,

otherwise we replace fi with k € N, which are functions satisfying the

S
[FERE
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following version of (4.1)

(s+2) 1og(;)

[ T ) e 2(Q)

= (s + D log
Ep($)
S ey

Ep(Q)
=1lo C
g(m{w;‘ﬁ o)t

)+ s+ 2)log (|l ()

) + C + (s + 2) max(0,log(|| fl| L= (0)))

Hence we have A\ € (0, 1], for every k € N. Notice that (4.1) implies

(4.2) (s+2) log(E + )\ik) < log(mifi%) +C.

Let ko € N be fixed (value of k¢ is given bellow, we need (4.8) to be satisfied).
The function ¢, is increasing for ¢ large and satisfies the As-condition. Hence
by (3.2) from Lemma 3.1 and the inequality ab < a? + b%, a,b € R, we have

o1 (L) < o (1l + 57) <€+ 0 () + oo ()
< C+ Cor(|fil) + C‘Pl(%k)'

Therefore (2.1) and (2.2) give

k=ko+1
ko
Il +C /ml
k=ko+1
|fk
=C+C /|fk| o1
(4'3) kaJrl

<ceo( X [inran S /|fk| o1(1ful)d

k ko+1 k=ko+1

+ Z /|fk| Y1 )
k=ko+1

= C+C(S) + 52+ S3).
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Notice that we have by (2.1) and (2.2)

@y S [ eshdi= [ edn<c [ o(fan=c
;/Q kl) du /Q n /Q p

and

(4.5) I;L|fk|8dusc;/g@lufmdugc.

From (4.5) we obtain

(4.6) S /|fk| dp<C

k=ko+1

and (4.4) implies

(4.7) Z /c1>1 |fxl) dp < C.

k=ko+1

It remains to estimate Ss. First, we claim that there is ky € N such that

(4.8) log(E + Aik) < Clog(E + m/gl@umdu)

for every k > ko. Let us prove this claim. From (2.2), Ay <1 and inequality (3.1)
from Lemma 3.1 we obtain

iz/Azcb(@ dusc/A;@l(%)duzc/m's%(%)d
/Ifzc HlOg ( |fk|))1 m<E+|fk|)du

< Clogl= D= DFlal E+ /|fk| Hlog E+|fk|)10g[e (E+|ful)d

—1
1 . .
<% /Q'fkls(Hlogm HE + |fil ) 1ogfy (B + | il) du
j=1

1 1
:C)\_k/QcI)l(|fk|)du§C)\—k/gq)(|fk|)dﬂ

This implies

(s +1)log(E + Aik) < C+1og(/Q (| fel) dp).
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Summing up this inequality and (4.2) we obtain

log(E+ Ai;) glog(E—i—m/Q(I)(Udeu)—i—C.

Therefore, since A, — 0 we easily find kg € N large enough so that (4.8) is satisfied
for every k > k.

Now, we can start estimating S3. From the definition of ¢1, the fact that ¢4 (t)
is increasing for large ¢ and from (4.8) we obtain

wl(; ) <C+C@1(m4¢(|ﬁc|)du>.

Hence
(4.9)
Sszk > v (5) /| 1t
ey /|fk| an+0 S oo [t an) [ 1l dn

k=ko+1 k=ko+1

Thus we need a suitable estimate of [, [fx]® dp.

Fix an increasing convex function ¥ : [0, 00) — [0, 00) such that U(t) ~ tp1(t).
Therefore ¥ and ¥~ satisfy the As-condition and ¥—! can be estimated by ¥
from Lemma 3.4. Thus from Jensen’s inequality (2.3) for the function h = | fi|*
and S = {fr # 0} we obtain

! s -1 ; s
H{fi #03) /{fwéo} il (u({fk #0}) /{fweo} v )du>

1
o1 - .
= ( p({fx #0}) /{fwéo FAKZIGAN) M)
Next we use the fact that ¢y (t*) < Cipi(t) (see (3.2)), (2.1) and Lemma 3.4

1 1

- @ Sd \Ij—l - C s d
n{fi # 03) /{fwéo} il s </~t({fk #0}) /{fk;éo} 7ueoe((s]) “)
1

N lIFl(u({fk #0}) /{fk;éo} Ca(l ] du>

1 1
L rerey /{fm} Co (15 dn)

1
(it 200 Jy g ORI ).

Now, we can plainly suppose that the constant C' on the last line satisfies C > 1.
Therefore, as ¢1(t) is non-decreasing for large ¢ and bounded away from zero on

IN

IN
=1
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[0,00), we have m < (plc(‘t) and thus ¥(Ct) < C¥(t) on [0,00). Hence we

obtain
1 - 1
T Z o0 *d V| ——mM— o du).
W 0)) /{fm}'f’“' n< O (o /WO} (15:1)d)
Therefore we have

1
il dp < © / () fil) du .
/{fww} {70} o1z Jisroy 2Tk dp)

This estimate, (2.1), (4.4), (4.5) and (4.9) imply

(4.10) S5 < C.
Now (4.3), (4.6), (4.7) and (4.10) conclude the proof. O

ProoF OF THEOREM 1.1: Let us choose d € R such that

Q Q

plezan =20 g ez ay > 2
Set v4 = max{u — d,0} and v_ = —min{u — d,0}. In the sequel v stands for v
and v_, respectively. Our aim is to prove

e e] tsfl
(4.11) / T = dt < oo forv=vy, v=0_.
s—1—a (Q
o logiy ' (zSHy)

First, let us show how (4.11) concludes the proof. Since {|u —d| > t} = {vy >
t} U{v_ > t}, we have

p(flu—d| = t}) < 2max{u({vy = t}), p(fv- = t})}.
Moreover we have for all s € [1, 00)

1 < 1

From this estimate and (4.11) we obtain

(4.12)
o tsfl
mf/ dt
c s—1—a Eun(Q)
€R Jy log[e] (u({weﬂr\s(w)—cIZt}))
oo ts—l
< / dt
- s—1l—a Eupn(Q)
o logiy ™" (rmeautm—a=m)

[e%s) ts—l e} ts—l
< C(/ dt +/ dt) < o0
- s—l—a Eu(Q) s—l—«a Eup(Q)

o logy (e, s o logy (arp-smy)



590 R. Cerny

which is the assertion of the theorem.

In the rest of the proof we establish (4.11). We distinguish two cases.

If v € L*°(Q), then inequality (4.11) is obviously satisfied (recall the convention
that we integrate over t € (0, 00) such that u({v > t}) > 0 only) and thus we are
done.

Hence we can suppose that v ¢ L>(Q) in the rest of the proof.

STEP 1.
Fix 0 < t; < t2 < oo. From (1.9), the truncation property and Lemma 3.2 we
have

s—1l—a 4 s—l—-a
sk Hl k! Sky
1) ([ iz -7 ) T <o(re) T okl
whenever k; € N, ¢ =1,...,¢. From Lemma 2.1 and the weak form of (4.13) we

obtain

s—l—a

tlu ({U? >t}] = <C’1nf—[ ({|Uff—c|2%})} ke

14 s—l—a
s-l-a Hi— k! Sk 9
< C(u(@) (—He_;lkkm) gt ey
=1 "

for k; e N, ¢ =1,...,¢ and every t > 0. Since (kz!)% ~ kT if k< {, from above
and from Lemma 3.3 we see that

ag s—l—«a

p({ot > th) = e \ °
(4.14) t(i) <C| = 963 1= )
E Q _ i+1 1

(82 Hf:ll a;

for a; € [1,00), a; < ag,i=1,...,Land ¢t > 0.

STEP 2.

Our next step is to prove
21’

= Eu()
logyy) (u({v22i“}))

(4.15) < C’Hggz+1 Lo  whenever i€ N.

Let us define b = H({Jfgiglﬂll}) We set
log(b
ai:L() fori=1,...,—1 and a;=log(b).

logj; 41)(b)



Trudinger inequalities via truncation

1 1 . 1 .
Hence as t™:® =¢, (1)@ = e~ b > E and limy_.oo(7)* = 1, we obtain

CaE (T (e )W) log(b)
H,: a; _ i log(;11;(b) &
-1 —= £2—2/  log(b) m log(b)
[ a™ (Hi:l (log 7:+1](b ) ) )logm(b)
4.16 ofp2 CL_1 o
(4.16) _ log(b) log 12 R (b) (Hi:l (1og[1i1](b))1 H ](b))

£—2 1 ﬁ
Hi:l (log[i+1](b)) et ®

~ logjy (D).

s—l—a

Next we observe that (%)2701&?b0§ = e T = Cand {03 > 2} = {v > 21t}
Hence from (4.14) with ¢ = 2%, t; = 2%, t5 = 271 and (4.16) we obtain (4.15).

STEP 3.
Set S; = {v > 2%},

G = {Z € Ny : logyy (/igfi))) < K47= logyy (il(t_gl)))}

and B = Ny \ G, where K > 1 is large enough so that 0 € G. Notice that G and
B are well-defined, because v ¢ L>().
Lemma 2.1 implies

i i+1 i . i+1 i—
p(o= 2 = p((” 2 2 <2t p({lod - o 2 271,

Hence we can use (1.9) and the truncation property for ¢; = 2% and ty = 2/ to
obtain

p({v > 2i+1})exp[e] ((C|922:—_||1UP(Q)> Sifia) < Cs.

Further we observe that

{921+ # 0} = {gx2icocoits #0} C {2 <wv} C{2' <0} =8

Thus for i € G we have

s—l—«a C
——— < Clog, " (E+ —5—
Hggﬁ 2o () a ( N(Siﬂ))
—=a C
<(Cl E
¢ og ( i M(Si))

s—l—a C
< Clowgg ™ (P + S zay)
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This verifies assumption (4.1) and therefore Lemma 4.1 and (4.15) give us

251’ 1
(417) Z 1 1o EH(Q) CZ ||g2 ||L<P(Q) < 0.
ieG O8[q (ﬁav22H4})) i€G

Next, let us suitably decompose B. For each i € G we define
Bi={jeB:j>i and {i+1,i+2,...,5} C B}.

From the definition of B, simple induction and (4.17) we have
(4.18)

> -y >
jeB logfeflﬂ(mfﬁiﬁm) ieG jeb 103?[21 ﬂ(uE(”fi)))

9257

<Cz Z 4s(i—i 1Ogs 1— a(EM(Q))

1€G j=i+1 [4] n(Siy1)

|
<O ——= > 3G <
z&GlOg}l (M({?ﬁiﬂl})) j:i+12(] :

From (4.17) and (4.18) we obtain

& 28i

(4.19) <o0.

s—1—« Eu(Q
= logiy ' (et

STEP 4.
We raise estimate (4.15) to the power s and sum over ¢ € N and we infer
from (4.19)

[e'e] ts—l si
(4.20) / 1 Eu(Q <C E < 0.
s—1—a ) s—1—a Eu(Q
2 logy (7u({l;(2t}))  logpy ' (pressey)

From (4.20) for v = vy and v = v_, respectively, we obtain (4.11). Since (4.11)
implies (4.12), we are done. |
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